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1. Introduction

Multidimensional poverty has captured the attention of researchers and policymakers
alike due, in part, to the compelling conceptual writings of Amartya Sen” and the
unprecedented availability of relevant data. A key direction for research has been the
development of a coherent framework for measuring poverty in the multidimensional
enVirO?ment that is analogous to the set of techniques developed in unidimensional
space.

Much attention has been paid to the aggregation step in poverty measurement through
which the data are combined into an overall indicator of multidimensional poverty.
The major contributions have developed an array of multidimensional poverty
measures and clarified the axioms they satisty, primarily by extending well-
established unidimensional poverty measures and axioms in new and interesting ways.
However each of the aggregation techniques relies on a prior identification step —
namely, ‘who is poor?’ Considerably less attention has been given to this important
component of a poverty methodology.

Identification is implicit in all poverty measures, although it is mainly discussed in
measures that first aggregate across dimensions of deprivation at the individual level,
then aggregate across individuals. At present there are two main approaches to
identifying the poor in a multidimensional setting. One is the ‘union’ approach, which
regards someone who is deprived in a single dimension as poor in the
multidimensional sense. This is generally acknowledged to be overly inclusive and
may lead to exaggerated estimates of poverty. The other main approach is the
‘intersection’ method, which requires a person to be deprived in all dimensions before
being identified as poor. This is often considered too constricting, and generally
produces untenably low estimates of poverty. Empirical assessments of
multidimensional poverty will require a satisfactory solution to the identification
question, and although the problems with union and intersection approaches are
widely acknowledged, an acceptable alternative has yet to be found. In what follows
we provide a first step towards addressing this issue.

This paper introduces an intuitive approach to identifying the poor that uses two forms
of cutoffs. The first is the traditional dimension-specific poverty line or cutoff, which
identifies whether a person is deprived with respect to that dimension. The second
delineates how widely deprived a person must be in order to be considered poor.°

Our benchmark procedure uses a counting methodology, in which the second cutoff is
a minimum number of dimensions of deprivation.

* See for example Sen (1976), Blackorby and Donaldson (1980), Clark, Hemming and Ulph (1981),
Chakravarty (1983), Foster, Greer and Thorbecke (1984), Atkinson (1987), Sen (1997), Zheng (1997),
Foster (2006).

> See for example Sen (1992b), Erikson (1993), Qizilbash (1996), Alkire (2002), Nussbaum (2003),
Sen (2004a), Sen (2004b), Clark (2005), Robeyns (2005), Grusky and Kanbur (2006), McGillivray
(2006), Alkire (2007), McGillivray and Clarke (2007).

% In this paper we will use the term ‘deprived’ to indicate that a person’s achievement in a given
dimension falls below the cutoff. If a person meets the multidimensional identification criterion, we
refer to them as ‘poor’, and their condition as ‘poverty’.
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The ‘dual cutoff’ method of identification naturally suggests an approach to
aggregation that is likewise sensitive to the range of deprivations a poor person
experiences. We derive a new class of ‘dimension-adjusted’ multidimensional
poverty measures based on the traditional FGT measures of poverty. The new
methodology satisfies an array of desirable axioms for multidimensional poverty
measures including ‘decomposability’ — a property that facilitates targeting. They also
satisfy a new requirement of ‘dimensional monotonicity’, by which an expansion in
the range of deprivations experienced by a poor person is reflected in the overall level
of poverty.

Many capabilities can only be represented by ordinal data, yet virtually all existing
multidimensional poverty measures require cardinal data. The one exception is the
multidimensional headcount ratio, which violates dimensional monotonicity. In
contrast, our dimension-adjusted headcount ratio works with ordinal data, respects
dimensional monotonicity, and can be undergirded by a neat axiomatic structure on
individual poverty functions based on the counting result of Pattanaik and Xu (1990)
in the literature on measuring freedom.

In some circumstances we may have additional information that allows us to regard
certain dimensions as meriting greater relative weight than others. In such cases our
identification procedure and the associated additive poverty measures can be easily
generalised from equal weights across the dimensions to general weights. We do this
in our final methodological section.

An important consideration in developing a new methodology for measuring
multidimensional poverty is that it can be employed using real data to obtain
meaningful results. To show this is true for our methodology, we provide illustrative
examples using data from Indonesia and the US. In sum, the methodology we propose
is intuitive, satisfies useful properties, and can be applied to good effect with real
world data.

The structure of the paper is as follows. We begin with a brief introduction to
unidimensional poverty measurement as it provides a foundation for our departure
into multidimensional space. We present some basic definitions and notation for
multidimensional poverty, and then introduce our dual cutoff identification strategy.
The adjusted FGT family of poverty measures is introduced, and we provide a list of
axioms that are satisfied by the methodology. The next section discusses the case
where the data are ordinal variables, and observes that one of our measures, the
dimension-adjusted headcount ratio, works well in this context. We present a theorem
that characterizes both the identification method and the aggregate measure in this
environment, using the counting approach of Pattanaik and Xu from the literature on
measuring freedom. We show how to extend our methods to allow for general
weights, and supply two informative illustrations using data from Indonesia and the
US. A final section offers closing observations.

2. Unidimensional Measurement

Poverty measurement can be broken down into two distinct steps: ‘identification’
which defines the criteria for distinguishing poor persons from the non-poor, and
‘aggregation’ by which data on poor persons are brought together into an overall
indicator of poverty (Sen, 1976). Identification typically makes use of an income
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cutoff called the poverty line and evaluates whether an individual’s income achieves
this level. Aggregation is typically accomplished by selecting a poverty index or
measure.

The simplest and most widely used poverty measure is the headcount ratio, which is
the percentage of a given population that is poor. A second index, the (per capita)
poverty gap, identifies the aggregate by which the poor fall short of the poverty line
income, measured in poverty line units and averaged across the population. Both
indices can be seen as a population average, with the non-poor being assigned a value
of ‘0’. The headcount ratio assigns a ‘1’ to all poor persons, while the poverty gap
assigns the normalised shortfall (the difference between their income and the poverty
line, divided by the poverty line itself) before taking the population average. Unlike
the headcount ratio, the poverty gap is sensitive to income decrements among the poor
and registers an increase when the shortfall of a poor person rises.

A third method of aggregation suggested by Foster, Greer and Thorbecke (1984)
proceeds as above for each person who is not poor, but now transforms the normalised
shortfalls of the poor by raising them to a nonnegative power « to obtain the
associated P, or FGT measure. This approach includes both of the foregoing
measures: if « = 0, the headcount ratio is obtained; if @ = 1, we have the poverty gap
measure. The value o= 2 results in the well-known FGT index P,, which is a simple
average of the squared normalized shortfalls across society. Squaring the normalised
gaps diminishes the relative importance of smaller shortfalls and augments the effect
of larger ones. Consequently P, emphasises the conditions of the poorest poor in
society.

Every poverty index has different insights and oversights, and one way of illuminating
them is to identify the properties or axioms the index satisfies. Each property captures
a basic desideratum for an aggregation method, and usually defines a form of stylised
change in the distribution that should impact the poverty measure in a prescribed way.
As is well-known, the FGT measures satisfy a broad array of properties, including
symmetry, replication invariance, subgroup consistency and decomposability; specific
members satisty monotonicity (o. > 0) and the transfer axiom (o > 1). We will build
on this7family of measures when we develop our multidimensional methodology
below.

3. Terminology, Notation and Setting

Moving from the unidimensional to a multidimensional poverty framework raises a
significant set of challenges including the following. First, which are the dimensions,
and indicators, of interest?® Second, where should the cutoff be set for each
dimension?’ Third, how should weights be set for different dimensions?'® Fourth, at

7 For more information on poverty measurement in one dimension, see the surveys of Foster and Sen
(1997), Zheng (1997), and Foster (2006).

¥ On the selection of capabilities or dimensions see in particular Sen (1992a), Alkire (2002), Qizilbash
(2002), Nussbaum (2003), Sen (2004a), Sen (2004b), Robeyns (2005), Ranis, Stewart and Samman
(2006), Alkire (2008), Thorbecke (2008), and the references therein.

? See Cerioli and Zani (1990), Chiappero Martinetti (1994), Cheli (1995), Chiappero-Martinetti (1996),
Balestrino (1998), Chiappero Martinetti (2000), Lelli (2001), Qizilbash (2003), Baliamoune-Lutz
(2004), Chiappero-Martinetti (2004). The cutoff could also be represented as a band and integrated
with fuzzy methodologies. See Deutsch and Silber (2005).
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what point in the analysis should interactions between the dimensions be reflected?'’
Fifth, how can we identify the multidimensionally poor? Sixth, what
multidimensional poverty measures can be implemented? And seventh, which
techniques can be used with ordinal data?'? Issues one through four lie substantially
beyond the scope of this paper. For issues one to three we will assume that
appropriate judgements have been made; issue four is a topic for further research.

The present paper is concerned with the three remaining challenges: identification in a
multidimensional setting, the construction of an aggregate measure, and ordinal data.

We begin by introducing the necessary terminology and notation. Let n represent the
number of persons in the population and let d > 2 be the number of dimensions under
consideration. Let y = [y;] denote the n x d matrix of achievements, where the typical
entry y;; is the achievement of individual i = 1,2,..., n in dimension j = 1,2,..., d. Each
row vector y; lists individual i’s achievements, while each column vector y.; gives the
distribution of dimension j achievements across the set of individuals. Let z; denote
the cutoff below which a person is considered to be deprived in dimension j, and let z
be the row vector of dimension-specific cutoffs. For any vector or matrix v, the
expression |v| denotes the sum of all of its elements, while u(v) represents the mean of
v, or [v| divided by the total number of elements in v.

A methodology M for measuring multidimensional poverty is made up of an
identification method and an aggregate measure. Following Bourguignon and
Chakravarty (2003) we represent the identification method using an identification
function p(y;; z), of the individual achievement vector y; and the cutoff vector z, that
takes two values: p(y; z) = 1 to indicate that person i is poor, and p(y;; z) = 0 to
indicate that the person is not."> Applying p to each individual achievement vector in
yyields the set Z < {1,..., n} of persons who are poor in y given z. The aggregation
step then takes p as given and associates with the matrix y and the cutoff vector z an
overall level M of multidimensional poverty. The resulting functional relationship
M(y; z) is called an index, or measure, of multidimensional poverty. This paper
presents a new methodology M = (p, M) for measuring multidimensional poverty,
explores its properties and provides illustrative examples.

In order to define this methodology, it will prove useful to express the data in terms of
deprivations rather than achievements. For any given y, let g’ = [ gg] denote the 0-1

matrix of deprivations associated with y, whose typical element gg is defined by gf: =

1 when y; < z;, while g; = 0 otherwise. Clearly, g’ is an n x d matrix whose ij" entry
is 1 when person i is deprived in the / dimension, and 0 when the person is not. The
i"™ row vector of g°, denoted g, is person i’s deprivation vector. From the matrix g°

' Techniques used for setting weights between dimensions include arbitrary weights, statistical weights
(principle components analysis, factor analysis, etc), survey-based weight, normative weights, or some
combination of these.

"' Duclos, Sahn and Younger (2006). Some literature on multidimensional poverty attempts to
incorporate into measures relationship of substitutability or complementarity between dimensions. See
Tsui (2002), Bourguignon and Chakravarty (2003, p. 27-8), Maasoumi and Lugo (2007) and Thorbecke
(2008) among others.

12 See Subramanian (2007).

' Note that this representation assumes that the underlying identification method is individualistic (in
that j’s poverty status depends on y;) and symmetric (in that it uses the same criterion for all persons).
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we can construct a column vector ¢ of deprivation counts, whose i™ entry ¢; = | g
represents the number of deprivations suffered by person i. The vector ¢ will be
especially helpful in describing our method of identification. Notice that even when
the variables in y are only ordinally significant, g and c are still well defined.'*

If the variables in y are cardinal, the associated matrix of (normalised) gaps or
shortfalls can provide additional information for poverty evaluation. For any y, let g'

be the matrix of normalised gaps, where the typical element is defined by gll.j: (z-
Yij)/zj whenever y;; < z;, while g}.j = 0 otherwise. Clearly, g' is an n x d matrix whose

entries are nonnegative numbers less than or equal to 1, with gll.j being a measure of

the extent to which that person i is deprived in dimension j. In general," for any o >
0, define the matrix g“by raising each entry of g' to the power o; e.g. when o = 2, the

entry is gf] =( g:].)z. This notation will be useful below in defining our generalisation
of the FGT measures to the multidimensional environment.

4. Identifying the Poor

Who is poor and who is not? A reasonable starting place is to compare each
individual’s achievements against the respective dimension-specific cutoffs, and we
follow that general strategy here.'® But dimension specific cutoffs alone do not suffice
to identify who is poor; we must consider additional criteria that look across
dimensions as well to arrive at a complete specification of identification method. We
now examine some potential candidates for p(y;; z).

One simple method is to aggregate all achievements into a single cardinal variable of
‘well-being’ or ‘income’ and use an aggregate cutoff to determine who is poor. So, for
example, if y; is a vector of commodities with market price vector p, one might define
pp(vi; z) = 1 whenever py; < pz, and p,(y;; z) = 0 otherwise. In this case, a person is
poor if the monetary value of the achievement bundle is below the cost of the target
bundle z. More generally, one might invoke an aggregator function u such that p,(y;;
z) = 1 whenever u(y;) <u(z), and p,(y; z) = 0 otherwise. However, this form of
identification entails a host of assumptions that restrict its applicability in practice,
and its desirability in principle.!” From the perspective of the capability approach, a

"* In other words, g’ and c are identical for all monotonic transformations of y; and z;. See section 7
below.

' To be precise, g, is the limit of (g} )" as o tends to 0.

16 See, for example, Tsui (1999), Tsui (2002), who contend that “a multidimensional approach to
poverty defines poverty as a shortfall from a threshold on each dimension of an individual’s well
being.”

'” One common assumption is that prices exist and are adequate relative weights for the dimensions;
however, the assumption that prices are adequate for normative purposes is questionable (Behrman and
Deolalikar (1988)); they may be adjusted to reflect externalities, but exchange values do not, ‘indeed
cannot give ... interpersonal comparisons of welfare or advantage’ (Sen 1997:208). Pradhan and
Ravallion (1996) derive subjective poverty lines in place of prices, but cannot do so for all attributes.
Another issue arises because aggregating across dimensions for purposes of identification assumes that
markets exist, when for some dimensions, markets are missing or imperfect (Bourguignon &
Chakravarty 2003, Tsui 2002). Also, empirical evidence shows that income may not be translated into
basic needs (Ruggeri-Laderchi, Saith and Stewart (2003), Sen (1980)), making a further case for non-
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key conceptual drawback of viewing multidimensional poverty through a
unidimensional lens is the loss of information on dimension-specific shortfalls:'®
indeed, aggregation before identification converts dimensional achievements into one
another without regard to dimension-specific cutoffs. However, if dimensions are
independently valuable and necessary, and accordingly, individual shortfalls are
inherently undesirable (and not just because they might lower the sum total), then
there are good reasons to look beyond a unidimensional approach. We now turn to
some identification methods that focus on dimensional shortfalls."’

The most commonly used identification criterion of this type is called the union
method of identification. In this approach, a person i is said to be multidimensionally
poor if there is at least one dimension in which the person is deprived (i.e., p(y;; z) = 1
if and only if ¢; > 1). If sufficiency in every dimension were truly essential for
avoiding poverty, this approach would be quite intuitive and straightforward to apply.
However, it might also include persons whom many would not consider to be poor.
For example, deprivation in certain single dimensions (such as health or education)
may be reflective of something other than poverty. Moreover, a union based poverty
methodology may not be helpful for distinguishing and targeting the poorest of the
poor, especially when the number of dimensions is large. For these reasons the union
method, though commonly used — for example (implicitly) in well-known measures
such as the Human Poverty Index (HPI) — is not unambiguously acceptable.”’

A second identification approach is the intersection method, which identifies person i
as being poor only if the person is deprived in all dimensions (i.e., p(y; z) = 1 if and
only if ¢; = d). This criterion would accurately identify the poor if sufficiency in any
single dimension were enough to prevent poverty; indeed, it successfully identifies as
poor a group of especially deprived persons. However, it inevitably misses many
persons who are experiencing extensive, but not universal, deprivation (for example, a
destitute person who happens to be healthy). Moreover, it succeeds in identifying only
a narrow slice of the population that shrinks as the number of dimensions increases —
and disregards the rest.”' This creates a different tension, that of considering persons
to be non-poor who evidently suffer considerable deprivation.

aggregative approaches. Aggregating across dimensions for purposes of identification also entails
strong assumptions regarding cardinality, which are impractical when data are ordinal (Sen 1997).

'8 Foster and Sen argue that, to facilitate meaningful interpersonal comparisons, identification may be
undertaken in the space of intrinsically valued functionings rather than ‘resources’ (1997). See also
Atkinson (2003). In the capability approach, it is important for identification to reflect people’s
absolute deprivation in each intrinsically valued capability (Sen 1992, 1996, 1997). Clearly there is
some tension between the capability approach and identification based purely on aggregation. See
Anand and Sen (1997), Bourguignon and Chakravarty 2002, Tsui 2002, Duclos Sahn and Younger
2006, Maasoumi Lugo 2007.

' Such an identification is said to be ‘deprivation focused’; see the discussion below. A related
requirement for poverty methodologies (o, M) is given by the ‘deprivation focus axiom’ discussed in
the next section.

*0 Pattanaik and Xu (1990). Targeting also requires data that distinguish between the poorest and the
less poor. Data that present an average across the entire population (for example, national life
expectancy or the national probability of not surviving until the age of 40 used in the HDI and HPI)
obviously would not help to identify the poorest persons or subgroups, regardless of the identification
strategy employed.

2! For instance, in the Indonesian data examined below, only 0.5% of the population would be
identified as poor under the intersection approach.
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A natural alternative is to use an intermediate cutoff level for ¢; that lies somewhere
between the two extremes of 1 and d. For k=1,..., d, let p; be the identification
method defined by pi(y;; z) = 1 whenever ¢; > k, and pi(y;; z) = 0 whenever ¢; < k. In
other words, p; identifies person i as poor when the number of dimensions in which i
is deprived is at least k; otherwise, if the number of deprived dimensions falls below
the cutoff £, then i is not poor according to p;. Since py is dependent on both the
within dimension cutoffs z; and the across dimension cutoft k, we will refer to py as
the dual cutoff method of identification. > Notice that p; includes the union and
intersection methods as special cases where k=1 and k= d.

Similar methods of identification can be found in the literature, albeit with different
motivations. For example, Mack and Lansley Poor Britain (1985) identified people as
poor if they were poor in 3 or more out of 26 deprivations. The UNICEF Child
Poverty Report 2003 identified any child who was poor with respect to two or more
deprivations as being in extreme poverty (Gordon, et al., 2003), However, as a
general methodology for identifying the poor, the dual cutoff approach has not been
explicitly formulated in the literature, nor have its implications for multidimensional
poverty measurement been explored.

The dual cutoff method has a number of characteristics that deserve mention. First,
the identification function is ‘poverty focused’ in that an increase in an achievement
level y; of a non-poor person leaves its value unchanged. Second, it is ‘deprivation
focused’ in that an increase in any non-deprived achievement y;; > z; leaves the value
of the identification function unchanged; in words, a person’s poverty status is not
affected by changes in the levels of non-deprived achievements. This latter property
separates p; from the unidimensional method p,,, which allows a higher level of one
achievement to compensate for other dimensional deprivations in deciding who is
poor or non-poor. Finally, the dual cutoff identification method can be meaningfully
used with ordinal data, since a person’s poverty status is unchanged when a
monotonic transformation is applied to an achievement level and its associated
cutoff.”® This clearly rules out p,, which aggregates dimensions before identifying the
poor, and thus can be altered by monotonic transformations.

In the next section, we introduce multidimensional poverty measures based on the
FGT class that use the p; identification method and its associated set Z; = {i : pi(yi; 2)
=1} of poor people. Accordingly, we will make use of some additional notation that
censors the data of non-poor persons. Let g’(k) be the matrix obtained from g° by
replacing the i column with a vector of zeros whenever pi(yi; z) = 0, and define g*(k)

analogously for o > 0. The typical entry of g“(k) is thus given by g (k) =g for i
satisfying ¢; > k, while g = 0 for i with ¢; < k. As the cutoff & rises from 1 to d, the

number of nonzero entries in the associated matrix g“(k) falls, reflecting the
progressive censoring of data from persons who are not meeting the dimensional
poverty requirement presented by pi. It is clear that the union specification £ = 1 does

2 We do not provide an algorithm for selecting k here; instead, repeated application and reasoned
evaluation will likely lead to a range of plausible values for k. A single value can then be selected for
the main analysis and alternative values used to check robustness.

2 In other words, piyi; 2) = p(yi; z") where for each j = 1,...,d we have y'; = fi(y;) and z;" = f{(z;) for
some increasing function f;. It would be interesting to characterize the identification methods p
satisfying the above three properties.
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not alter the original matrix at all; consequently, g“(1) = g*. The intersection
specification k = d removes the data of any person who is not deprived in all d
dimensions; in other words, when the matrix g°(d) is used, a person deprived in just a
single dimension is indistinguishable from a person deprived in d—1 dimensions.
When k = 2,..., d-1, the dual cutoff approach provides an intermediate option
between the union and intersection methods as reflected in the matrix g”(k).

5. Measuring Poverty

We are searching for a multidimensional poverty measure M(y; z) to be used with the
dual cutoff identification approach. A natural place to begin is with the percentage of
the population that is poor. The headcount ratio H = H(y; z) is defined by H = g/n,
where g = g(y; z) is number of persons in the set Z;, and hence the number of the poor
identified using the dual cutoff approach. This is entirely analogous to the income
headcount ratio and inherits the virtue of being easy to compute and understand, and
the weakness of being a crude, or partial, index of poverty.”* Notice, though, that an
additional problem emerges in the multidimensional setting. If a poor person
becomes deprived in a dimension in which that person had previously not been
deprived, H remains unchanged. This violates what we will call ‘dimensional
monotonicity’ which is defined rigorously below. Intuitively speaking, if poor person
i becomes newly deprived in an additional dimension, then overall poverty should
increase.

To reflect this concern, we can include additional information on the breadth of
deprivation experienced by the poor. Let c(k) be the censored vector of deprivation
counts defined as follows: If ¢; > £, then c,(k) = ¢;, or person i's deprivation count; if ¢;
<k, then c(k) = 0. Notice that c,(k)/d represents the share of possible deprivations
experienced by a poor person i, and hence the average deprivation share across the
poor is given by 4 = |c(k)|/(qd). This partial index conveys relevant information about
multidimensional poverty, namely, the fraction of possible dimensions d in which the
average poor person endures deprivation. Consider the following multidimensional
poverty measure My(y;z) which combines information on the prevalence of poverty
and the average extent of a poor person’s deprivation.

Definition: The (dimension) adjusted headcount ratio M, is defined by M, = HA.

As a simple product of the two partial indices H and A4, the measure M, is sensitive to
the frequency and the breadth of multidimensional poverty. In particular, it clearly
satisfies dimensional monotonicity, since if a poor person becomes deprived in an
additional dimension, then 4 rises and so does M. Note that A/, can be defined as M,
= u(g"(k)), or the mean of the censored deprivation matrix g(k). In words, the
adjusted headcount ratio is the total number of deprivations experienced by the poor,
or (k)| = |g°(k)|, divided by the maximum number of deprivations that could possibly
be experienced by all people, or nd. The measure M, ranges in value from 0 to 1.
The adjusted headcount ratio can be used with purely ordinal data, which arises
frequently in multidimensional approaches based on capabilities. This important
characteristic of the measure will be discussed at some length in a separate section
below.

* A partial index provides information on only one aspect of poverty. See Foster and Sen (1997).
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The adjusted headcount ratio is based on a dichotomisation of the data into deprived
and non-deprived dimensions, and so it does not make use of dimension specific
information on the depth of deprivation. Consequently it will not satisfy the traditional
monotonicity requirement that poverty should increase as a poor person becomes
more deprived in any given dimension. To develop a measure that is sensitive to the
depth of deprivation, let us return to the matrix g' of normalised gaps. This matrix
provides information on the depth of deprivation across all dimensions and all

. 1 Ly —
persons, whether poor or not. Define the associated censored matrix g (k) by g;;(k) =0
if ¢; <k and gll.j(k) = gf.j if ¢; > k, so that g'(k) only includes the deprivations of the
poor. Let G be the average poverty gap across all instances in which poor persons are
deprived, given by G =|g'(k)|/|g"(k)|. Consider the following multidimensional
poverty measure M(y; z) which combines information on the prevalence of poverty,

the average range of deprivations and the average depth of deprivations when the poor
are deprived.

Definition: The (dimension) adjusted poverty gap M, is defined by M| = HAG.

The adjusted poverty gap is thus the product of the adjusted headcount ratio My and
the average poverty gap G. It is easily shown that M, = u(g'(k)); in words, the
adjusted poverty gap is the sum of the normalised gaps of the poor, or |g' (k)| divided
by the highest possible sum of normalised gaps, or nd. The poverty measure M,
ranges in value from 0 to 1. If the deprivation of a poor person deepens in any

dimension, then the respective gﬁj (k) will rise and hence so will M;. Consequently, M,

satisfies monotonicity. However, it is also true that the increase in a deprivation has
the same impact no matter whether the person is very slightly deprived or acutely
deprived in that dimension. One might argue that the impact should be larger in the
latter case.

Consider the matrix g* of squared normalised shortfalls whose typical entry g; is

defined by g7 = (g))’ and let g°(k) be its censored version with g’ (k) = (g}, (k). These

matrices provide information on the severity of deprivations as measured by the
square of the normalised shortfalls, with the censored matrix g*(k) including only the
data on the poor. Rather than using the matrix g'(k) to supplement the information of
M, (as was done in M;), we can use the matrix gz(k) which suppresses the smaller
gaps and emphasises the larger ones. The average severity of deprivations, across all
instances in which poor persons are deprived, is given by S = |g*(k)|/|g"(k)|. The
following multidimensional poverty measure M>(y;z) combines information on the
prevalence of poverty and the range and severity of deprivations.

Definition: The (dimension) adjusted P, measure, denoted M,, is defined by M, =
HAS.

M. is thus the product of the adjusted headcount ratio M, and the average severity
index S; it can also be expressed as M, = u(g”(k)), the mean of the matrix g°(k), which
in words is the sum of the squared normalised gaps of the poor, or |g*(k)|, divided by
the highest possible sum of the squared normalised gaps, or nd. The poverty measure
M, also ranges in value from 0 to 1. For a given sized increase in deprivation, the
measure registers a greater impact the larger the initial level of deprivation. It satisfies
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a ‘transfer’ property (as noted below), and is sensitive to the inequality with which
deprivations are distributed among the poor, and not just their average level. Indeed,
M= (M;)* + V, where V is the variance among all normalised gaps.”

It is straightforward to generalise My, M), and M5, to a class M, of multidimensional
poverty measures associated with the unidimensional #GT class developed by Foster
Greer and Thorbecke (1984). For every a > 0, let g* be the matrix whose entries are o,
powers of the normalised gaps, and let g(k) be the associated censored matrix.”
Consider the following class of measures.

Definition: The (dimension) adjusted FGT measures, denoted M,(y;z), are defined by
My = u(g* (k) for o> 0,

In other words, M,, is the sum of the o powers of the normalised gaps of the poor, or
lg”(k)|, divided by the highest possible value for this sum, or nd. We now turn to a
discussion of the properties satisfied by M, and H.

6. Properties

In the multidimensional context where the identification step is nontrivial, an axiom is
actually a joint restriction on the identification method p and aggregate measure M
and, hence, on the overall methodology M. Some properties (such as ‘symmetry’
below) only use p in finding poverty levels. Others (such as ‘poverty focus’) make
explicit use of p to restrict consideration to certain data matrices or changes covered
by the axiom. In the following discussion, we will assume that a specific p has been
selected and will use the statement ‘M satisfies axiom A’ as shorthand for “(p, M)
satisfies axiom A’. In particular, p; will be the identification method used whenever
M, or H is being discussed.”’

A key property satisfied by M, and H is ‘decomposability’ which requires overall
poverty to be the weighted average of subgroup poverty levels, where weights are
subgroup population shares. In symbols, let x and y be two data matrices and let (x,))
be the matrix obtained by merging the two; let n(x) be the number of persons in x (and
similarly for n(y) and n(x,y)).

Decomposability For any two data matrices x and y we have

o~ n(x) . n(y) .
M(,,Z)——Mx,z — M(y.z).
Wy A M)

 In other words, V = EiEj(,u(gl) - gl'.j)z/(nd). The formula can also be expressed as M, = (M;)’[1 + C?],

where C* = V/(1(g"))* is the squared coefficient of variation inequality measure. This is analogous to a
well-known formula for the FGT measure P>.

2 Technically speaking, this definition applies only for o. > 0. The matrix g° (or go(k)) can be obtained
as the limit of g* (respectively, g%(k)) as o tends to 0.

" Note that the identification method py could also be used with other existing multidimensional
poverty measures such as Tsui (2002), Bourguignon and Chakravarty (2003), or Maasoumi and Lugo
(2007).
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Repeated application of this property shows that the decomposition holds for any
number of subgroups, making this an extremely useful property for generating
profiles of poverty and targeting high poverty populations.”® If we apply a
decomposable measure to a replication x of y, which has the form x = (y,y,...,y), it
follows that x has the same poverty level as y. The following basic property is thus
satisfied by M, and H.

Replication Invariance 1If x is obtained from y by a replication, then M(x; z) = M(y; z).

This property ensures that poverty is measured relative to the population size, so as to
allow meaningful comparisons across different sized populations. Now let x be
obtained from y by a permutation, by which it is meant that x = /7y, where /71s some
n x n permutation matrix.” This has the effect of reshuffling the vectors of
achievements across people. It is immediately clear from the definitions of M, and H
that they satisfy the following property:

Symmetry If x is obtained from y by a permutation, then M(x; z) = M(y; z).

According to symmetry, if two or more persons switch achievements, measured
poverty is unaffected. This ensures that the measure does not place greater weight on
any person or group of persons.

The traditional focus axiom requires a poverty measure to be independent of the data
of the non-poor, which in the unidimensional or income poverty case is simply all
incomes at or above the single poverty line.*® In a multidimensional setting, a non-
poor person can be deprived in several dimensions while a poor person may well
exceed several of the deprivation cutoffs. M, and H satisfy two forms of the focus
axiom, one concerning the poor, and the other pertaining to deprived dimensions. We
say that x is obtained from y by a simple increment if x; > y;; for some pair (i, j) = (i’
J") and x;; = y;; for every other pair (7, j) # (i, j). We say it is a simple increment
among the non-poor if i' is not in Z for y (whether i’ is deprived or not inj'); it is a
simple increment among the nondeprived if y; > z; for (i, j) = (i', j'), whether or not i’
happens to be poor.

Poverty Focus 1f x is obtained from y by a simple increment among the non-poor,
then M(x; z) = M(y; z).

Deprivation Focus 1If x is obtained from y by a simple increment among the
nondeprived, then M(x; z) = M(y; z).

In the poverty focus axiom, the set Z of the poor is identified using p, and M is
required to be unchanged when anyone outside of Z experiences a simple increment.
This is a basic requirement that ensures that M measures poverty in a way that is

¥ Any decomposable measure also satisfies ‘subgroup consistency’ which requires overall poverty to
increase when poverty rises in the first subgroup and does not fall in the second (given fixed population
sizes). As discussed in Foster, Greer and Thorbecke (1984) and Foster and Sen (1997), it is this
property that allows the coordination of local and national poverty alleviation policies.

¥ A permutation matrix /7is square matrix with a single ‘1’ in each row and each column, and the rest
‘0’s.

3% An alternative definition considers persons on or below the cutoff to be poor.

www.ophi.org.uk 12



Alkire and Foster Working Paper No. 7

consistent with the identification method p. In the case of M, and H, the poor are
identified using p; and the achievements of the non-poor are censored prior to
aggregation. Hence, they satisfy the poverty focus axiom. In the deprivation focus
axiom, the simple increment is defined independently of the particular identification
method employed and is applicable to all nondeprived entries in y — poor and non-
poor alike. For the measures M, and H, a simple increment to a nondeprived entry
leaves g”(k) unchanged, and hence they satisfy the deprivation focus axiom as well.

It is possible for a multidimensional poverty methodology to follow the poverty focus
axiom without satisfying the deprivation focus axiom. Consider, for example, a
unidimensional approach that, say, adds the dimensions to create an income variable,
identifies the poor using an aggregate cutoff and employs a standard income poverty
measure. Given the assumed tradeoffs across dimensions, it is possible for a poor
person to be lifted out of poverty as a result of an increment in a nondeprived
dimension, thus lowering the measured level of poverty and violating deprivation
focus. Conversely, the deprivation focus axiom may be satisfied without accepting
the poverty focus axiom: suppose the average gap z(g') over all deprivations (poor or
non-poor) is taken to be the measure and yet take an intersection approach to
identification is used.”’

The next set of properties ensures that a multidimensional poverty measure has the
proper orientation. Consider the following extensions to the definition of a simple
increment: We say that x is obtained from y by a deprived increment among the poor
if in addition to being a simple increment we have z; > y;; fori' e Z; itis a
dimensional increment among the poor if it satisfies x;;» > z;> y;s for i' e Z. In other
words, a deprived increment among the poor improves a deprived achievement of a
poor person, while a dimensional increment among the poor completely removes the
deprivation. Consider the following properties.

Weak Monotonicity If x is obtained from y by a simple increment, then M(x; z) < M(y;
z).

Monotonicity M satisfies weak monotonicity and the following: if x is obtained from
y by a deprived increment among the poor then M(x; z) < M(y; z).

Dimensional Monotonicity If x is obtained from y by a dimensional increment among
the poor, then M(x; z) < M(y; z).

Weak monotonicity ensures that poverty does not increase when there is an
unambiguous improvement in achievements. Monotonicity additionally requires
poverty to fall if the improvement occurs in a deprived dimension of a poor person.
Dimensional monotonicity specifies that poverty should fall when the improvement
removes the deprivation entirely; it is clearly implied by monotonicity. Every M, and
H satisfy weak monotonicity; every M, (and not H) satisfies dimensional

3! The two forms of focus axioms are related in certain cases. When union identification is used, it can
be shown that the deprivation focus axiom implies the poverty focus axiom; alternatively, when an
intersection approach is used, the poverty focus axiom implies the deprivation version. Bourguignon
and Chakravarty (2003), for example, assume the deprivation focus axiom (their ‘strong focus axiom’)
along with union identification, and so their methodology automatically satisfies the poverty focus
axiom.
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monotonicity; and every M, measure with o > 0 satisfies monotonicity, while H and
M, do not.

The weak monotonicity and focus axioms ensure that a measure M achieves its
highest value at x” in which all achievements are 0 (and hence each person is
maximally deprived), while it achieves its lowest value at any x” in which all
achievements reach or exceed the respective deprivation cutoffs given in z (and hence
no one is deprived). ‘Nontriviality’ ensures that these maximum and minimum values
are distinct, while ‘normalisation’ goes further and assigns a value of 1 to x° and a
value of 0 to each x°. Both are satisfied by every member of the M, class and H.

Nontriviality M achieves at least two distinct values.
Normalisation M achieves a minimum value of 0 and a maximum value of 1.

For any multidimensional poverty measure satisfying monotonicity, one can explore
whether the measure is also sensitive to inequality among the poor. The simplest
notion of this sort is based on an ‘averaging’ of the achievement vectors of two poor
persons i and i’, in which person i receives A > 0 of the first vector and 1-4 > 0 of the
second with the shares reversed for person i". Following Kolm (1977 ) these d many
‘progressive transfers’ between the poor represent an unambiguous decrease in
inequality, which some would argue should be reflected in a lower or equal value of
multidimensional poverty. In general, we say that x is obtained from y by an
averaging of achievements among the poor if x = By for some n x n bistochastic
matrix B satisfying b; = 1 for every non-poor person i in y. Note that the requirement
bi; =1 ensures that all the non-poor columns in y are unaltered in x, while the fact that
B is bistochastic ensures that the poor columns in x are obtained as a convex
combination of the poor columns in y, and hence inequality has fallen or remained the
same. Consider the following property.

Weak transfer 1If x i