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Focus of This Lecture

• How accurate are the estimates?

• If they are used for policy, what is the chance that they 

are mistaken?

– How sensitive policy prescriptions are to choices of 

parameters used for designing the measure (Robustness 

Analyses)

– How accurate policy prescriptions are subject to the sample

from which the they are computed (Statistical Inferences)



Policy Prescriptions Often of Interest

• A central government wants to allocate budget to the 

poor according to the MPI in each region of the 

country 

– Need to test if the regional comparisons are robust and 

statistically significant

• A minister wants to show the steepest decrease in 

poverty in their region/dimension

– Need to test if the inter-temporal comparisons are 

robust and statistically significant



Importance of Robustness Analyses

Comparisons may alter when parameters vary

– An example with the Global MPI

For k = 1/3

– MPI for Zambia is 0.328 > MPI of Nigeria is 0.310

For k = 1/2

– MPI of Nigeria is 0.232 > MPI for Zambia is 0.214

k : The poverty cutoff. A person with a 

deprivation score equal to or greater than 

what is identified as poor



How are Statistical Tests Important?

Differences in estimates may be of the same magnitude, 

but statistical inferences may not be the same

– An example comparing Indian states

Source: Alkire and Seth (2013)

State

Adjusted 

Headcount 

Ratio (M0)

Difference
Statistically 

Significant?

Goa 0.057
0.31 Yes

Punjab 0.088

Maharashtra 0.194
0.32 No

Tripura 0.226



Robustness Analyses



Parameters of M0

The M0 measure and its partial indices are based on the 

following parameter values:

– Poverty cutoff (k)

– Weighting vector (w)

– Deprivation cutoffs (z)

An extreme form of robustness is dominance



Robustness Anlysis

1. Dominance Analysis for Changes in the Poverty 

Cutoff

– With respect to poverty cutoff (analogous to 

unidimensional dominance)

– Multidimensional dominance

2. Rank Robustness Analysis

– With respect to weights

– With respect to deprivation cutoffs



Dominance for H and M0

Question: When can we say that a distribution has higher 

H or M0 for any poverty cutoff (k), for a given weight 

vector and a given deprivation cutoff vector?

Hint: The concept can be borrowed from unidimensional

stochastic dominance

Alkire and Foster (2011)



Dominance for H and M0 in AF

Consider the following deprivation matrix

Income
Years of 

Education
Sanitation
(Improved?)

Access to 

Electricity

g0 = 

0 0 0 0

1 0 0 1

1 1 1 1

0 1 0 0

z = 500 12 1 1



Dominance for H and M0 in AF

• For equal weight, the deprivation count vector is c

Income
Years of 

Education
Sanitation
(Improved?)

Access to 

Electricity c

g0 = 

0 0 0 0 0

1 0 0 1 0.5

1 1 1 1 1

0 1 0 0 0.25

z = 500 12 1 1



Complementary CDF (CCDF)

CDF of a distribution x is denoted by Fx

Complementary CDF (CCDF) of a distribution x is

CCDF is also known as survival function or reliability 

function in other branch of literature

denotes the proportion of population with values 

equal or larger than b

xF

( )xF b



Example

Let the two deprivation score (count) vectors be 

c = (0, 0.25, 0.5,1) and c' = (0.5, 0.5, 1,1)

1

0 0.25 0.5

3/4

2/4

1/4

0.75 1

Is there any 

poverty cutoff (k) 

for which there is 

more H in c than 

in c' ?

H dominance 

implies M0

dominance

F

cF 'cF

Deprivation score



How is M0 Computed for c?

c = (0, 0.25, 0.5,1)

1

0 0.25 0.5

3/4

2/4

1/4

0.75 1

For union approach

M0 = I+II+III+IV

= (0+0.25+0.5+1)/4

For k  (0.25,0.5]

M0 = II+III+IV

= (0+0+0.5+1)/4

For k = 1

M0 = III + IV

= (0+0+0+1)/4

F

cF 'cFI

II

III IV

Deprivation score



How is M0 Computed for c?

Now suppose c is a more continuous distribution of 

deprivation scores

1

1

For poverty cutoff k,

M0 = I + II

F

I II

k

( )F k

Deprivation score



M0 Curves

M0 curves for c = (0, 0.25, 0.5,1) and c' = (0.5, 0.5, 1,1) 

Deprivation score

0.75



Similar Concepts: M0 Curves

Dominance holds in terms of M0 for all k
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Sample vs

population: 

revisit later



M0 Curves May, However, Cross 

Note below that not all countries stochastically dominate 

each other (Batana 2013)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.1 0.5 0.9 1.3 1.6 2.0 2.4 2.8 3.1 3.5 3.9

M
0

 P
o

v
e
r
ty

 R
a

te

Poverty Cut-offs

Benin Burkina Ghana Kenya Niger Nigeria



Rank Robustness Analyses

Dominance across all comparison values is an extreme 

form of robustness

Stochastic Dominance (SD) conditions are useful for pair 

by pair analysis and provides the strongest possible 

comparisons

SD conditions, however, may be too stringent and may 

not hold for the majority of countries



Rank Robustness Analyses

Until now, we have compared the robustness of 

comparisons across countries or regions to varying 

poverty cutoffs.

How can we evaluate the ranking of a set of countries or 

regions, when

– the poverty cut-off varies

– the weights vary

– the deprivation cutoffs vary



Rank Robustness of Comparisons

A useful method for comparing robustness of ranking is 

to compute rank correlation coefficients
• Spearman’s rank correlation coefficient

• Kendall’s rank correlation coefficient

• Percentage of pair-wise comparisons that are robust

First, different rankings of countries or regions are 

generated for different specifications of parameters

– Different weighting vectors, different poverty/deprivation cutoffs

Next, the pair-wise ranks and rank correlation 

coefficients are computed 



Kendall’s Tau

• For each pair, we find whether the comparison is 

concordant or discordant

– 10 countries means 45 pair-wise comparisons

• The comparison between a pair of countries is concordant

if one dominates the other for both specifications (C)

• The comparison between a pair of countries is discordant

if one dominates the other for one specification, but is 

dominated for the other specification (D)



Kendall’s Tau

• The Kendall’s Tau rank correlation coefficient (t) is 

equal to 

• It lies between -1 and +1

• If there are ties, this measure should be adjusted for 

ties

– The tie adjusted Tau is known as tau-b

C D

C D









Spearman’s Rho

• The Spearman’s Rho also measures rank correlation 

but is slightly different from Tau

– First, countries are ranked for two specifications

– Then, for each country the difference in the two ranks are 

computed (ri for country i)

• The Spearman’s Rho (r) is

2

1

2

6
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n
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Some Illustrations using the MPI

Robustness to weights

Re-weight each dimension:

– 33% 50% 25% 25%

– 33% 25% 50% 25%

– 33% 25% 25% 50%



Robustness to Weights
MPI Weights 1 MPI Weights 2 MPI Weights 3

Equal weights: 

33% each 

(Selected 

Measure)

50% Education 

25% Health 

25% LS

50% Health

25% Education 

25% LS

Pearson 0.992

Spearman 0.979

Kendall (Taub) 0.893

Pearson 0.995 0.984

Spearman 0.987 0.954

Kendall (Taub) 0.918 0.829

Pearson 0.987 0.965 0.975

Spearman 0.985 0.973 0.968

Kendall (Taub) 0.904 0.863 0.854

Number of countries: 109

MPI 

Weights 2

50% Education 

25% Health 

25% LS

MPI 

Weights 3

50% Health 

25% Education 

25% LS

MPI 

Weights 4

50% LS 

25% Education 

25% Health

Alkire and Santos (2010, 2014)



Statistical Inferences



Common Concerns

1. Does the overall poverty measure of a country amount 

to P?

2. Is the overall poverty larger or smaller in one region 

than another region?

3. Has the overall poverty increased or decreased over 

time?

One often needs to infer these conclusions (related to 

population) from a sample (as collecting data from the 

population is too expensive)



Some Terminologies

Inferential statistics like standard error (SE) and 

confidence intervals (CI) deal with inferences about 

populations based on the behavior of samples.

Both SEs and CIs will help us determine how likely it is 

that results based on a sample (or samples) are the 

same results that would have been obtained for the 

entire population



How to Obtain the Standard Error

To compute the standard error, we can use:

1. Analytical approach: “Formulas” which either provide 

the exact or the asymptotic approximation of the 

standard error (Yalonetzky, 2010). 

2. Resampling approach: Standard errors and confidence 

intervals may be computed through bootstrap (Alkire & 

Santos, 2014).



Analytical Approach

The analytical approach is based on two assumptions

1. Samples are drawn from a population that is infinitely 

large

– Superpopulation approach

2. We treat each sample as drawn from the population with 

replacement



Resampling Approach

Bootstrap method (Efron and Tibshirani (1993), chapters 

12 and 16)

1. Random artificial sample are drawn from the dataset

2. An estimate is produced from the artificial sample and 

stored

3. Assuming the artificial samples are iid, the standard error 

is computed using the artificial sample estimates



Analytical vs. Resampling Approach

In Bootstrap method

1. The inference on summary statistics does not rely on the 

CLT as the analytical approach

2. Natural bounds of measures are automatically taken into 

account

3. Computation of SEs may become complex when the 

estimator has complicated form (Biewen 2002)

4. Achieves same accuracy as the delta-method (Biewen

2002; Davidson and Flachaire 2007)



Statistical Inference: Cross-Section

One sample test: Can we reject the claim ‘Goa’s M0 is 0.05’?

Two sample test: Can we reject the claim ‘Punjab’s M0 is the 

same as Goa’s M0’?

State M0

95% Confidence Interval

Lower Bound Upper Bound

Goa 0.057 0.045 0.069

State M0 Difference
Statistically 

Significant?

Goa 0.057
0.31 Yes

Punjab 0.088



Statistical Inference: Cross-Section

One sample test: Can we reject the claim ‘Goa’s M0 is 0.05’?

Two sample test: Can we reject the claim ‘Punjab’s M0 is the 

same as Goa’s M0’?

State M0

95% Confidence Interval

Lower Bound Upper Bound

Goa 0.057 0.045 0.069

State M0 Difference
Statistically 

Significant?

Goa 0.057
0.31 Yes

Punjab 0.088



Statistical Inference: Inter-temporal

Source: Alkire, Roche, Vaz (2015), ***statistically significant at α=1%, 

**statistically significant at α=5%, *statistically significant at α=10%



Dominance with Statistical Inference
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Robustness with Statistical Inference

Proportion of robust pairwise comparisons (Alkire and 

Santos (2014))

– Compute the MPIs

– Consider a comparison between a pair of countries robust if 

the difference is statistically significant

– Else the comparison is not robust

– Look at the proportion of robust comparisons






