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Abstract

A recent literature on inequality of opportunity o¤ers quantitative tools for comparisons
and measurement based on stochastic dominance criteria and traditional inequality indices. In
this paper I suggest an additional way of assessing inequality of opportunity with two indices
of dissimilarity across distributions. The indices are based on a traditional homogeneity test
of multinomial distributions and are similar to the square coe¢ cient of variation (Reardon
and Firebaugh, 2002). Their properties are studied, as well as their usefulness and limitations
in applications when both circumstances and advantages/outcomes are multidimensional. An
empirical application measures changes in inequality of opportunity from an old to a young
cohort in Peru. The importance of assessing the sensitivity of the results to group de�nitions
and group proportions is highlighted.

1 Introduction

The concern for inequality of opportunity has long earned its place in the Social sciences and Politi-
cal Philosophy. Following Roemer (1998)�s in�uential conceptualization, recent research has sought
to quantify inequality of opportunity and to compare its extent across societies. For instance,
Lefranc et al. (2008) compare inequality of opportunity and of outcomes across developed countries
using stochastic dominance analysis and proposing a Gini index of inequality of opportunity. Chec-
chi and Peragine (2005) measure inequality of opportunity in Italy based on traditional inequality
indices which are decomposable in between-group and within-group elements. Ferreira and Gignoux
(2008) extend the same between-group approach to a parametric framework and study inequality of
opportunity in Latin America. Barros et al. (2009) compile studies of inequality of opportunity in
Latin America, including the advocacy of a Human Opportunity Index (the HOI). Similarly Elbers
et al. (2008) have applied new re�nements on the decomposition of inequality indices to tracking
changes in between-group inequality in several countries.

The intergenerational economic mobility literature has a longer history of development of quan-
titative tools. However, since in that literature usually one parental attribute is related to one
of the o¤spring�s, a pair at a time, most of the toolkit is not well suited to studying inequality
of opportunity with multiple circumstances, let alone multiple outcomes. On the other hand the
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toolkit of the literature on segregation indices, and contingency tables, contains indices that deal
explicitly with multiple circumstances. Moreover these indices and those derived from them, are
worth considering for applications involving multiple outcomes, as I propose in this paper with two
indices.

This paper contributes to the quantitative analysis of inequality of opportunity by suggest-
ing the use of dissimilarity indices related to the statistic of a traditional test of homogeneity of
multinomial distributions, which is in turn Pearson�s chi-square statistic, but expressed in terms of
probabilities.1 When applied to inequality of opportunity, these dissimilarity indices have the ad-
vantage of being readily applicable to comparisons of multidimensional distributions of outcomes,
which is an appealing trait in the burgeoning multidimensional welfare measurement literature.
Another interesting trait is that the dissimilarity indices attain their minimum value, representing
perfect equality of opportunity, if and only if the distributions of well-being outcomes conditioned
on social groups are identical. Hence the concept of inequality of opportunity as dissimilarity across
conditional distributions, that the indices are measuring, is in line with a literalist interpretation
of Roemer�s characterizations of equality of opportunity whereby the latter is said to be achieved
"if the cumulative distribution functions of advantages across types are identical" (Roemer, 2006,
p. 8). Moreover the dissimilarity indices attain their maximum value if and only if there is com-
plete association between the groups in which societies are partitioned and the welfare outcomes in
consideration. The indices are most suitable for ordered, discrete variables; whereas for continuous
variables they requires prior discretization.

In an empirical application I study changes in inequality of educational opportunity in Peru
from older to younger cohorts of adults. Considering as educational wellbeing outcomes, levels
of educational attainment and quality of education, measured by type of school attended (public
versus private versus none), I compute inequality of opportunities for these two outcomes separately
and for their joint distribution. The ensuing cross-cohort trends depend on the de�nition of types
and on whether the index used is sensitive to the proportions of adults in every group. For instance,
I �nd evidence of lower inequality of opportunity among the younger cohorts vis-a-vis the oldest
ones, for the most re�ned partitions of adults into groups, for all three estimations. The groups
of people (or types in Roemer�s vocabulary) are de�ned by combinations of gender, paternal and
maternal education levels.

In the next section the dissimilarity indices are introduced. Then their behaviour is investigated,
considering properties discussed in the segregation and inequality of opportunity literatures. A
discussion comparing the indices� orderings to those of existing quantitative tools for univariate
distributions follows. Then the reach and limitations of using dissimilarity indices to address
multiple outcomes are also discussed. Finally, an empirical application to Peru is presented, followed
by concluding remarks.

2 The dissimilarity index of multidimensional inequality of oppor-
tunity

In Roemer (1998)�s in�uential conceptualization, advantages (i.e. outcomes) are determined by
e¤orts and circumstances. Combinations of the latter determine people�s types. Nobody should
be held accountable for belonging to a speci�c type since it is beyond the individual�s control.
Hence as a source of inequality, circumstances are deemed morally irrelevant in the inequality of

1The Pearson chi-square statistic is used to test the null hypothesis of lack of association in a contingency table.
It has support on the absolute frequencies of the table. See , e.g. Everitt (1992).
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oppportunity literature Hild and Voorhoeve (2004). They should not a¤ect the advantage either
directly or indirectly through e¤ort or random shocks. Therefore, in many de�nitions of equality
of opportunity, the distributions of the advantages should be identical across social groups de�ned
by sets of circumstances.

The dissimilarity indices discussed in this paper relate to a literalist de�nition of Roemer (1998,
2006, p.8) in which equality of opportunity is achieved if and only if the conditional distributions of
outcomes/advantages are equal across circumstance sets. This particular de�nition can be further
characterized by stating that it relates to a situation in which both Roemer�s assumption of charity
and Fleurbaey�s equal well-being for equal responsibility Fleurbaey (2008) hold. The assumption
of charity says that individuals belonging to di¤erent types would exhibit the same distributions
of e¤ort should their de�ning circumstances be factored out Roemer (1998, p. 16). An allocation
of resources following the criterion of equal well-being for equal responsibility is characterized by
an equalization of a well-being outcome across types for every di¤erent level of dedication.2 This
de�nition is equivalent to the strong criterion of Lefranc et al. (2009). Another equivalent way
to characterize it is to associate perfect equality of opportunity with Fleurbaey�s circumstance
neutralization: a situation in which individual well-being can only be expressed as a function of
responsibility characteristics (i.e. dedication, Romer�s e¤ort, or morally relevant factors), and not
of circumstances.3 Should any of these conditions fail to hold then the distributions of well being
conditioned on type-belonging would not be identical and viceversa.

The indices presented in this paper are closely related to indices from the rich segregation
literature,4 particularly to the squared coe¢ cient of variation. These indices work on probability
space, thereby being specially suited to deal with multivariate distributions of discrete variables.
Several of them also handle multiple groups, hence they are applicable to multiple circumstances.
To de�ne this paper�s indices, assume that societies are partitioned into a set of individuals�types,
de�ned by a combination of values taken by a vector of circumstances; i.e. factors over which
the individual does not exert control, e.g. parental education, ethnicity or gender. Generally, z
circumstances are considered, each of which is partitioned into gi categories (for i = 1; 2; : : : z),
making every circumstance a vector, Vi, with gi elements. By combining all the possible values
in the vectors of circumstances a vector of types is de�ned. Formally, types are generated by a
function f that transforms combinations of circumstance values into a natural number representing
the ensuing type:

f : V1 � V2 � : : :� Vz ! NT+:

The vector of types, G = f1; 2; :::; Tg, has then T =
Yz

i=1
gi elements. All individuals having

the same set of circumstances are said to be of the same type. The absolute frequency of people
in a society belonging to type t ( t 2 G) is N t, and the total population sample is N . Similarly
outcomes or advantages can be considered, generally, in a multidimensional way. All possible
combinations of outcomes (e.g. health status with education achievement, earnings, etc.) are in
vector O = f1; 2; :::; Ag. Assuming there are b outcome vectors, V j , each having mj elements (for
j = 1; 2; : : : ; b), then multidimensional outcomes are generated by a function q that transforms
combinations of individual outcomes into multidimensional outcomes:

2This is a concept similar to Roemer�s e¤ort and refers to a person�s use of resources in order to improve his/her
wellbeing. See Fleurbaey (2008, chapter 1).

3Ferreira and Gignoux (2008) also elaborate on this point.
4For instance, the work of James and Taeuber (1985), White (1986), Hutchens (2001) and Reardon and Firebaugh

(2002) Including references there in. I would like to thank an anonymous referee for pointing to me references from
this rich literature on segregation measurement.
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q : V 1 � V 2 � : : :� V b ! NA+:

O has A =
Yb

j=1
mj elements representing a combination of outcomes, each one partitioned in

the mentioned mj elements or categories.5 The absolute frequency of people in a society attaining
outcome � is N�: Finally, the probability of attaining a given combination of advantages (e.g.
� = k) conditional on being of type t is: ptk. The corresponding absolute frequency of people being

of type t and attaining a combination k is N t
k. Therefore

XT

t=1

XA

�=1
N t
k = N:

The indices of dissimilarity advocated in this paper belong to a general class of statistics which
measure the degree of dissimilarity between distributions as the degree of association between
row variables and column variables in a contingency table. For instance, the column variable may
represent the conditioning variable (e.g. the types) and the row variable may represent the outcome
variable. Following Reardon and Firebaugh (2002), these indices can be derived from a family of
indices that compute the average of a dissimilarity function, f : [0; 1] � ::: � [0; 1] ! R+, that is
sensitive to the divergence between ptk and p

�
�; where p

�
� is a weighted average of the group-speci�c

probabilities for outcome state � in which the weights are given by the share of each sample size
on the total sum of them. It is the pooled-sample probability of having outcome � :

p�� =
TX
t=1

pt�
N tXT

t=1
N t

=

XT

t=1
N t
�XT

t=1
N t
: (1)

The family of indices computes the average f over p�� (8�) and the relative size of each type in the
population: wt = Nt

N :Hence this approach of segregation as disproportionality in group proportions
(Reardon and Firebaugh, 2002, p. 39-40)proposes the following family:

WT;A 2W � jWT;A �
AX
�=1

p��

TX
t=1

wtf
�
pt�; p

�
�

�
8A; T 2 N++; 6 (2)

When: f
�
pt�; p

�
�

�
=
���pt��p��p��

���� 8� 2 N++ the following subfamily, X�; of (2) emerges:

X�
T;A 2 X

� j X�
T;A �

AX
�=1

p��

TX
t=1

wt
����pt� � p��p��

����� 8�;A; T 2 N++; (3)

The weighted average probability performs the comparison of the probabilities across the dif-
ferent types� samples. The closer the respective probabilities across samples then the more the
weighted average probability resembles each and every of its constituting probabilities (in (1)),
rendering the statistic in (3) closer to zero. The dissimilarity indices proposed in this paper are
based on the statistic of a test of homogeneity among multinomial distributions (e.g. see Hogg and
Tanis, 1997) that ensues from the general class, X�, when � = 2:

5For instance an element � 2 O and equal to �1� might stand for having tertiary education, excellent health
status and the highest earning capacity (i.e. the categories can represent intervals too).

6 In Reardon and Firebaugh (2002) the respective function for the family is:
XM

m=1
�m

XJ

j=1

tj
T
f
�
�jm
�m

�
, where

M is the number of groups in the population, T is the size of the population, j is an organizational unit (e.g. school),
�m is the percentage of the population belonging to group m and �jm is the probability of belonging to group m
conditioned on being in organization unit j. Notice that, by contrast, pt� stands for the probability of attaining a
state of wellbeing � conditioned on belonging to group/ type t.
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NX2
T;A =

TX
t=1

AX
�=1

N t

�
pt� � p��

�2
p��

: (4)

The null hypothesis of the test is that the T distributions are homogenous, i.e. identical in
a statistical sense. Besides being related to a standard test of multinomial distributions, another
advantage justifying the choice ofX2

T;A (among many other options from classX
�) for a dissimilarity

index of multidimensional inequality of opportunity is that this statistic also has a maximum value
which conveniently depends only on the number of groups (e.g. the number of types) and the
number of states (e.g. the values that the outcome variable takes). The maximum value is easily
found by noticing that the statistic of the homogeneity test of multinomial distributions is Pearson�s
goodness-of-�t statistic:

NX2
T;A =

TX
t=1

AX
�=1

N t

�
pt� � p��

�2
p��

=
TX
t=1

AX
�=1

�
N t
� � NtN�

N

�2
NtN�
N

: (5)

Intuitively one can bring together all the conditional probability vectors, i.e. the multidimen-
sional distributions of outcomes conditional on a given type, to form a contingency table. In such
a table N t

k is the observed frequency of individuals from a type �t�exhibiting a level of multidi-
mensional advantage k; whereas the expected frequency for �t�and k under the null hypothesis
of lack of association between circumstances and advantages/outcomes is given by the expression
NtN�
N (see, e.g. Everitt, 1992). Therefore, (5) can be expressed as:

NX2
T;A =

TX
t=1

AX
�=1

�
OBt� � Et�

�2
Et�

; (6)

where the OB stands for observed and the E for expected frequency. Cramer (1946) showed
that the maximum for an expression like (6) is NX2

T;A;max = min(T � 1; A � 1)N , and that is,
precisely, the maximum for the statistic (4). Thus dividing (4) by NX2

T;A;max, yields the �rst
dissimilarity index:

H2
T;A =

NX2
T;A

NX2
T;A;max

: (7)

The index is advocated for applications in which A > 1. It is very similar, but not identical, to
the square coe¢ cient of variation by Reardon and Firebaugh (2002).7

The second dissimilarity index is a special case of the �rst index ,(7), in which: wt = 1
T ; that

is, all type weights are set to be equal:

H
2
T;A =

1

min(T � 1; A� 1)T

TX
t=1

AX
�=1

�
pt� � p~�

�2
p~�

; (8)

where p~� =
1
T

PT
t=1 p

t
�. Compared to (7), the index in (8) has additional population invariance

properties,8 with respect to that in (7), rendering it useful whenever it is desired that only changes

7The squared coe¢ cient of variation by Reardon and Firebaugh (2002), when expressed in terms of types and

outcomes, is equal to: C =
X2
T;A

A�1 : Hence H
2
T;A = C $ A � T and 1 � H2

T;A > C $ A > T:
8These are discussed in the next section.
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in the conditional distribution probabilities, and not changes in the proportions of types in the
population, can impact on the degree of inequality. E¤ectively, the index (8) takes a "representative
agent" approach to compare the di¤erent conditional distributions.

3 Behaviour of the indices

In this section the behaviour of the indices is elucidated by explaining the situations under which
the indices attain their maximum value of between-type inequality; by analyzing their ful�llment
of other properties discussed in the segregation literature; and by deriving some results that clarify
the e¤ects of migrations of individuals, from one outcome state to another, on the value of the
indices.

3.1 The indices�maximum inequality

The indices (7) and (8) measure the degree of between-type inequality in terms of the degree of
association between types and outcomes. In the context of a contingency table having two variables
with two states each, Kendall and Stuart (1973) propose two notions of maximal association:

� Complete association: It occurs when all individuals who have an attribute A also have
an attribute B, even though not everyone having attribute B may have attribute A. This
de�nition can be extended to row and column variables in a table, each with several possible
values. In the latter case, complete association is meant to occur when all individuals having
value A of row variable also have value B of column variable although not all those having
value B of column variable may have value A of row variable.

� Absolute association: All individuals who have attribute A also have attribute B and viceversa.
In the case of row and column variables each having several values, absolute association means
that all individuals having value A of row variable also have value B of column variable and
viceversa.

A �rst property of the two dissimilarity indices (7) and (8) is that they attain their maximum
value (of 1) in the following situations:9

� When T < A (more outcome categories or states than types) and every type t 2 G is
associated with a subgroup of outcomes Ot � O, such that the T subgroups of outcomes do
not overlap, i.e. [Tt=1Ot = O:In other words, if an individual�s outcome, �, belongs in Ot
(� 2 Ot) then the individual is of type t (but not every member of type t has an outcome �)
This is a case of complete association.

� When T > A (more types than outcomes) and every outcome � 2 O is associated with a
subgroup of types G� � O, such that the A subgroups of types do not overlap, i.e. [A�=1G� =
G:In other words, if an individual�s type, t, belongs in G� (t 2 G�) then the individual�s
outcome is � (but not everyone with outcome � is of type t ). This is another case of
complete association.

9The proofs that the indices attain their maximum values under these three situations are in the Appendix 8.
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� When T = A , the maximum value of the indices is attained under absolute association. That
is, every type t 2 G is exclusively associated with one outcome � 2 O:Being of type t implies
having outcome � and viceversa.

The lack of overlap required in order to attain H2
T;A = 1; when T < A, can take di¤erent forms.

Therefore, in general, indices measuring inequality on probability space do not distinguish between
di¤erent forms of non-overlap when they reach their extreme values of complete (or absolute)
association.10

3.2 Properties ful�lled by the indices

The second property ful�lled by the two indices is that they attain their minimum value of 0 if and
only if the conditional distributions of outcomes are identical across types. The general property
is the following:

Condition 1 Perfect Equality (PE): Any index of dissimilarity obtained using the approach of
segregation as disproportionality in group proportions11 attains its minimum value if and only if
p1� = p

2
� = : : : = p

T
� 8� = 1; : : : ; A:

The proof for indices (7) and (8) is in the Appendix 8. Now if the type-conditioned distributions
of outcomes are put together to form a table where types de�ne the columns and outcomes de�ne
the rows, then the following condition can be proposed:

Condition 2 Symmetry in Outcomes (SO): A permutation of outcomes (rows in the table) does
not alter the value of inequality

Condition (SO) is ful�lled by the two indices, (7) and (8). Such ful�llment re�ects a potential
limitation of the indices: They are insensitive to the relative desirability of certain outcomes vis-a-
vis others.12 If the table is further expressed as a contigency table depending on absolute frequencies
the following condition is also ful�lled by the two indices:

Condition 3 Symmetry in Types (ST): A permutation of types (columns in the table) does not
alter tha value of inequality

Because the indices are evaluated on probability space they also ful�ll a property of monotonic
transformation invariance:

Condition 4 Monotonic Transformation Invariance (MTI): Inequality is not a¤ected by any com-
mon monotonic transformations to the values of the outcome variables and to the boundaries of the
partitions of outcomes that determine the probability distribution.

10By contrast, approaches like that of Lefranc et al. (2008), explicitly look at second-order dominance. Therefore
their Gini of Inequality of Opportunity (GIO), which works on value space, is sensitive to the form of non-overlap
when the latter is present. The types approach (Checchi and Peragine, 2005; Ferreira and Gignoux, 2008) is also
sensitive to the form of the non-overlap because it a¤ects the conditional mean values.

11 (Reardon and Firebaugh, 2002, p. 39-40). These authors call this condition the disproportionality axiom for
segregation (p. 39).

12This is a general limitation of existing inequality indices with support on probability space (as opposed to
variables�values space), including the indices of the segregation literature. New univariate indices that overcome this
limitation working with cumulative probabilities, can be found in Reardon (2009) and Silber and Yalonetzky (2010).
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Another important property ful�lled by both indices is population invariance, i.e. they are
insensitive to identical replications of each individual:

Condition 5 Population Invariance (PI): If every individual is multiplied by a factor � > 0, then
inequality is una¤ected.

The proof is straightforward. Let pt� (�) be the probability of attaining state � conditioned on
being of type t and given a replication of �. Then pt� (�) =

�Nt
�

�N = pt�: Likewise, using a similar
de�nition for wt (�), it turns out that: wt (�) = �Nt

�N = wt. Therefore both indices�values do not
change. A similar property is ful�lled by index (8) but not by index (7). Reardon and Firebaugh
(2002) call it composition invariance and it states that inequality should be unchanged when the
replication of individuals is type-speci�c:

Condition 6 Type Population Invariance (TPI): If every individual belonging to type t is multiplied
by a factor �t > 0 (8t 2 [1; T ]), then inequality is una¤ected.

Indices like (8) fu�ll (TPI) because they are independent of the type weights. Therefore they
are "margin-free", taking a "representative agent" approach to the measurement of between-group
inequality. There are good reasons to choose indices that ful�ll (TPI), and to choose indices that
do not ful�ll (TPI).13

The literature on segregation discusses an important property called organizational equivalence.
According to this property the measure of segregation should not change when an organizational
unit (a type in the context of inequality of opportunities), is divided into k units, each with the
same probability distributions as the original unit; or when k units with the same probability
distributions merge into a single unit (e.g. type) (Reardon and Firebaugh, 2002, p. 38). This
two-sided property can be rede�ned in the following encompassing way:

Condition 7 Type Replication Invariance (TRI): If every type t, and its corresponding conditional
distribution of outcomes, is multiplied by a factor �t > 0 (8t 2 [1; T ]), then inequality is una¤ected.14

The indices (7) and (8) ful�ll (TRI) under special settings. In the case of (7), let H2
T;A (�t) =

1
min(S�1;A�1)

XS

t=1

wt
�t

XA

�=1

(pt��p��)
2

p��
; where S =

PT
t=1 �t. It is easy to show that: for H

2
T;A (�t) =

H2
T;A; when 9k j �k 6= 1;15 it is necessary (and su¢ cient) that A � T and A � S. A su¢ cient (but

not necessary) condition for H2
T;A (�t) = H

2
T;A; when 9k j �k 6= 1 is that T = S: In the case of (8)

the same results follow after wt is replaced with 1
T : Alternatively if either A > T or A > S, then

(TRI) is ful�lled if and only if T = S.16

Finally, the indices ful�ll an important condition related to their reaction to some migrations
of individuals between outcomes:

13Reardon and Firebaugh (2002, p. 38) point to references of a debate in the segregation literature regarding the
desirability of the "margin free" property.

14 If �t 2 N+=f1g; then type t is being subdivided into �t subtypes, each with equal conditional distributions of the
outcome to the original type. Alternatively if �t = 1=
t j 
t 2 N+=f1g; then several types with identical conditional
distributions of the outcome are being con�ated into one single type.

15�t = 18t! H2
T;A (�t) = H

2
T;A

16The squared coe¢ cient of variation by Reardon and Firebaugh (2002) ful�lls (TRI) because it is normalized
by the equivalent of A � 1; as opposed to minfT � 1; A � 1g. Therefore the comparison between this coe¢ cient of
variation and the indices (7) and (8), highlight a trade-o¤ between ful�llment of (TRI) and reaching a maximum
value of 1 when A > T and there is complete association.
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Condition 8 Sensitivity to migrations that break or restore partial pairwise equality of opportunity
(SMPEP): A migration of an individual from outcome state j to outcome state i increases inequality
if states j and i were characterized by partial pairwise equality of opportunity before the migration;
and, conversely, it reduces inequality if states j and i get to be characterized by partial pairwise
equality of opportunity (PPEP) after the migration.

In condition 8, partial pairwise equality of opportunity (PPEP) is de�ned as follows: 9 (�; �) 2
[1; :::; A] j p1� = p2�::: = pT� = p�� ^ p1� = p2�::: = pT� = p��. The indices (7) and (8) ful�ll (SMEP), i.e.
they react by increasing their value to re�ect higher association (and inequality) when within-type
migrations from one state to another break PPEP and they react by decreasing their value when a
similar migration restores PPEP in the departure and arrival state. The proof is in the Appendix
8.

3.3 General reaction of the indices to migrations of individuals between out-

come states17

In this subsection the behaviour of the index is �eshed out further by analyzing its sensitivity to
association between types and outcomes. It turns out that most changes in the distribution of
outcomes across types (e.g. due to intra or inter-type transfers) have an a priori ambiguous e¤ect
on the index. Notable exceptions are migrations related to condition 8, and migrations away
from (or toward to) a situation of complete (or absolute) association in the pairs of departure and
arrival states. Generally, the nature of the e¤ect depends on whether the migration brings about
an increase or a decrease in the degree of association between types and outcomes, i.e. the criterion
by which inequality of opportunity is measured by the indices. In the context of probabilities,
distributional changes come about by changes in the number of units (e.g. individuals) which fall
into the cells of the contingency table, i.e. by migration of units from one cell to another. In
the application to inequality of opportunity, units can only move across cells representing di¤erent
outcome values within each type column but not across types, because people are, by de�nition,
unable to change own circumstances beyond their control. Consider the contingency table 1:18

Table 1: Representation of distribution of outcomes across and within types with a contingency
table

Types Row totals
N1
1 � � � � � � NT

1 N1
... " � � �

...
...

Outcomes
... N �

� � � �
... N�

N1
A # � � � NT

A NA

Column totals N1 N � � � � NT N

The minimum change that could occur in the table is that one observation from type � migrates
away from outcome row j, ending up in outcome row i. Such change is related to a change in
at least four variables: N �

j ; N
�
i ; Nj and Ni; and correspondingly in at least four probabilities:

p�j ; p
�
i ; p

�
j and p

�
i . When �N

� units move away from outcome j toward outcome i, p�j transfers

17The analysis in this subsection considers index (7), but the same results ensue for index (8).
18White (1986) pioneered the application of contingency tables in the segregation literature.
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to p�i the amount of �,
19 while p�j transfers w

�� to p�i . To measure the impact of such a change
on the indices, units of value � belonging to type � migrate from outcome state j to outcome
state i. The new probabilities are decorated with a hat and the proposed migration implies that:bpt� = pt�8t 6= � ;� 2 O ; bp�� = p��8� 6= i; j ; bp�i = p�i + �; bp�j = p�j � � ; bp�i = p�i +w��; bp�j = p�j �w��.
Let also �H2

T;A � H2
T;A

�bpzy��H2
T;A

�
pzy
�
and �mH � min fT � 1; A� 1g�H2

T;A. Then:

�mH =
T�1X
t=1

wt
�
pti � bp�i �2bp�i + w�

(bp�i � bp�i )2bp�i +
T�1X
t=1

wt

�
ptj � bp�j�2bp�j (9)

+w�

�bp�j � bp�j�2bp�j �
TX
t=1

wt
�
pti � p�i

�2
p�i

�
TX
t=1

wt

�
ptj � p�j

�2
p�j

;

which yields:

�mH =
1

N2 (p�i + w
��)

�
p�j � w��

� �1� w�
w�

� �
p�i + p

�
j

�
(10)

+
2

N (p�i + w
��)

(p�i � p�i )�
2

N
�
p�j � w��

� �p�j � p�j�

� 1

N (p�i + w
��)

TX
t=1

wt
�
pti � p�i

�2
p�i

+
1

N
�
p�j � w��

� TX
t=1

wt

�
ptj � p�j

�2
p�j

:

As equation (10) shows, the migration of probability mass, �, generates an a priori ambigu-
ous e¤ect on the index. A reasonable result since the index is measuring inequality as increased
association and migration may or may not bring about more association between types and out-
comes. Such migration may or may not bring about more similarity across the probabilities ptj
and pti (8t 2 T ). Increasing similarity across probabilities from di¤erent types related to the same
outcome cell, e.g. �, means reducing the degree of association betwen types and outcomes.

The following situations describe the sensitivity of the indices with respect to the di¤erent
situations in which migration can take place:

� When the probabilities across types are not identical in both departure and arrival states, j
and i before and after the migration: The e¤ect of the migration is ambiguous as shown by
equation (10).

� When the probabilities across types are identical in the departure state, j. In this case
ptj = p

�
j8t 2 G. Here there are three sub-situations:

1. The probabilities in the arrival state are not identical before and after the migration.
In this case, as shown in the Appendix 8, the e¤ect is again ambiguous: The migration
away from j does increase the value of the index because originally ptj = p

�
j8t 2 G, and

that is captured by the �rst element of the right-hand side of (12).20 However the e¤ect
of the migration on the degree of similarity across probabilities in the arrival state, i,
may or may not increase the overall degree of association. Hence the ambiguity.

19Such that: p�j � � � 1
N� > 0:

20See Appendix 8.
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2. The probabilities in the arrival state are not identical before the migration but are
rendered identical afterwards. In this case, besides having ptj = p

�
j8t 2 G, the following

also holds: pli = pmi 8l;m 6= � ! p�i = w�p�i + (1� w� ) pli. The impact on the index
is again ambiguous because migration away from j increases association but migration
toward i reduces it. The contribution to the change in the value of the index of these
opposite impacts to the respective coe¢ cients of variations of states j and i is mediated
by the proportion of the total population in every state. The change in the index
due to migration in this situation is in equation (13).21 A necessary condition for this
migration to reduce the value of the index is: p�i < p

l
i, which makes sense to assume if

the probabilities in the arrival state are meant to be equalized after the migration. The
condition is, however, insu¢ cient. 22

3. The probabilities in the arrival state are identical before the migration. This case means
pti = p

�
i^ ptj = p�j8t 2 G and the migration increases inequality. This is the case relevant

to condition 8.

� When the probabilities across types are such that there is complete, or absolute, association
between types and outcomes in the departure and arrival states, j and i respectively, before
migration. This situation depends on whether T < A; T > A or T = A. The respective
proofs are in Appendix 8, and used also to show that the indices attain their maximum in
situations of complete, or absolute, association between all types and all outcomes (not just
the departure and arrival states):

1. Whenever T 6= A migration can either leave the initial complete association intact
thereby not a¤ecting inequality or complete association between the types and the two
(departure and arrival) states.

2. Whenever T = A any migration breaks the initial absolute association thereby decreasing
inequality.

3.4 The indices and other concepts and indices of inequality of opportunity

This section compares the performance of the dissimilarity indices in ranking societies, in terms
of inequality of opportunity, vis-a-vis other well-known concepts and measurements of inequality
of opportunity in the literature. The idea is not to show any superiority of one approach over
others, especially in an area where "no consensus has been reached" (Lefranc et al., 2009, p. 1189);
but to explore the di¤erences in rankings that di¤erent approaches to inequality-of-opportunity
measurement yield, focusing on the di¤erences that arise from introducing the dissimilarity indices.

3.4.1 The conception of Lefranc et al. (2008,2009)

The de�nition of Lefranc et al. (2008) declares equality of opportunity whenever there is no second-
order dominance across the outcome distributions corresponding to di¤erent circumstances. Such
is a very reasonable de�nition from the point of view of a hypothetical outsider who has to choose
between di¤erent types and is concerned about the risk and return mix involved in every type�s
conditional distribution of outcomes. As Lefranc et al. (2009) explain, the ranking of societies
following a second-order dominance criterion may disagree with that based on the notion that

21See Appendix 8.
22See equation (13) in Appendix 8.
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equality of opportunity is only achieved under circumstance neutralization, which is a more general
version of Roemer�s literalist de�nition, and is followed by this paper�s indices. Since lack of
second-order dominance can be achieved with di¤erent combinations of compared distributions,
Lefranc et al.�s (2008) criterion may declare two societies to be opportunity equal even when in
one all conditional distributions are identical and in the other one both the mean attainment and
the degree of inequality in one type may be higher than in another type (in a case of two types
in both societies). In an extreme situation, the dissimilarity indices might declare the former
society as being opportunity equal while regarding the latter as perfectly opportunity unequal if
the latter exhibits complete association between types and outcomes.23 These discrepancies are
best illustrated by looking at Lefranc et al.�s Gini index of inequality of opportunity:

GIO =
1

2�

TX
i=1

TX
j=1

wiwj
���i (1�Gi)� �j (1�Gj)��

Where � is the mean of the welfare measure (e.g. income) over the whole population, �i is
the respective mean for type i and Gi is the Gini coe¢ cient for type i. Whenever a society is
opportunity-equal according to Roemer�s literalist criterion, and the dissimilarity indices, GIO is
zero, thereby measuring equality of opportunity according to both Roemer�s and Lefranc et al.�s
de�nitions. However the reverse is not true: GIO may be zero and imply equality of opportunity
in terms of lack of second-order dominance also when distributions of the advantage/outcome are
not equal (thereby implying inequality according to alternative de�nitions). These di¤erences in
rankings stem from attempts at answering di¤erent, and complementary questions. The most strin-
gent de�nitions of equality of opportunity (e.g. Roemer�s literalist criterion) and indices based on
dissimilarities of probabilities, seek to quantify the departure from circumstance neutralization, and
tend to be insensitive to the location of the di¤erences between types in the conditional distribu-
tions thereby being unable to say anything regarding the desirability of one conditional distribution
over another. Whereas, by focusing on second-order dominance, Lefranc et al. provide a weaker
criterion that is sensitive to the presence of between-group inequality in di¤erent parts of the dis-
tribution, therefore not measuring inequality as circumstance neutralization but as inability to
rank type-conditioned distributions in terms desirability (as judged by the second-order dominance
criterion).

3.4.2 The indices based on the types approach (Checci and Peragine, 2005; Roemer,
2006; Ferreira and Gignoux, 2008)

The types approach compares across types/groups a standard that represents and summarizes their
conditional distributions. Empirical applications of this approach have typically associated increas-
ing inequality of opportunity with increasing between-groups/types inequality in mean outcomes.
The desirable properties that indices of the types approach satisfy are discussed in Peragine (2004).
Roemer (2006) also considers this approach as a less literalist (and empirically demanding) alterna-
tive criterion. Its key advantage is that, by comparing mean outcomes, the ensuing rankings satisfy
the axiom of inequality neutrality within types, which implies that mean-preserving transfers, that
a¤ect within-type inequality, do not a¤ect between-type inequality (Peragine, 2004, p. 6). Other
quantitative approaches in the literature do not ful�ll this axiom, including the dissimilarity indices.

23Notice that the lack of overlap implied in this example is di¤erent from the speci�c, popular form of lack of
overlap whereby the poorest person in one group/type is richer than the richest person in another group/type.
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That is, in the other approaches, within-type transfers (or migrations in probability space) a¤ect
both within and between-type inequality.

The dissimilarity indices and indices based on the types approach24 may disagree in their so-
cial rankings in two main instances: Firstly, whenever there is no between-group inequality in the
standard of the distribution, the types approach declares equality of opportunity. The dissimilarity
indices might not do so because equality of distributional standards (e.g. the means) can occur
even when the multinomial distributions are not homogeneous, e.g. when circumstance neutral-
ization is not present. Secondly when two societies are compared and both exhibit complete (or
absolute) association but one has between-group inequality, according to a path-independent de-
composition, coupled with no within-group inequality and the other one has some within-group
inequality and may or may not have between-group inequality. In such a case the relative ver-
sion of the indices based on the types approach, i.e. the between-group component divided by
total inequality, ranks the �rst society as being perfectly opportunity-unequal and the second one
as being less opportunity-unequal; whereas the dissimilarity index ranks both as being perfectly
opportunity-unequal on the merit of both exhibiting complete (or absolute) association between
types and outcome categories.25 This second source of discrepancy disappears if the absolute ver-
sion of the indices based on the types approach is considered instead.26 In that case, only the �rst
instance is relevant.

3.4.3 The indices based on the tranches approach (Checci and Peragine, 2005)

Checchi and Peragine (2005) propose an alternative measure of inequality of opportunity also based
on inequality indices decomposable into between and within groups. They follow a literalist in-
terpretation of Roemer�s notion that people exerting the same degree of e¤ort, measured by their
percentile position in their respective type�s e¤ort distribution, should receive an equal amount
of the advantage/outcome. Then, assuming monotonicity between (unobservable) e¤ort and ob-
servable advantages, they measure inequality of opportunity as inequality in the outcome between
individuals belonging to di¤erent types but exerting the same degree of e¤ort, captured by belong-
ing to the same percentile tranch, thence the name tranches approach. 27 Indices based on the
tranches approach agree with the dissimilarity indices in declaring equality of opportunity if and
only if conditional distributions of well-being are identical.

By contrast, the relative version of the tranches-approach index used by Checchi and Peragine
(2005) does not rank all distributions characterized by complete (or absolute) association as being
perfectly opportunity unequal,28 because it has total inequality as its maximum, which is a rea-
sonable normalization if the objective is to decompose inequality into e¤ort-led and circumstance-
led components. However complete (or absolute) association between types and outcome sets,

24Typically these inidices belong to families that are decomposable into a between-group and a within-group
component in a path-independent way. The preferred one being the mean log deviation because it considers the mean
for between-group comparisons. For path-independent decomposability see Foster and Shneyerov (2000).

25These two sources of discrepancy remain even if the indices are adjusted according to the suggestion of Elbers
et al. (2008).

26That is, e.g. quantifying inequality of opportunity using only the between-group components of the decomposi-
tions.

27Using path-independent decomposition techniques, inequality of opportunity is calculated as the residual from
subtracting between-tranch inequality to total inequality (calculated over a smoothed distribution). A relative mea-
sure of inequality of opportunity based on the tranches approach can also be constructed by dividing within-tranch
inequality measure by total inequality. Desirable properties for indices based on the tranches approach are discussed
in Peragine (2004).

28The absolute versions, by construction, do not have an upper bound representing a concept of maximum between-
group inequality.
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which make the dissimilarity indices attain their maximum, is possible with di¤erent distributions
of the outcome (re�ecting e¤ort through the monotoncity assumption) within each conditioning
type/group.

3.4.4 The Human Opportunity Index (Barros et al., 2008)

Let p�1 be the average accomplishment related to a dichotomous outcome (e.g. access to a basic
service); pt1 is de�ned similarly with respect to a speci�c group of society, t. Then the human
opportunity index (HOI, Barros et al. (2008)) is de�ned as:

HOI = p�t (1�D) ;

where D is a dissimilarity index based on a statistic belonging to the above speci�ed family:

D � X1
T;1=2p

�
1 =

1

2

TX
t=1

wt
��pt1 � p�1��
p�1

:

It is worth comparing D and H2
T;2, which deals with dichotomous outcomes.

29

D works with dichotomous variables whereas this paper�s indices work with multinomial dis-
tributions, including dichotomous variables. Therefore this paper�s indices can also be applied to
quantify inequality in access to services, although they may not rank societies the same way as D
does. D is less useful to compare multinomial distributions because its maximum value (necessary
for normalization) does not depend just on the population size. Instead it depends ad hoc on the
groups�weights.30

Barros et al. (2008) extensively discuss the choice of normalization for D: Firstly, it gives D an
appealing meaning as "the minimum fraction of the total number of persons with high outcome [...]
that needs to be redistributed across circumstance groups in order to [...] ensure equal proportion
to low outcome persons in all circumstance groups" (p. 19); secondly, it renders D either insensitive
or prone to decrease when pt1 increases by a common factor for all t.

31

Regarding similarities, both D and H2
T;2 declare equality of opportunity whenever p

t
1 = p�18t.

However in the absence of perfect equality of opportunity, D and H2
T;2 may not necessarily rank

societies consistently among themselves. In particular, they di¤er in their sensitivity to a special
form of "balanced increase in opportunity" considered by Barros et al. (2008): a common additive
increase, i.e. a migration that increases the probability of attaining the cherished outcome by the
same amount � for all types. As Barros et al. (2008) show, such migration reduces the value of
D, thereby revealing a "pro-growth bias" (p. 29). By contrast, the reaction of H2

T;2 depends on
whether p�1 is higher, equal or lower than

1��
2 . If it is higher, then the common additive increases

29The HOI follows a tradition of de�ning welfare indices which account both for the average and the dispersion of
a welfare outcome, started by Atkinson (1970) and Sen (1976).

30Although this can be overcome by either de�nining: wt = 1
T
(i.e. imposing TPI ) or by adopting the Mean

relative deviation index, which is normalized by Simpson�s interaction measure (Reardon and Firebaugh, 2002, p.
41).

31This normalization comes at a cost, acknowledged by the authors. D�s maximum value is equal to N�1
N

and
is achieved when only one individual (belonging to a group of size wi = 1=N) has a value of pi1 = 1 and the rest
of the population have pt1 = 08t 6= i. When that happens, limN!1D = 1. Alternatively, an index d � D N

N�1 is
equal to 1 whenever there is maximum dissimilarity as measured by D. However d is not population invariant except
when there is maximum or minimum dissimilarity. This trade-o¤ between population invariance and a normalization
axiom is absent from H2

T;2 (and H
2
T;A in general). Both approaches can be defended on theoretical grounds.
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raises the value of H2
T;2; the opposite happens if p

�
1 <

1��
2 ; and the index is insensitive to the

migration if both quantities are equal. 32

The two indices also di¤er in declaring maximum inequality of opportunity: Maximum dis-
similarity for D implies maximum dissimilarity by H2

T;2 but the reverse is not true; because for
D the only situation in which maximum dissimilarity holds is that of one individual having a
value of 1 and the rest of the population having a 0 for p1. Whereas for H2

T;2 all situations in
which there is a subset G1 � G for which pt1 = 18t 2 G1 ^ pt1 = 08t =2 G1 and, by implication,
pt2 = 08t 2 G1 ^ pt2 = 18t =2 G1, exhibit complete association. The unique maximum of D is a
special case of the set of maxima considered by H2

T;2.

These discrepancies emphasize the need for conceptual criteria to decide which type of index
to use for dichotomous outcomes. When the dichotomy is about achieving a valuable situation
(e.g. access to a service), I advocate using D since it is reasonable to consider that there is more
inequality of opportunity when one individual has full certainty of achieving the outcome and all the
others have zero probability of attaining it, than when more than one individual has full certainty
and the rest of the population has zero probability. I advocate using H2

T;2 when the dichotomy
re�ects two options whose ranking is not immediately obvious in terms of valuability, or when one
wants to assess the dissimilarity of conditional distributions, and one is content to declare perfect
inequality when one option is exclusively associated with a subset of types and the other option is
exclusively associated with the remaining subset. 33

4 Application to multiple variables

An interesting feature of indices like (7) and (8), measuring inequality of opportunity on probability
space, is that they can be applied to situations with multiple variables. The joint consideration of
two or more outcomes has advantages over considering inequality on each outcome separately, yet
it also bears potential limitations. Both analyses can be deemed complementary.

On the side of the advantages, looking at di¤erences between groups on their joint distributions
of outcomes provides information that is not captured by looking at each variable�s marginal distri-
bution separately. For instance, because several joint distributions can belong to the same Fréchet
class,34 it is possible that, comparing two societies, a variable-by-variable analysis of inequality of
opportunity may yield perfect equality in both societies, i.e. if the types�joint distributions belong
to the same Fréchet classes in each and both societies, whereas an analysis focused on the joint
distribution di¤erences may yield di¤erent rankings. In addition to that, considering inequality
over the joint distributions, on top of the marginal distributions, can be justi�ed by extending the
concepts of second-order dominance by Lefranc et al. (2008, 2009) to multiple dimensions. That is,
individuals may rank certain joint distributions in terms of preferences for mean attainments, risk,
and association of outcomes, re�ected in certain classes of welfare functions for which dominance
conditions could hold. The indices (7) and (8) do not rank inequality of opportunity in terms
second-order dominance conditions,35 but they do declare perfect equality to hold if and only if

32See results in Appendix 9.
33For instance considering agriculture versus non-agricultural occupations (e.g. Bossuroy and Cogneau, 2008). It

is not a priori clear that one of the occupations is better in some meaningful sense; such judgment depends on speci�c
contexts. Another example is to distinguish between blue-collar and white-collar workers, where, as is known (e.g.
Giddens, 2006), not all workers quali�ed as white-collars in developed countries, e.g. low-rank clerks, are, for instance,
�nancially better-o¤ that all workers quali�ed as blue-collars, e.g. highly skilled artisans.

34That is, they share the same marginal distributions (Frechet, 1951).
35 In order to do that, an extension of the ideas by Lefranc et al. (2008) is required, using multivariate stochastic
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the conditional joint distributions are equal across types, thereby extending Roemer�s literalist
de�nition, and the circumstance equalization principle, to multiple dimensions. 36

The di¤erences in rankings arising from focusing on the joint distributions vis-a-vis the marginal
distributions of outcomes separately is illustrated in the following example: Consider a society with
two types, T1 and T2, and two outcomes, Y and X, each taking three values (e.g. x1 < x2 < x3).
The joint distributions of the two types are the following:

T1 =

x1 x2 x3
y1 0:2 0:1 0
y2 0:1 0:2 0:1
y3 0 0:1 0:2

T2 =

x1 x2 x3
y1 0:1 0:1 0:1
y2 0:1 0:2 0:1
y3 0:1 0:1 0:1

If the indices are estimated considering the joint distribution it is clear that perfect equality does
not hold (e.g. pT1 (X = x1; Y = y1) 6= pT2 (X = x1; Y = y1)). However if the indices are estimated
for each of the marginal distributions separately, perfect equality does hold, for each variable, since
the distributions of T1 and T2 belong to the same Fréchet class. Now consider a migration within
type T1, such that after the migration: pT1 (X = x1; Y = y1) = 0:1 and pT1 (X = x3; Y = y1) = 0:1.
Then the indices estimated over the joint distribution decrease in value because the migration
generates PPEP. However, after the migration, the joint distributions do not belong anymore to
the same Fréchet class: The indices estimated for the marginal distribution of X do not yield
perfect equality anymore. Therefore it is possible to decrease inequality of opportunity in the joint
distribution of variables even at the expense of increasing inequality of opportunity in (at least one
of) the marginal distributions. Hence looking at the joint distributions may provide information
di¤erent from, and complementary to, an analysis of variable-by-variable.37

On the side of the limitations, assessing inequality over probability space carries an implicit
weighting of the contributions of inequalities in each outcome variable over total inequality. This
implicit weighting may be controversial in some situations. For instance, when there is complete (or
absolute) association between types and one variable�s values/outcomes, and T � m, wherem is the
number of categories/values of the variable with whom there is complete (or absolute) association.38

In such case, complete (or absolute) association is also su¢ ciently established between the joint
variable outcomes and types making the indices attain their maximum value. Generally, if there
is complete (or absolute) association between types and each variable belonging to a subset l � b,
where b is the number of variables, then the indices attain their maximum value when applied to
the joint distribution of the b variables, if and only if 9i 2 l j T � mi, where mi is the number of
categories/values of variable i. Thus the partitions of the variables a¤ect the implicit contribution
of each variable�s inequality over the whole.39

In these situations, i.e. when complete (or absolute) association between types and a subset of
variables leads to maximum inequality over the whole subset, as measured by the indices (7) and
(8), the variable-by-variable analysis can be complemented by an alternative family of composite
indicators of inequality of opportunity that aggregates the speci�c-variable results. For instance:

dominance conditions. The latter have been discussed, among others, by Atkinson and Bourguignon (1982).
36 In the analysis of multivariate poverty dominance, Duclos et al. (2006) pioneered the idea that even when some

dominance conditions can not be ascertained over the marginal distributions, it is possible to �nd signi�cant areas
within the joint distribution in which restricted dominance holds. Thus they justify looking at the joint distributions
of outcomes.

37At the extreme though, perfect equality of the joint distributions implies perfect equality of the marginals.
38And, by construction, A > m, for two or more outcomes.
39Admittedly, this situation is more problematic when continuous variables are discretized.
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H� =

"
bX
i=1

'i
�
H2
T;Ai

��# 1�
; (11)

where H2
T;Ai

measures inequality of opportunity over variable i, which has Ai values; 'i is the
contribution of inequality over variable i to overall inequality and � is a CES parameter that gives
more weight to the more unequal variables as it increases. 40 The advantage of using members
of the family in (11)41 is that complete (or absolute) association between types and a subset of
variables does not automatically translate into maximum inequality by (11), i.e. when all variables
are considered. However the avoidance of this situation comes at the cost of foregoing information
on the joint distributions.

5 Empirical application

This empirical application looks at inequality of opportunity of educational outcomes in Peru. Two
discrete outcomes are studied: levels of education attained and quality of education attained, prox-
ied by type of school attended. The adult population is divided into 6 types which result from
combining the following three circumstances: gender, father�s education and mother�s education.
All these are beyond the control of individuals, as is demanded by the ineuqality of opportu-
nity approach.42 The purpose of the application is to compare several cohorts of adults in terms
of inequality of opportunity over these outcomes, in order to uncover a possible trend. The in-
dices are therefore calculated for educational level and for quality separately, but also calculated
for their joint distribution. Using indices (7) and (8), it is possible to assess the impact of the
Type-Population-Invariance condition on the cross-cohort comparison. Inequality trends are also
estimated for di¤erent type partitions; namely, for a simple gender division, and for a division only
according to parental educational background. The idea is to assess the robustness of the trend
results to di¤erent forms of type (dis)aggregation; and also to explore whether trends in inequality
based on certain circumstances (e.g. gender) help to explain the trends in inequality based on the
types that, in turn, are constructed from those circumstances, interacted with others.43 In the
inequality-of-opportunity literature, Ferreira and Gignoux (2008) discuss the impact of having lim-
ited information for the de�nition of types, on measuring between-group inequality on value space:
As more groups (therefore �ner partitions) are allowed for, more of the total inequality is explained
by the between-group element.44 When measuring between-group inequality on probability space,
the de�nitions of groups may vary depending on available data. In the case of inequality of oppor-
tunity, it depends on whether there is information for the circumstances that are deemed to de�ne
the types.45 Di¤erent group de�nitions may generate di¤erent conditional distributions, because

40H can also be de�ned forH
2
T;Ai :

41For instance: H = 1
b

Xb

i=1
H2
T;Ai

.
42 Ideally a �ner division would have been desirable but I cluster educational categories due to sample size concerns.
43 I would like to thank an anonymous referee for suggesting performing this analysis.
44Considering that, in applications, it is di¢ cult to gather full information on circumstances determining types,

Ferreira and Gignoux (2008) state that empirical estimates provide "lower bounds" of the true/actual degree of
inequality of opportunity. In the case of the indices (7) and (8), a �ner partition of types leads to unambiguously
higher between-group inequality when T �M , for the minimum T considered. Otherwise the result is ambiguous.

45The choice of circumstances to be considered for the de�nition of types may not just depend on the availability
of information (on them), but also on the policy implications of the analysis, i.e. on whether these circumstances are
considered worth compensating for.

17



they consider di¤erent choices and combinations of circumstances, each in turn di¤erentially asso-
ciated with outcomes. Therefore, di¤erent inequality patterns may ensue from di¤erent group/type
partitions, which warrant a sensitivity analysis.46

Following the previous section�s discussion, a priori it is impossible to say whether inequality
over a joint distribution (measured on probability space) is higher or lower than over its related
marginal distributions seperately. In fact changes in inequality over joint distributions do not
necessarily imply changes in inequality over its marginal distributions and viceversa, even though
the latter stem from linear combinations of the former. Hence computing inequality over the joint
distribution of well-being outcomes can provide information about inequality of opportunities on
top and beyond that provided by the marginal distributions.

5.1 Data

The data come from the Peruvian National Household Survey, ENAHO 2001 which sampled 16,515
households. There are 7 possible multidimensional outcomes stemming from the following values
for the outcome variables:

1. Years of education:

� No education (=1).
� Some primary, incomplete or complete, but no secondary (=2).
� Some secondary, incomplete or complete, but no tertiary (=3).
� Some tertiary education (=4).

2. Quality of education:

� No education (=1).
� Attended public school (=2).
� Attended private school (=3).

The combination of these two variables yields 7 categories because the "no education" entries
only interact with each other. The 6 types ensue from combining the following three variables:

1. Gender: Male or Female

2. Father�s education: Up to complete primary or More than complete primary

3. Mother�s education: Up to complete primary or More than complete primary

Strictly, the combination of these three variables should yield 8 categories but, due to sam-
ple size considerations, I consider equally people who have one parent with more than complete
primary regardless of whether this parent is the father or the mother.47 I also perform the analy-
sis for just a gender disaggregation, and for only three types produced by pooling gender in every

46 In the Geography literature, where types/groups are the equivalent of "modi�able entities", it has long been
noticed that di¤erent discrete partitions of areas may lead to di¤erent statistical patterns, e.g. of the average
household size per district. This is the so-called "Modi�able Areal Unit Problem" (MAUP). For a discussion see
Openshaw (1984).

47By compressing these two categories, thus ending up with 6, as opposed to 8, types, I can exploit the increased
gain in sample size and produce indices for a �ner partition of cohort age-brackets.
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parental-educational-background category. The respective sample sizes, together with the marginal
distributions for the two variables, are in the Appendix 7. From the tables it stands out that, the
younger the cohort, the higher the schooling attainment: the rates of the two lowest educational
outcomes decline monotonically with the youth of the cohort as the proportions of the two highest
educational outcomes increase (Figure 1). Within each cohort, adults whose parents had higher
levels of education have distributions of educational attainment, and type of school attendend, with
higher incidences of better outcomes i.e. that �rst-order stochastically dominate the distributions of
those whose family background exhibits lower educational attainment (Tables 9 and 10). Between
males and females, distributional di¤erences are narrower among the youngest cohorts in terms of
school attendance (especially on the extreme outcomes), and type of school attendend (Figure 4).

5.2 Results

The values of the indices (7) and (8) for the two educational variables, separately and jointly, appear
in Table 2 and 3, respectively. The three estimations agree in showing a pattern of reduction
in inequality of opportunity over these educational outcomes from older to younger cohorts. The
degree of overlap between the contiguous con�dence intervals varies by cohort pairs. In cases like
that of type of school attended and the 42-51 and 52-61 cohorts as measured by index (8), the lack
of overlap shows a statistically signi�cant di¤erence in the indices, whereas for the same variable,
but comparing 52-61 versus 61+ with index (7), the degree of overlap suggests that the di¤erences
may not be statistically signi�cant. However, for type school attended Tables 2 and 3 show
a monotonic decrease in inequality of opportunity from old to young cohorts.48 The di¤erences
between the indices of the extreme old and young cohort are statistically signi�cant.

In the case of education levels and the joint distribution the patterns are not monotonic for the
index not ful�lling (TPI), (Table 2). A reduction trend is apparent in both but it is reversed from
the second-to-youngest to the youngest cohort. For education levels and the joint distribution, the
youngest three cohorts show less inequality than the oldest two and the di¤erences between the
youngest three and the oldest cohort are statistically signi�cant. On the other hand, according to
the index ful�lling (TPI), the reduction in inequality over levels and the joint outcome is monotonic.
Therefore this application o¤ers empirical evidence in favour of the hypothesis that educational
outcomes among younger Peruvian adults are less opportunity unequal vis-a-vis older Peruvian
adults. This trend is clearest for the type of school attended, which may be driven more by an
increase in enrollment than further homogenization of private school enrollment. For education
levels and the joint distribution the reduction is not monotonic for index (7), although even for
this index there is a signi�cant reduction in inequality comparing the extreme ends of the cohort
spectrum. In other words, the youngest cohorts�s joint and marginal distributions are closer to the
ideal of circumstance neutralization than those of their oldest fellow citizens.

48Percentile bootstrapped 95% con�dence intervals appear in brackets. In each case 500 resamplings were per-
formed.
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Table 2: Inequality of educational opportunities in Peru: Two indicators of educational attainment
using an index not ful�lling TPI

Indicators Cohorts by year ranges
22-31 32-41 42-51 52-61 61+

Education level 0.2936 0.2788 0.3017 0.3203 0.3444
[0 .2806,0 .3080] [0 .2658,0 .2949] [0 .2862,0 .3188] [0 .2977,0 .3513] [0 .3181,0 .3735]

Type school attended 0.2340 0.2440 0.2612 0.3077 0.3151
[0 .2136,0 .2586] [0 .2189,0 .2701] [0 .2369,0 .2909] [0 .2774,0 .3451] [0 .2841,0 .3535]

Joint distribution 0.2366 0.2245 0.2415 0.2596 0.2784
[0 .2265,0 .2470] [0 .2120,0 .2396] [0 .2275,0 .2570] [0 .2447,0 .2860] [0 .2586,0 .3097]

Table 3: Inequality of educational opportunities in Peru: Two indicators of educational attainment
using an index ful�lling TPI

Indicators Cohorts by year ranges
22-31 32-41 42-51 52-61 61+

Education level 0.3060 0.3265 0.3725 0.4023 0.4223
[0 .2952,0 .3163] [0 .3117,0 .3407] [0 .3541,0 .3901] [0 .3761,0 .4270] [0 .3959,0 .4471]

Type school attended 0.2187 0.2506 0.2897 0.3699 0.4070
[0 .2017,0 .2344] [0 .2280,0 .2714] [0 .2634,0 .3137] [0 .3341,0 .4025] [0 .3759,0 .4359]

Joint distribution 0.2459 0.2613 0.2977 0.3250 0.3363
[0 .2372,0 .2542] [0 .2489,0 .2732] [0 .2828,0 .3118] [0 .2988,0 .3493] [0 .3139,0 .3573]

The robustness and sensitivity of these results is �rst probed by de�ning types only in terms of
gender. The results are in Appendix Tables 11 and 12. Considering that gender proportions are
stable over time in countries, like Peru, not characterized by strong son preferences, the two indices
consistently show that, after an increase from the oldest to the second-to-oldest cohort, inequality
tends to decrease among the younger cohorts for type of education, level of education and the joint
distribution. The youngest cohort exhibits the lowest degree of inequality compared to all the other
cohorts, re�ecting progress in reducing gender di¤erences in educational opportunities.

Tables 13 and 14 show the inequality trends for three types de�ned on parental background
(i.e. by aggregating the six types over gender). Now the trend depends on whether the index
satis�es (TPI) because the types� proportions changed across cohorts. According to index (7),
there is no clear pattern of decline in inequality. For type of education and the joint distribution a
U-shaped trend shows up, but not for educational level. This lack of steady decline, combined with
the results for an exclusive gender division, may explain the patterns in Table 2, whereby a decline
in inequality is slightly reversed at the youngest cohort. By contrast, according to index (8), the
decline in inequality is monotonic for type of education, level, and the joint outcome. Hence this
result, coupled with the gender-speci�c results (mild increase followed by steady decline), helps
to explain the pattern of monotonic decline found in Table 3. Overall, the conclusions from the
empirical assessment depend both on whether a "representative agent" approach is undertaken
(i.e. the index ful�lls TPI ) and on the type de�nition. For instance, the evidence from the most
re�ned type de�nition used, together with an index ful�lling (TPI), suggest a monotonic decrease
in inequality of educational opportunity over the two variables considered.
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6 Concluding remarks

This paper proposes dissimilarity indices, based on Pearson�s statistic, for the analysis of inequality
of opportunity. In�uenced by Roemer�s and Fleurbaey�s conceptions, they measures inequality of
opportunity in proportion to the degree of association between sets of circumstances and sets of out-
comes. A higher degree of association is related to higher dissimilarity of distributions conditioned
on type-belonging; and, in turn, higher inequality of opportunity.

These indices bear the advantage of being able to capture di¤erences in the joint distributions
of multiple outcomes. Therefore they provide additional information on inequality, considering that
joint distributions may be di¤erent even when marginal distributions are identical across groups,
and people may have preferences over these di¤erences. On the other hand, under certain conditions
involving the number of types and outcome values, maximum inequality over the joint distribution
may be attained su¢ ciently when complete (or absolute) association is present in only one separate
dimension. Another contribution is the proposal, and empirical illustration, of two alternative
indices: one is sensitive to changes in group composition; the other one is not, thereby measuring
inequality with a "representative agent" approach.

This paper�s index, the HOI�s D, and the types and tranches approaches, do not judge which
group or type is the most advantaged. For that an analysis of risk, return and stochastic dom-
inance is required, as per Lefranc et al. (2008). All approaches, including this paper�s, agree in
classifying societies as opportunity equal when conditional distributions are identical. However the
dissimilarity indices and the types approach may disagree in ranking opportunity-unequal societies
since the latter relates inequality of opportunity to inequality over a distributional standard of the
variable. If inequality of opportunity is understood in terms of association, or distance between
multinomial distributions, then one can �nd distributions of outcomes which are di¤erent despite
having the same distributional standard.

On the other hand the dissimilarity indices agree with the tranches approach in declaring in-
equality of opportunity if and only if conditional distributions of well-being are identical. However
the indices and the relative version of the tranches approach may disagree on the ranking of distrib-
utions characterized by complete (or absolute) association. The indices rank all these distributions
as being perfectly opportunity unequal; whereas in the tranches approach di¤erent between-tranch
inequality may yield di¤erent values of the relative indicator for di¤erent societies characterized by
complete (or absolute) association.

The dissimilarity indices belong to a family of inequality-of-opportunity indices, including those
of the types and the tranches approaches, which do not account explicitly for average attainments.
Among those which do, the most prominent are the GIO and the HOI.49 A major di¤erence between
the dissimilarity indices and the GIO is that the latter declares equality of opportunity not only
when conditional distributions are identical. Regarding the HOI, both its D and this paper�s indices
agree on declaring equality if and only if conditional distributions are equal. They also agree on
declaring perfect inequality whenever one individual has full certainty of attaining an outcome
while the rest of his/her society has zero chance of attaining it. However they may disagree on:
(1) ranking societies in intermediate situations of inequality with imperfect association; (2) ranking
societies with di¤erent forms of complete (or absolute) association between types and outcomes;

49The dissimilarity indices discussed in this paper, as well as others from the segregation literature, could also be
used to generate indices similar in spirit and shape to the HOI. For instance, for a continuous variable one such index
could be: H = y

�
1�H2

T;A

�
, where y is the mean of a continuous variable y. As another example, for a discrete

variable it could be: H = x
xmax

�
1�H2

T;A

�
, where x and xmax are respectively the mean and maximum value of a

discrete variable x. The suitability of these measures may be worth discussing in future research, along the lines laid
out by Barros et al. (2008).
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and (3) their sensitivity to "balanced increases in opportunity".
In the empirical application to educational opportunity in Peru the indices provide evidence of

a statistically signi�cant reduction in educational inequality of opportunity among the younger co-
horts of adults, vis-a-vis the oldest ones, considering the most re�ned type de�nition that combines
gender and parental educational background. The reduction trend is monotonic for type of school
attended (which makes a di¤erence in terms of quality of education and labour market outcomes in
Peru). It is also observed, but not monotonically for index (7), for educational levels and the joint
distribution of these two outcomes. These types do not exhaust all the groups of people which can
be de�ned in the Peruvian sample according to circumstances beyond the adults�control. For in-
stance parental occupation or ethnicity could have been considered with richer and larger samples.
The de�nition of types is important not only because, in principle, a more re�ned partition may
lead to higher between-group inequality (Ferreira and Gignoux, 2008), but also because, on prob-
ability space, di¤erent combinations of circumstances (when de�ning types) may exhibit di¤erent
degrees of association with the same outcomes. Likewise, the empirical application illustrates the
potential di¤erences in results ensuing from using indices that are (or not) sensitive to type/group
compositions. For instance, in the application to Peru, only the index that satis�es TPI declares
a monotonic reduction in inequality of opportunity, from older to younger cohorts, over type of
school, level of education and joint outcomes, that is robust to the three types�partitions.

This paper seeks to emphasize the value of the dissimilarity approach, from the segregation lit-
erature, to measuring inequality of opportunity. Future work ought to explore further the potential
and limitations of measuring inequality over multiple dimensions of well-being on probability space;
as well as focus on �nding quantitative tools to measure multidimensional inequality of opportunity
using continuous variables (and combinations with discrete variables).

7 Appendix

Table 4: Sample sizes for the empirical application

Type Cohorts by year ranges
22-31 32-41 42-51 52-61 61+

Male, both parents had up to complete primary 2,715 2,969 2,418 1,608 1,805
Male, one parent more than complete primary 586 328 200 101 106
Male, both parents had more than complete primary 876 410 232 119 103
Female, both parents had up to complete primary 3,057 3,207 2,390 1,655 1,526
Female, one parent more than complete primary 625 431 218 96 71
Female, both parents had more than complete primary 875 422 245 92 97
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Table 5: Distributions of educational attainment
Cohort Type Educational level

No education No secundary No tertiary Tertiary
22-31 M, both parents <= complete primary 1.07 32.49 50.31 16.13

M, one parent > complete primary 0.51 7.00 50.68 41.81
M, both parents > complete primary 0.11 1.94 35.84 62.10
F, both parents <= complete primary 5.14 42.30 37.23 15.34
F, one parent > complete primary 0.16 10.56 47.52 41.76
F, both parents > complete primary 0.34 2.40 33.71 63.54

32-41 M, both parents <= complete primary 1.72 37.82 44.22 16.23
M, one parent > complete primary 1.22 7.32 47.87 43.60
M, both parents > complete primary 0.49 2.93 31.46 65.12
F, both parents <= complete primary 9.67 45.15 31.15 14.03
F, one parent > complete primary 1.39 14.39 44.78 39.44
F, both parents > complete primary 0.47 3.79 27.01 68.72

42-51 M, both parents <= complete primary 2.98 45.95 35.73 15.34
M, one parent > complete primary 0 6.50 41.50 52.00
M, both parents > complete primary 0 2.16 31.03 66.81
F, both parents <= complete primary 19.12 47.66 23.68 9.54
F, one parent > complete primary 2.29 20.64 47.25 29.82
F, both parents > complete primary 1.22 4.90 32.65 61.22

Table 6: Distributions of educational attainment
Cohort Type Educational level

No education No secundary No tertiary Tertiary
52-61 M, both parents <= complete primary 7.71 57.15 22.89 12.25

M, one parent > complete primary 0 27.72 43.56 28.71
M, both parents > complete primary 0 4.20 26.05 69.75
F, both parents <= complete primary 36.44 45.68 13.29 4.59
F, one parent > complete primary 4.17 39.58 33.33 22.92
F, both parents > complete primary 2.17 15.22 40.22 42.39

62+ M, both parents <= complete primary 17.89 64.88 12.80 4.43
M, one parent > complete primary 1.89 30.19 44.34 23.58
M, both parents > complete primary 0 12.62 40.78 46.60
F, both parents <= complete primary 49.08 42.86 6.16 1.90
F, one parent > complete primary 1.41 49.30 32.39 16.90
F, both parents > complete primary 2.06 21.65 47.42 28.87
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Table 7: Distributions of type of school attended
Cohort Type of individual Type of school

No education Public Private
22-31 M, both parents <= complete primary 1.07 94.33 4.60

M, one parent > complete primary 0.51 86.69 12.80
M, both parents > complete primary 0.11 72.03 27.85
F, both parents <= complete primary 5.14 89.43 5.43
F, one parent > complete primary 0.16 83.84 16.00
F, both parents > complete primary 0.34 69.94 29.71

32-41 M, both parents <= complete primary 1.72 93.40 4.88
M, one parent > complete primary 1.22 85.37 13.41
M, both parents > complete primary 0.49 70.98 28.54
F, both parents <= complete primary 9.67 84.75 5.58
F, one parent > complete primary 1.39 83.53 15.08
F, both parents > complete primary 0.47 64.93 34.60

42-51 M, both parents <= complete primary 2.98 92.93 4.09
M, one parent > complete primary 0 89.50 10.50
M, both parents > complete primary 0 77.59 22.41
F, both parents <= complete primary 19.12 76.61 4.27
F, one parent > complete primary 2.29 83.49 14.22
F, both parents > complete primary 1.22 71.43 27.35

Table 8: Distributions of type of school attended
Cohort Type of individual Type of school

No education Public Private
52-61 M, both parents <= complete primary 7.71 87.87 4.42

M, one parent > complete primary 0 93.07 6.93
M, both parents > complete primary 0 73.95 26.05
F, both parents <= complete primary 36.44 61.69 1.87
F, one parent > complete primary 4.17 86.46 9.38
F, both parents > complete primary 2.17 78.26 19.57

62-+ M, both parents <= complete primary 17.89 79.56 2.55
M, one parent > complete primary 1.89 83.96 14.15
M, both parents > complete primary 0 81.55 18.45
F, both parents <= complete primary 49.08 48.49 2.42
F, one parent > complete primary 1.41 85.92 12.68
F, both parents > complete primary 2.06 73.20 24.74

Figure 1: Distribution of educational attainment
by cohorts
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Figure 2: Distribution of school attendance by
cohorts

Figure 3: Distribution of educational attainment
by gender and cohorts

Figure 4: Distribution of school attendance by
gender and cohorts

Table 9: Cumulative distributions of educational attainment by parental educational background
Cohort Type Educational level

No education No secundary No tertiary Tertiary
22-31 Both parents <= complete primary 3.23 40.91 84.29 100

One parent > complete primary 0.33 9.17 58.26 100
Both parents > complete primary 0.22 2.39 37.17 100

32-41 Both parents <= complete primary 5.85 47.47 84.91 100
One parent > complete primary 1.32 12.65 58.77 100
Both parents > complete primary 0.48 3.85 33.05 100

42-51 Both parents <= complete primary 11.00 57.80 87.54 100
One parent > complete primary 1.19 15.07 59.57 100
Both parents > complete primary 0.63 4.19 36.06 100

52-61 Both parents <= complete primary 22.28 73.61 91.64 100
One parent > complete primary 2.03 35.53 74.11 100
Both parents > complete primary 0.95 9.95 42.18 100

62-+ Both parents <= complete primary 32.18 86.97 96.73 100
One parent > complete primary 1.70 39.55 79.10 100
Both parents > complete primary 1.00 18.00 62.00 100
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Table 10: Cumulative distributions of type of school attended by parental educational background
Cohort Type of individual Type of school

No education Public Private
22-31 Both parents <= complete primary 3.23 94.96 100

One parent > complete primary 0.33 85.55 100
Both parents > complete primary 0.22 71.21 100

32-41 Both parents <= complete primary 5.85 94.76 100
One parent > complete primary 1.32 85.64 100
Both parents > complete primary 0.48 68.39 100

42-51 Both parents <= complete primary 11.00 95.82 100
One parent > complete primary 1.19 87.56 100
Both parents > complete primary 0.63 75.05 100

52-61 Both parents <= complete primary 22.28 96.87 100
One parent > complete primary 2.03 91.88 100
Both parents > complete primary 0.95 76.78 100

62-+ Both parents <= complete primary 32.18 97.50 100
One parent > complete primary 1.70 86.44 100
Both parents > complete primary 1.00 78.50 100

Table 11: Inequality of educational opportunities in Peru: Men versus women using an index not
ful�lling TPI

Indicators Cohorts by year ranges
22-31 32-41 42-51 52-61 61+

Education level 0.1392 0.1780 0.2521 0.3427 0.3116
[0 .1178,0 .1578] [0 .1573,0 .1965] [0 .2305,0 .2721] [0 .3137,0 .3693] [0 .2774,0 .3425]

Type school attended 0.0950 0.1506 0.2391 0.3300 0.3133
[0 .0749,0 .1115] [0 .1306,0 .1682] [0 .2179,0 .2586] [0 .2997,0 .3578] [0 .2814,0 .3422]

Joint distribution 0.1422 0.1831 0.2619 0.3459 0.3194
[0 .1212,0 .1605] [0 .1620,0 .2021] [0 .2400,0 .2822] [0 .3188,0 .3711] [0 .2885,0 .3475]

Table 12: Inequality of educational opportunities in Peru: Men versus women using an index
ful�lling TPI

Indicators Cohorts by year ranges
22-31 32-41 42-51 52-61 61+

Education level 0.1402 0.1798 0.2522 0.3430 0.3092
[0 .1185,0 .1590] [0 .1589,0 .1985] [0 .2305,0 .2721] [0 .3141,0 .3696] [0 .2755,0 .3396]

Type school attended 0.0963 0.1528 0.2392 0.3303 0.3110
[0 .0757,0 .1132] [0 .1324,0 .1708] [0 .2179,0 .2587] [0 .3004,0 .3578] [0 .2796,0 .3394]

Joint distribution 0.1432 0.1849 0.2620 0.3462 0.3173
[0 .1220,0 .1616] [0 .1635,0 .2040] [0 .2401,0 .2822] [0 .3191,0 .3714] [0 .2869,0 .3451]
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Table 13: Inequality of educational opportunities in Peru: Adults with di¤erentl parental education
background using an index not ful�lling TPI

Indicators Cohorts by year ranges
22-31 32-41 42-51 52-61 61+

Education level 0.3415 0.3113 0.3121 0.2974 0.3463
[0 .3290,0 .3537] [0 .2957,0 .3261] [0 .2938,0 .3294] [0 .2680,0 .3242] [0 .3180,0 .3724]

Type school attended 0.2193 0.2122 0.1870 0.1904 0.2123
[0 .2023,0 .2350] [0 .1901,0 .2321] [0 .1595,0 .2110] [0 .1549,0 .2203] [0 .1792,0 .2409]

Joint distribution 0.3554 0.3241 0.3206 0.3115 0.3597
[0 .3430,0 .3674] [0 .3071,0 .3402] [0 .3001,0 .3398] [0 .2792,0 .3408] [0 .3299,0 .3872]

Table 14: Inequality of educational opportunities in Peru: Adults with di¤erentl parental education
background using an index ful�lling TPI

Indicators Cohorts by year ranges
22-31 32-41 42-51 52-61 61+

Education level 0.3621 0.3797 0.4107 0.4314 0.4574
[0 .3489,0 .3749] [0 .3618,0 .3967] [0 .3885,0 .4318] [0 .3963,0 .4638] [0 .4283,0 .4848]

Type school attended 0.2044 0.2257 0.2335 0.3032 0.3456
[0 .1880,0 .2196] [0 .2018,0 .2473] [0 .2062,0 .2579] [0 .2641,0 .3377] [0 .3196,0 .3697]

Joint distribution 0.3747 0.3911 0.4185 0.4424 0.4623
[0 .3613,0 .3876] [0 .3713,0 .4099] [0 .3937,0 .4419] [0 .4070,0 .4752] [0 .4327,0 .4902]

8 Appendix

Proofs

1. The ambiguous impact of a migration when the probabilities in the departure
state are identical but the probabilities in the arrival state are di¤erent.

The migration away from j does increase the value of the index because originally ptj = p
�
j8t 2 G,

and that is captured by the �rst element of the right-hand side of (12), which stems from plugging
ptj = p�j8t 2 G into (10). However the e¤ect of the migration on the degree of similarity across
probabilities in the arrival state, i, may or may not increase the overall degree of association
(captured by the other two elements of the right-hand side). Hence the ambiguity.
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2. The ambiguous impact of a migration when the probabilities in the departure
state are identical and the probabilities in the arrival state are rendered identical
after the migration.

In this case, besides having ptj = p
�
j8t 2 G, the following also holds: pli = pmi 8l;m 6= � ! p�i =

w�p�i + (1� w� ) pli. Plugging these two conditions into (10) yields (13). A necessary condition for
this migration to reduce the value of the index is: p�i < pli. This condition must be assumed if
probabilities in the arrival state are expected to be equalized after the migration. However the
condition is not su¢ cient: The �rst element of the right-hand side of (13) shows the positive e¤ect
of the migration on the index due to the breaking of the initial equality of the probabilities in the
departure state, while the second element of (13) shows the negative e¤ect of the migration on the
index due to the instituion of equality among the arrival state probabilties after the migration. The
net e¤ect of these two contradictory e¤ects is ambiguous a priori.
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3. Proof that the indices ful�ll condition 8, i.e. (SMPEP) and condition 1, i.e. (PE).

This case means pti = p
�
i^ ptj = p�j8t 2 G, i.e. there is PPEP involving the departure and arrival

states. Plugging the PPEP condition into (10) yields equation (14). Such migration breaks PPEP
and thus increases association.50 Accordingly the index reacts by increasing its value, as shown by
(14). Conversely, any migration that restores PPEP reduces the value of the index. Now, when
pti = p�i^ ptj = p�j8t 2 G;8i; j 2 O � O, equation (14) proves that any migration disturbing an
initial situation of perfect equality raises the value of the index, i.e. the index reaches its minimum
value in that situation of perfect equality.
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4. Proof that the indices�values do not increase when a migration breaks complete
or absolute assocation between types and the departure and arrival states; and
therefore that they attain their maximum value if and only if there is complete
or absolute association.

There are three cases depending on whether T < A; T > A or T = A:

� Case 9 When T < A there are two possible sub-situations:

1. A migration of a member of type � from j to i that leaves complete association intact.
For this migration to be possible it has to be the case that in the initial situation type � is
exclusively associated both with outcomes j and i, which implies w�p�j = p

�
j ^ w�p�i = p�i

^ pti; ptj = 08t 6= � . It is easy to show that plugging these conditions into equation (10)
yields �mH = 0: In words, a migration within states exclusively associated to the type

50The result assumes p�j > w
�� ^ 0 � p�i � 1� w��:
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to which the migrating unit belongs leaves the index unchanged.This result also holds
when complete association is present across the whole contingency table, i.e. when the
index attains its highest value.

2. A migration of a member of type � from j to i that breaks complete association between
the types and the departure and initial states. This sort of migration requires that type �
is exclusively associated with outcome j but not with i.51 This situation involves another
type k which initially, before the migration, is exclusively associated with outcome i. This
type of migration implies: w�p�j = p�j ; w

kpki = p�i ; p
t
i = 08t 6= k (including p�i = 0).

Plugging these conditions into equation (10) yields equation (15), which shows that the
value of the index decreases. This result also holds if the whole contigency table exhibits
complete association, i.e. when the index attains its maximum value before migration.
Equation (15) proves that a pairwise breakup of complete assocation in the table reduces
the value of the index. Likewise an inverse migration that restores or generates these
exclusive associations is re�ected in the index by an increase in its value.

�mH = � p�i
N (p�i + w

��)

�
wk + w�

w�wk

�
< 0 (15)

Case 10 When T = A type � is exclusively associated with departure state j but, by implica-
tion of T = A, it is not associated with arrival state i. Therefore a migration from j to i is
characterized by the same conditions as the second sub-situation of the case when T < A;52

and has the same e¤ect: a reduction in the value of the index.53

Case 11 When T > A there are again two possible sub-situations:

� 1. A migration of a member of type � from j to i that leaves complete association intact.
When T > A every outcome is associated with a di¤erent subset of types. Therefore for
perfect association to remain intact after such migration it has to be the case that the
association with type � is given up by outcome j in favour of i. Therefore p�j = �; bp�j =
0; p�i = 0; bp�i = �. This migration leaves the index also unchanged, including when there
is complete association across the whole contingency table.

2. A migration of a member of type � from j to i that breaks complete association between
types and the departure and arrival states. Unlike the �rst sub-situation, now p�j >
�; bp�j = 0; p�i = 0; bp�i = �: This migration breaks the complete association and reduces
the value of the index. The same result ensues if complete association is prevalent across
the whole contingency table.

The joint proof for these latter two sub-situations is the following: In a situation of complete
association, when T > A; state j is exclusively associated with a subset of types: Gj � G. Therefore
ptj = 18t 2 Gj^ptj = 08t =2 Gj . Similarly, before the migration, state i is exclusively associated with

51The opposite, that the type is exclusively associated with the �nal state of migration and not with the original
one, is impossible by de�nition of the example in which the idea is to break initial complete association.

52That is: w�p�j = p
�
j ^ wkpki = p�i ^ pti = 08t 6= k (including p�i = 0) :

53Notice that this analysis assumes that p�j > w
��. Otherwise the migration under initial perfect association renders

state j without observations/individuals and �mH becomes indeterminate. This indeterminacy is reasonable since
the contingency table changes shape (it contracts) when this migration happens and initially p�j =

1
N
.
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a subset Gi � G such that pti = 18t 2 Gi ^ pti = 08t =2 Gi. Notice further that perfect association
means that Gj \ Gi = f?g and Gj [ Gi � G (i.e. unless T = 2 there are other states, � 6= j; i,
which may or may not be perfectly associated with the rest of types in G).

Now de�ne wj =
PT
t=1w

tI (t 2 Gj) . That is, wj is the sum of the weights of all the types
which are perfectly associated with j (I is an indicator function that takes the value of 1 whenever
the expression in parenthesis is true, and the value of zero otherwise). Similarly de�ne wt =PT
t=1w

tI (t 2 Gi). Hence before migration p�j = wj^ p�i = wi. In this context, suppose that a
migration of individuals belonging to type � (� 2 Gj) takes place from j to i. Such migration
renders bp�j = 1 � � ^ bp�i = � ^ bp�j = wj � �w� ^ bp�i = wi + �w� , that is, after the migration.54

Following equation (9) the change in the index is:

�mH =
�
wj � w�

� "�1� �wj � �w���2
wj � �w� +

(0� (wi+ �w� ))2

wi + �w�
�
�
1� wj

�2
wj

�
�
0� wi

�2
wi

#
(16)

+wi

"�
0�

�
wj � �w�

��2
wj � �w� +

(1� (wi+ �w� ))2

wi + �w�
�
�
0� wj

�2
wj

�
�
1� wi

�2
wi

#

+w�

"�
1� � �

�
wj � �w�

��2
wj � �w� +

(� � (wi+ �w� ))2

wi + �w�
�
�
1� wj

�2
wj

�
�
0� wi

�2
wi

#
:

After some manipulation equation (16) is reduced to the following expression:

�mH = �2 + w
j � �w� (2� �)
wj � �w� +

wj + �2w�

wj + �w�
� 0: (17)

Hence any such migration can not increase the value of the index. If � = 1 then �mH = 0,
i.e. perfect association involving states j and i with Gj [Gi is kept intact but type � has changed
groups from Gj to Gi. Otherwise if the migration breaks perfect association, i.e. if 0 < � < 1 then
�mH < 0.55 Equation (17) is su¢ cient to prove that the index attain its maximum value if and
only if there is complete association in the whole table and T > A.

9 Appendix

A more formal illustration of potential discrepancies in rankings of societies between
the multinomial dissimilarity index, H2

T;2, and D

Imagine a migration of a percentage � of individuals from type � from state 2 to state 1, and
those two states are the only ones under consideration, i.e. p1 + p2 = 1.. Hence bp�1 = p�1 + � andbp�1 = p�1 + w��. The dissimilarity index of the HOI, D, changes the following way:

�mD = w�
�
jp�1 + � � p�1 � w��j

p�1 + w
��

� jp
�
1 � p�1j
p�1

�
(18)

+
TX
t6=�

wt

"��pt1 � p�1 � w����
p�1 + w

��
�
��pt1 � p�1��
p�1

#
;

54Of course, 0 � � � 1.
55The case � = 0 als renders �mH = 0 but it trivially means that no migration took place.
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where �mD � 2
�
D
�bpt1��D �pt1��, i.e. �mD measures the change in D due to the migration.

Considering that p1+p2 = 1, the change in H2
T;2 due to the migration is (after some manipulation):

�mH = w�

"
(p�1 + � � p�1 � w��)

2

(p�1 + w
��) (1� p�1 � w��)

� (p�1 � p�1)
2

(p�1) (1� p�1)

#
(19)

+

TX
t6=�

wt

" �
pt1 � p�1 � w��

�2
(p�1 + w

��) (1� p�1 � w��)
�

�
pt1 � p�1

�2
(p�1) (1� p�1)

#
:

Now de�ne:

DFt �
��bpt1 � bp�1��bp�1 and DIt �

��pt1 � p�1��
p�1

:

Then expressions (18) and (19) can be rewritten in terms of DFt and D
I
t as:

�mD =
TX
t=1

wt
�
DFt �DIt

�
; (20)

�mH =

TX
t=1

wt
��
DFt

�2 bp�1
1� bp�1 � �DIt �2 p�1

1� p�1

�
: (21)

Notice the di¤erences between (20) and (21): in (21) DFt and D
I
t are squared, and they are

each multiplied by di¤erent weights, respectively bp�1
1�bp�1 and p�1

1�p�1
. Therefore there is no guarantee

that, for instance, both �mD and �mH have the same sign in every occasion. Both the squaring
and the di¤erent weighting can make them disagree in the nature of the change due to the same
migration.

The impact of a "balanced increase in opportunity", in the form of a common
migration, on H2

T;2, and D

If the migration of a percentage � of individuals from state 2 to state 1 is now common to all
types, then D changes the following way:

�mD =
TX
t=1

wt

"��pt1 � p�1��
p�1 + �

�
��pt1 � p�1��
p�1

#
< 0 (22)

Condition (22) shows the "pro-growth bias" of D (Barros et al., 2008, p. 29). The same
migration a¤ects H2

T;2 the following way:

�mH =

TX
t=1

wt
�
pt1 � p�1

�2 � � (2p�1 � 1 + �)
(p�1 + �) (1� p�1 � �) (p�1) (1� p�1)

�
: (23)

Hence p�1 >
1��
2 ! �mH > 0; p�1 <

1��
2 ! �mH < 0; p�1 =

1��
2 ! �mH = 0:That is,

the relationship between the percentage of people with access to the valuable outcome before the
migration, i.e. p�1, and the magnitude of the migratio, �, determines the magnitude and nature of
the sensitivity of H2

T;2.
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