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Abstract 
In this paper we propose indicators of impact and spending effectiveness of fiscal interventions for 
multidimensional poverty reduction. We bring together CEQ’s fiscal incidence methodology with OPHI’s 

multidimensional poverty methodology, using an MPI with the 𝑀0 structure as the metric for evaluation. 
The effectiveness indicators in the multidimensional case need to simultaneously consider the best 
allocation of money across dimensions (which deprivations to lift?) and across households (to whom 
should they be lifted?). In the impact effectiveness indicator, the observed poverty reduction is compared 
against the optimal reduction that could have been achieved. In turn, the spending effectiveness indicator 
compares the observed spent budget with the minimum budget that could have been spent to achieve the 
same poverty reduction had the money been allocated optimally. We consider two alternative criteria to 
find the optimal allocation: one that prioritizes reducing poverty (either incidence or intensity) to the 
biggest number of people – the MaxN-LNOB criterion – and another which prioritizes reducing poverty 
among poorest poor – the LNOB-MaxN criterion – which is a form of prioritarianism. When household 
sizes are ignored or poverty identification is done at the individual level, the two criteria coincide. The 
proposed methodology can be implemented using cross-sectional household survey (or census) data, 
alongside information on the cost of removing each deprivation at the household level, and information 
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on the public spending the government has allocated or plans to allocate to the dimensions under analysis. 
The methodology can be implemented ex-post, as an effectiveness assessment, as well as ex-ante, to guide a 
multidimensional poverty reduction programme. 

Keywords: fiscal incidence analysis, multidimensional poverty, impact effectiveness, spending 
effectiveness, optimal poverty reduction, Leave No One Behind. 
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1. Introduction 

For over a decade now there has been a burst of measures of multidimensional poverty to reflect more 

accurately the complexity of the phenomenon, which includes but exceeds income poverty. The most 

popular approach to measuring multidimensional poverty so far is the so-called counting approach (Atkinson, 

2003). The Oxford Poverty and Human Development Initiative (OPHI)’s methodology, developed by 

Alkire and Foster (2007, 2011), outstands as the counting approach with most widespread application. The 

Global Multidimensional Poverty Index (global MPI) designed by OPHI in collaboration with the United 

Nations Development Programme (UNDP) in 2010 for the 20th Anniversary of the Human Development 

Report (HDR) (Alkire and Santos, 2010, 2014; UNDP, 2010) has gained wide recognition as a relevant 

development metric, and it is regularly updated for over 100 developing countries. Also, the Report of the 

Commission on Global Poverty (World Bank, 2017) recommended a Multidimensional Poverty Index 

(MPI) as a complementary indicator to income poverty, and the Sustainable Development Goal (SDG) 

1.2.2 focuses specifically on the reduction of multidimensional poverty, according to national definitions. 

At the time of writing this paper there were 24 countries with an official national MPI, eleven of them in 

Latin America. 

In most of its applications, multidimensional poverty measurement can be associated to the direct method 

to measure poverty (Sen, 1981), in that it evaluates whether people satisfy a set of specified basic needs, 

rights, or—in line with Sen’s capability approach—functionings. This contrasts with the income method, 

which determines whether people’s incomes fall below the poverty line—the income level at which some 

specified basic needs can be satisfied (Alkire and Santos, 2014).1 

Contemporaneously with the development of OPHI’s multidimensional poverty measurement 

methodology, the Commitment to Equity Institute (CEQ) developed a fiscal incidence analysis 

methodology in an internationally comparable way, in such a way that it can and has been implemented in 

over 60 countries so far. The methodology belongs to the so-called accounting approach. “The accounting 

approach consists of starting from an income concept and, depending on the fiscal intervention under 

study, allocating the proper amount of a tax or a transfer to each household or individual” (Lustig, 2018, 

p. 15). Most commonly the methodology entails adding (benefits) and subtracting (taxes) amounts from 

the pre-fiscal income to obtain the post fiscal one.2 The difference in a poverty index computed over the 

 

1 However, whenever MPIs include an income indicator, they become a hybrid form of poverty measurement. 

2 When the data available is consumption (assimilated to disposable income), then the methodology works backwards 
(subtracting out benefits and adding taxes), to obtain the pre-fiscal income (market income). 
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pre-fiscal income and the one computed over the post-fiscal one indicates whether the fiscal intervention 

is poverty-reducing (whenever such difference is positive) or poverty-increasing (whenever such difference 

is negative). This approach does not consider behavioral or general equilibrium modelling (Lustig, 2018, 

p. 18). “…we do not claim that the pre-fiscal income obtained from this exercise equals the true 

counterfactual income in the absence of taxes and transfers. It is a first-order approximation (and in a 

variety of settings a first-order approximation is all one may need)” (Lustig, 2018, p. 18). 

In an international development agenda in which reducing multidimensional poverty is an explicit priority, 

one natural question that emerges is -just like with income poverty- what is the impact of the fiscal 

interventions over multidimensional poverty? After more than a decade of methodological developments 

from both CEQ and OPHI -both institutions with high policy impact, in this paper we bring together 

OPHI’s counting methodology of multidimensional poverty measurement with CEQ’s accounting 

methodology of fiscal incidence analysis. 

As a relevant previous related work, there is the study by Cuesta et al (2021), in which the authors perform 

a fiscal incidence analysis using CEQ’s methodology for the case of Uganda using a multidimensional child 

poverty measure. Specifically, they identify “child-relevant” budget, that is the public spending and tax 

revenues that explicitly and directly target child (aged 0-17) well-being. Then, they evaluate the incidence 

of such fiscal intervention stratifying the children, rather than by income quantiles, by their 

multidimensional poverty intensity, i.e. the number of deprivations they experience. The approach 

followed in this paper is completely different. We intend to develop a methodology in which both sides of 

the analysis -not only the metric for evaluating fiscal incidence but also the fiscal intervention - are 

multidimensional. A related complementary work is that by Barbieri and Higgins (2015), who study with 

a political economy model how a multidimensional poverty measure can influence the allocation of 

resources across ministries. 

However, the extension of the accounting methodology to the multidimensional poverty case is not 

straightforward. The information one can observe from household surveys data is the post-fiscal matrix of 

achievements, in which each row is a household or individual, and each column is an indicator. To measure 

the fiscal incidence over multidimensional poverty one needs to somehow construct an analogous to the 

pre-fiscal matrix of achievements, essentially a counterfactual. Such an exercise is far from obvious for two 

reasons. First, for most relevant dimensions, achievements consist of an access vs. no-access status, such 

as access to piped water, for example. That is, policy interventions in many dimensions in the 

multidimensional space entail a zero-to-one change, rather than marginal increments or decrements, as it 

happens with income. In other words, pre-fiscal achievements cannot be simulated by subtracting certain 

magnitudes to a continuous cardinal variable. We thus propose to use cross sectional data at two points in 



Santos, Lustig and Zanetti  Counting and Accounting 

OPHI Working Paper 144 www.ophi.org.uk 3 

time, considering the achievements at the initial point in time as the pre-fiscal matrix, and the achievements 

at the final point in time as the post-fiscal one. 

The second issue is that achievements in the multidimensional context may have been granted or facilitated 

by a fiscal intervention, but not necessarily. Thus, the selection of the indicators to include in the 

multidimensional poverty index (MPI) that will serve as a metric, needs to be carefully done and informed 

such that the reduction in deprivation rates in those indicators can be reasonably attributed to the fiscal 

action. Natural candidates for such analysis are access to public services such as water, sanitation sewage, 

natural gas and electricity. But other indicators may apply whenever there is information that a certain 

specific policy has taken place, say a social housing programme. 

The methodology proposed in this paper includes three indicators. First, following Alkire et al (2015), we 

note that the change in one of the MPI’s related indexes, namely the change over time in the so-called 

censored headcount ratios, can be interpreted as the marginal dimensional contribution to changes in the 

multidimensional poverty measure. Whenever this change can be reasonably attributed to the fiscal action, 

this indicator can be interpreted as an analogue of CEQ’s Marginal Contribution Indicator in the 

multidimensional case. Second, we propose analogues of Enami (2018)’s impact and spending 

effectiveness indicators for the multidimensional poverty context. The impact effectiveness indicator is a 

tool for assessing how well has a certain budget been allocated to reduce multidimensional poverty, 

whereas the spending effectiveness indicator allows identifying the minimum budget that would have 

achieved the observed poverty reduction between two points in time. Interestingly, however, different 

alternative criteria can be considered to define what the optimal distribution should be, distribution against 

which the actual distribution is compared to measure effectiveness. We consider two alternative criteria 

which emerge from the fact that deprivations are removed at the household level but households have 

different sizes. One criterion prioritizes maximising the MPI reduction, the other prioritizes reducing the 

deprivations among the most intensely poor. When poverty is identified at the individual level or if 

household sizes are ignored, the two criteria coincide. It is noteworthy that the optimal distribution defined 

for evaluating ex-post the observed allocation of public budget can also be used prospectively as a policy 

tool for allocating budget in future across dimensions and across households. 

The paper is structured as follows. In Section 2 we introduce the general notational framework and the 

methodology for poverty measurement. Section 3 briefly presents CEQ’s indicators of marginal 

contribution, impact effectiveness and spending effectiveness. Section 4, especially Section 4.3, contains 

the main value added of this paper, presenting the proposed indicators for fiscal incidence analysis in the 

multidimensional poverty context. Section 5 presents numerical examples to illustrate the methodology 

with equal weights. Section 6 comments on the issue of reranking, quite frequently unavoidable in the 
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multidimensional case. Section 7 details how the methodology can be implemented with real data. Finally, 

Section 8 concludes. The Appendix offers a numerical example with unequal weights. 

2. The Measurement Framework 

We present the notational framework, in line with Alkire and Foster’s (2011) (AF hereafter) notation. 

However, in this presentation we will make explicit the fact that the unit of identification is the household. 

Although the AF measurement methodology can be implemented at the individual level, the usual practice 

so far has been that households are the unit of identification, and all members of households identified as 

poor are considered poor. While the unit of identification is the household, the statistics are presented in 

terms of population.3 We make this practice explicit in the notational framework, as this will facilitate the 

presentation of the indicators proposed in Section 4. 

At each period of time 𝑡, there are 𝑖 = 1, … , 𝑛𝑡 people who live in ℎ = 1, … , 𝑇𝑡 households. The relevant 

information is contained in an 𝑇𝑡𝑥𝑑 matrix 𝒙𝒕 = [𝑥ℎ𝑗𝑡] where each entry 𝑥ℎ𝑗𝑡 ∈ ℝ+ is the achievement 

of household ℎ in indicator 𝑗 = 1, … 𝑑, at time 𝑡 = 0,1. Each row vector 𝑥ℎ𝑡 contains the achievements 

of household ℎ in each of the 𝑑 indicators at time 𝑡. Deprivation cutoffs are summarized in a 1𝑥𝑑 vector 

𝑧 = [𝑧𝑗], and indicators’ weights in an 1𝑥𝑑 vector 𝑤 = [𝑤𝑗], where ∑ 𝑤𝑗 = 1𝑑
𝑗=1 . We assume the 𝑧 and 

𝑤 vectors to be time invariant, that is, the minimum thresholds do not change over time, nor does the 

weight attached to each indicator. This assures consistency over time in the fiscal incidence analysis. 

In multidimensional poverty analysis, variables are typically of ordinal nature, and are then converted into 

a dichotomy of deprived and non-deprived. Household ℎ is identified as deprived in each 𝑗-indicator, in 

each 𝑡 period, whenever 𝑥ℎ𝑡 < 𝑧𝑗. The deprivation of household ℎ in indicator 𝑗 can be defined as 𝑔ℎ𝑗𝑡
0 =

1 whenever 𝑥ℎ𝑗𝑡  <  𝑧𝑗 , and 𝑔ℎ𝑗𝑡
0 = 0 otherwise, and these can be collected in an 𝑇𝑡𝑥𝑑  deprivation matrix 

𝒈𝑡
0 = [𝑔ℎ𝑗𝑡

0 ]. We refer to achievements that fall below their corresponding cutoff value as deprived 

achievements. Next, a deprivation score is computed for each household at each time period, defined as the 

weighted sum of deprivations 𝑐ℎ𝑡 = ∑ 𝑤𝑗𝑔ℎ𝑗𝑡
0𝑑

𝑗=1 , which can be collected in a 𝑇𝑡𝑥1 vector of deprivation 

counts 𝑐𝑡. 

 

3 Note that this is also the usual practice in monetary poverty measurement, either using the income per capita or the income 
per equivalent adult in the household, which are compared against the poverty line. 
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2.1 Multidimensional Poverty Measures for ordinal variables 

2.1.1 Identification 

Poverty measurement first requires identifying the poor (Sen, 1976). In the AF framework identification 

is done comparing the deprivation score with a poverty cut-off 𝑘, which represents the proportion of 

minimum deprivations a household must experience to be identified as poor. Formally, household ℎ is 

poor when 𝑐ℎ ≥ 𝑘, and it is non-poor when 𝑐ℎ < 𝑘. The use of a set of deprivation cutoffs 𝑧 and a poverty 

cutoff 𝑘 is what makes the AF methodology a dual-cutoff approach. The use of the poverty cutoff also 

frames the AF methodology within counting approaches because the poor are identified by counting their 

deprivations, represented in the deprivation score 𝑐ℎ. This identification step considers the joint distribution 

of deprivations, a distinctive feature of multidimensional poverty measurement. 

The poverty cutoff 𝑘 can take values within the range: min(𝑤𝑗) ≤ 𝑘 ≤ 1. When 𝑘 is equal to the 

minimum weight assigned to the set of indicators, it corresponds to the union criterion, which implies that 

anyone in a household with at least one deprivation will be counted as multidimensionally poor. When 𝑘 

is equal to 1, it requires people belonging to households deprived in all the indicators to be counted as 

multidimensionally poor, which corresponds to the intersection criterion. Most commonly, intermediate k 

values are used. 

Once the identification step has been completed, to proceed to the next step of aggregation, and to satisfy 

the poverty focus axiom, the deprivations of the non-poor need to be censored, analogously to the 

censoring of the incomes above the poverty line when measuring income poverty. Censoring implies that 

the deprivations of those not identified as poor are ignored, i.e. replaced by zeroes. The censored 

deprivation matrix is defined as 𝒈𝒕(𝒌)0 = [𝑔ℎ𝑗𝑡
0 (𝑘)] such that each element is 𝑔ℎ𝑗𝑡

0 (𝑘) = 𝑔ℎ𝑗𝑡
0  when 

𝑐ℎ𝑡 ≥ 𝑘 and 𝑔ℎ𝑗𝑡
0 (𝑘) = 0 otherwise. The censored deprivation score is defined as 𝑐ℎ𝑡(𝑘) =

∑ 𝑤𝑗𝑔ℎ𝑗𝑡
0 (𝑘)𝑑

𝑗=1 , and these scores are collected in the 𝑐𝑡(𝑘) vector. 

Next, one can proceed with the second poverty measurement step, which is aggregation (Sen, 1976). Given 

that in multidimensional poverty measurement exercises the presence of dichotomous, ordinal and 

categorical variables prevails, we focus here on the 𝑀0 measure, with its two partial sub-indices: incidence 

and intensity. 

2.1.2 Aggregation with 𝑀0 

The 𝑀0 measure (Alkire and Foster, 2011) has given the mathematical structure to the global MPI as well 

as to most national and regional MPIs. As we have defined deprivations in terms of households, to obtain 
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the aggregate poverty measure in population terms, we need to consider the household size 𝑠ℎ of each 

ℎ = 1, … , 𝑇𝑡 household. 𝑀0 is given by: 

𝑀𝑃𝐼𝑡 = 𝑀0𝑡(𝒙𝒕; 𝑧) =
1

𝑛𝑡
∑ 𝑠ℎ ∑ 𝑤𝑗𝑔ℎ𝑗𝑡

0 (𝑘) =
1

𝑛𝑡
∑ 𝑠ℎ𝑐ℎ𝑡(𝑘)𝑇𝑡

ℎ=1
4     𝑑

𝑗=1
𝑇𝑡
ℎ=1   (1) 

If the 𝑀0 measure is computed with household survey data, which typically includes a survey weight 

variable 𝑝ℎ𝑡0
 that indicates how many households each ℎ household in the sample represents. Then 

expression (1) would be: 

𝑀𝑃𝐼𝑡 = 𝑀0𝑡(𝒙𝒕; 𝑧) =
1

𝑛𝑡
∑ 𝑠ℎ𝑝ℎ𝑡𝑐ℎ(𝑘)𝑇𝑡

ℎ=1      (1’) 

where ∑ 𝑠ℎ𝑝ℎ𝑡 = 𝑛𝑡
𝑇𝑡
ℎ=1 . For simplicity, we continue ignoring the survey weight variable, but all the 

formulas can incorporate this variable. 

It can be verified that 𝑀0 is the product of two very relevant sub-indices which provide distinct and 

complementary information: the headcount ratio of multidimensional poverty 𝐻, and the average intensity 

of poverty among the poor 𝐴. This is why 𝑀0 is called the adjusted headcount ratio: it is incidence adjusted 

by intensity. 

The headcount ratio of multidimensional poverty can be expressed as: 

𝐻𝑡 =
1

𝑛𝑡
∑ 𝑠ℎ𝐼(𝑐ℎ𝑡 ≥ 𝑘)𝑇𝑡

ℎ=1 =
𝑞𝑡

𝑛𝑡
   (2) 

where 𝐼(𝑐ℎ𝑡 ≥ 𝑘) is an indicator function that takes value 1 when the condition inside the parenthesis 

holds, and 0 otherwise, and 𝑞𝑡 is the number of the poor in period 𝑡. 

In turn, poverty intensity is the average deprivation score among the poor, which is defined as: 

𝐴𝑡 =
1

𝑞𝑡
[∑ 𝑠ℎ ∑ 𝑤𝑗𝑔ℎ𝑗𝑡

0 (𝑘)𝑑
𝑗=1

𝑇𝑡
ℎ=1 ] =

1

𝑞𝑡
[∑ 𝑠ℎ𝑐ℎ𝑡(𝑘)𝑇𝑡

ℎ=1 ]5   (3) 

The 𝑀0 measure is a member of a broader class of measures, the 𝑀𝛼 class, but the other members of the 

family are less applicable as they require all indicators to be cardinal and thus are not presented here. 

The 𝑀0 measure satisfies several convenient properties that make it suitable for wide applicability. Four 

of such properties outstand. First, it satisfies ordinality, meaning that it can be computed with a mix of 

 

4 If the deprivations are defined at the individual level, 𝑔𝑖𝑗𝑡
0 (𝑘), then the formulas are simplified to: 𝑀𝑃𝐼𝑡 = 𝑀0𝑡(𝒙𝒕; 𝑧) =

1

𝑛𝑡
∑ ∑ 𝑤𝑗𝑔𝑖𝑗𝑡

0 (𝑘)𝑑
𝑗=1

𝑛𝑡
𝑖=1 =

1

𝑛𝑡
∑ ∑ 𝑐𝑖𝑡(𝑘)𝑑

𝑗=1
𝑛𝑡
𝑖=1  .   

5 Again, if the deprivations are defined at the individual level, the formula of A is simplified to 𝐴𝑡 =
∑ 𝑐𝑖𝑡(𝑘)

𝑛𝑡
𝑖=1

𝑞𝑡
. 
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cardinal and ordinal indicators -a recurrent case in multidimensional poverty measurement- in a robust 

way. As achievements are dichotomized into ‘deprived’ and ‘non-deprived’, the poverty value does not 

change whenever the scaling of an ordinal variable (say, sanitation) changes.  

Second, 𝑀0 satisfies dimensional monotonicity. Suppose two distributions A and B, with the same poverty 

headcount ratio, say 20%, but such that in A the poor are deprived -on average- in 30% of the considered 

indicators, whereas in B the poor are deprived -on average- in 50% of the considered indicators. 

Dimensional monotonicity means that distribution B will have an 𝑀0 value of 0.10, higher than the 𝑀0 

value of A, which will be 0.06, reflecting that B has a higher intensity of multidimensional poverty.  

Third, 𝑀0 satisfies population subgroup decomposability, which means that the overall poverty value can be 

expressed as a weighted sum of the poverty values of mutually exclusive and collectively exhaustive 

population subgroups 𝑝 = 1, … , 𝑃, such that ∑ 𝑛𝑝𝑡 = 𝑛𝑡
𝑛𝑝𝑡

𝑝=1 , where the weights are the subgroups’ 

population shares 
𝑛𝑝𝑡

𝑛𝑡
. Let 𝑀0

𝑝(𝒙𝒕; 𝑧) be the poverty value of each subgroup 𝑝, then 𝑀0 can be expressed 

as: 

𝑀0𝑡(𝒙𝒕; 𝑧) = ∑
𝑛𝑝𝑡

𝑛𝑡
𝑀0𝑡

𝑝 (𝒙𝒕; 𝑧)𝑃
𝑟=1          (4) 

From there, one can compute the contribution of each 𝑝 subgroup to total poverty as:  

𝐶𝑝𝑡 =
𝑛𝑝𝑡

𝑛𝑡

𝑀0𝑡
𝑝

(𝒙𝒕;𝑧)

𝑀0𝑡(𝒙𝒕;𝑧)
       (5) 

and compare this with its population share. This enables decompositions by gender, ethnicity, age groups 

or regions that are quite relevant for fiscal incidence analysis. 

Fourth, 𝑀0  satisfies dimensional breakdown. This means that the overall poverty value can be expressed as 

a weighted sum of post-identification dimensional values, where the weights are the indicators’ weights.6 

The expression is given by: 

𝑀0𝑡(𝒙𝒕; 𝑧) = ∑ 𝑤𝑗 (
∑ 𝑠ℎ𝑔ℎ𝑗𝑡

0 (𝑘)
𝑇𝑡
ℎ=1

𝑛𝑡
)𝑑

𝑗=1      (6) 

The expression in parenthesis either in formula (6) is called the censored headcount ratio 𝐶𝐻𝑗, defined as the 

proportion of the total population in households which have been identified as poor and are deprived in 

indicator 𝑗. In this way, one can compute the contribution of the deprivation in each indicator j to total 

poverty as:  

 

6 The property is called break-down rather than decomposability because it holds post-identification of the poor. 
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𝐶𝑗𝑡 =
𝑤𝑗(∑ 𝑠ℎ𝑔ℎ𝑗𝑡

0 (𝑘)
𝑇𝑡
ℎ=1 𝑛𝑡⁄ )

𝑀0𝑡(𝒙;𝑧)
         (7) 

While the 𝑀0 measure is very convenient for the four mentioned properties, it has one drawback, which 

is that it is not sensitive to inequality among the poor. 

Distributional properties can be weak or strong. Weak versions of distributional properties guarantee the 

measure not to move in the ‘wrong’ direction. Strong versions of distributional properties require the 

poverty measure to strictly change in a particular direction in response to the transformation. Another 

important point to consider in distributional properties is whether they require the set of the poor to 

remain unchanged after the transformation.7 

One kind of distributional properties relevant for ordinal data refer to rearrangements among the poor, 

which are transformations in which achievements are switched between poor people, modifying the 

association of achievements among the poor. For example, an association-decreasing rearrangement 

among the poor occurs when achievements are switched between two poor people in such a way that, 

while before the transfer one person had no lower achievement than the other in all dimensions and strictly 

higher in at least one dimension, after the transfer, this does not longer hold. This rearrangement is 

typically defined in such a way that it requires the number of the poor not to change. 

The 𝑀0 measure satisfies weak rearrangement given that the property requires the set of the poor not to 

change with the transformation, i.e. the measure does not change under an association-decreasing 

rearrangement among the poor. However, 𝑀0 does not satisfy strong rearrangement. Moreover, if the 

transformation was broadened to allow a household (or person) to be lifted from poverty because of an 

association increasing rearrangement among the poor, 𝑀0 would not even satisfy a weak version of the 

property, as the measure could decrease in such case, while others would argue that it should always 

increase as a result of a higher concentration of deprivations among the poor.8 

However, it must be noted that the strong form of the rearrangement property is incompatible with the 

dimensional breakdown property, admittedly quite relevant for policy purposes (AF, 2016, 2019).9 The 𝑀0 

measure has been extended to a distributional-sensitive measure: the 𝑀0
2, but at the cost of renouncing to 

 

7 For more comprehensive discussion on distributional properties see Seth and Santos (2019) and Santos (2023). 

8 See Rippin (2013) and Datt (2019), for example.   

9 Note also that the requirement that poverty should increase under such transformation implicitly assumes achievements to 
be substitutes. However, the converse case in which achievements are complements and thus poverty should decrease under 
such transformation, has also been considered (Bourguignon and Chakravarty, 2003). 
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dimensional break-down.10 Barbieri and Higgins (2015) have emphasized the importance of the 

dimensional break-down property from a political economy point of view. In this paper we develop the 

methodology using the 𝑀0 measure because it is the one with wide applicability at country levels, and 

because sensitivity to the poorest poor can also be incorporated by using higher poverty cutoffs, as it 

exemplified in Section 5. 

3. Three distinguished CEQ’s indicators 

CEQ’s fiscal incidence analysis relies on the computation of different income concepts. The pre-fiscal 

income concept is the market income, namely, wages and salaries, income from capital plus: private 

transfers, imputed rent and own production before: taxes, social security contributions and government 

transfers. Market income also includes contributory social-insurance old-age pensions (or excludes 

contributions to social insurance old-age pensions) whenever contributory pensions are treated as deferred 

income. From that income concept, different post-fiscal income concepts are constructed: disposable 

income, consumable income and final income (Lustig et al., 2018). 

The computation of the different income concepts is performed at one point in time. It is certainly the 

most challenging and core task of the fiscal incidence analysis. CEQ’s methodology most commonly needs 

to implement a variety of tools which combines direct identification (the survey tells) with inference, 

imputation, simulation, prediction or matching techniques to bring information from other data sources 

(Lustig et al., 2018, ch. 6). Once the different income concepts have been defined, the CEQ methodology 

computes different indicators which allow answering key questions on the distributional impact of the 

fiscal system and of specific components. We consider here three of these indicators, of which we propose 

extensions to the multidimensional case in Section 4. 

3.1 CEQ’s Marginal Contribution Indicator 

The marginal contribution of a specific tax or any combination of taxes (𝑇) or a specific transfer or 

combination of transfers (𝐵) to changes in the overall level of poverty or inequality is a fundamental 

indicator in CEQ’s framework. This indicator is given by the inequality or poverty indicator computed 

over the income distribution without the tax/es (𝑇) or transfer/s (𝐵) under analysis minus the inequality 

or poverty indicator computed over the income distribution with the tax or transfer under analysis. 

 

10 The 𝑀0
2 measure was introduced at the end of Alkire and Foster (2011) paper, and further elaborated in Alkire and Foster 

(2016, 2019). 
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𝑀𝐶𝑇𝑜𝑟𝐵
𝐸𝑛𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 = 𝐼𝑛𝑑𝑒𝑥𝐸𝑛𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑇𝑜𝑟 𝐵 − 𝐼𝑛𝑑𝑒𝑥𝐸𝑛𝑑 𝐼𝑛𝑐𝑜𝑚𝑒  (8) 

Whenever 𝑀𝐶𝑇𝑜𝑟𝐵
𝐸𝑛𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 > 0 the fiscal intervention is equalizing or poverty-reducing, and whenever 

𝑀𝐶𝑇𝑜𝑟𝐵
𝐸𝑛𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 < 0, the fiscal intervention is unequalising or poverty-increasing (Lustig et al., 2018, p. 36–

37). Naturally, taxes can only increase poverty. 

3.2 CEQ’s Impact Effectiveness Indicator 

The Impact Effectiveness (IE hereafter) indicator (Enami, 2018) intends to determine how effective taxes 

and government spending are in reducing inequality and poverty, that is whether a transfer generates as 

much poverty or inequality reduction as it could potentially do given a certain budget. This indicator is 

defined as: 

𝐼𝐸 =
𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇 𝑜𝑟 𝐵

𝑶𝒑𝒕𝒊𝒎𝒂𝒍  𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇 𝑜𝑟 𝐵
  (9) 

The key element contained in this indicator is given by the allocation of taxes or benefits that produces 

the optimal distribution, which in turn produces the optimal contribution of that tax or benefit. Because taxes 

can only increase poverty, the poverty-reduction indicator is only defined for benefits and combined tax-

transfer systems that have a positive marginal contribution (Enami, 2018). 

Consider the case of benefits. Given a certain total observed benefit allocated to the poor, the aim is to 

produce an allocation such that it reduces poverty (or inequality) the most, and thus can be considered 

optimal. The optimal distribution is based on Fellman et al. (1999). The procedure is to order individuals 

from poorest to richest and increase the income of the poorest poor individual with a benefit until her 

income becomes equal to the income of the second poorest poor. Next, the incomes of both these two 

poorest poor are raised, through the benefit, to the income of the third poorest poor, and so on. In other 

words, the total budget is allocated among the poor in such a way that a certain number (say 𝐽) of the 

poorest poor receive each a certain amount of benefit such that all their incomes are equalized, preserving the 

original income ranking. Note that the cardinality and continuity of the income variable enables the total 

available budget to be divided into infinitesimal parts if necessary to produce the optimal allocation, which 

reduces inequality among those who receive the benefit to zero and it is rank preserving.11 The 

interpretation of the IE indicator is straightforward: a value of 0.60 of the IE indicator means that the 

transfer has accomplished 60% of its potential in reducing poverty. 

 

11 In the case of a tax, to maximize the inequality-reducing impact of a tax of a given size, the richest person is taxed until her 
pretax income equals the pretax income of the second richest person; then, both would be taxed until their pretax income 
equals the pretax income of the third richest person, and so on until there is no more of the tax to be allocated. 
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3.3 CEQ’s Spending Effectiveness Indicator 

A twin indicator of the Impact Effectiveness indicator is the Spending Effectiveness (SE hereafter) 

indicator. The aim of this indicator is to determine the lowest amount of benefit, i.e. the smallest fiscal 

budget, with which the observed inequality or poverty reduction could have been achieved. The Spending 

Effectiveness indicator is given by: 

𝑆𝐸 =
𝑶𝒑𝒕𝒊𝒎𝒂𝒍 𝑨𝒎𝒐𝒖𝒏𝒕 𝑜𝑓 𝑇 𝑜𝑟 𝐵 𝑡ℎ𝑎𝑡 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑀𝐶

𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝑨𝒎𝒐𝒖𝒏𝒕 𝑜𝑓 𝑇 𝑜𝑟 𝐵
  (10) 

In this case the key element is to look for the optimal allocation of a benefit (or a tax) that will give the 

minimum amount of benefit (or tax) needed to achieve the observed reduction in poverty or inequality. 

The definition of the optimal allocation is exactly the same as the one described for the IE indicator: 

benefits will be allocated in such a way they equalize income among a certain 𝐽 number of the poorest 

poor, in this case, until they produce the same observed poverty or inequality reduction. Note that the 

difference is that while in the IE indicator one looks for the biggest reduction in a poverty or inequality 

measure given a budget, in the SE indicator one looks for the smallest budget that would achieve the given 

reduction in poverty or inequality. Again, because income benefits are a cardinal and continuous variable, 

the exercise allows dividing benefits into infinitesimal parts if necessary to produce the optimal allocation. 

4. Extending CEQ’s measures to the multidimensional context 

4.1 Specificities of the multidimensional context 

Extending CEQ’s framework of fiscal incidence analysis to the multidimensional case requires considering 

the specificities of the multidimensional context, which condition the way in which to think analogue 

indicators. We first point such specificities and then propose analogue indicators within these 

methodological constraints. 

4.1.1 Defining the pre-fiscal distribution 

One first natural question is: what is the analogue to the pre-fiscal income in the multidimensional space? 

Defining a pre-fiscal matrix of achievements does not seem obvious. Fiscal interventions in the 

multidimensional space take the form of in-kind interventions, such as connecting households to the 

electricity grid, extending the network of piped water, sanitation sewage, electricity or natural gas, or 

building more public schools. These policies aim at switching a deprived achievement into a non-deprived 

one, and thus they are not reflected into additions to a quantitative variable such as income. 
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One practical way in which the pre-fiscal matrix of achievements can be inferred is by taking advantage of 

repeated cross-sectional household survey data. Given the matrix of achievements at two points in time 

𝒙𝒕𝟎
= [𝑥ℎ𝑗𝑡0

] and  𝒙𝒕𝟏
= [𝑥ℎ𝑗𝑡1

], we may understand the 𝒙𝒕𝟎
 matrix of achievements as the pre-fiscal 

matrix of achievements of the 𝒙𝒕𝟏
matrix, the post-fiscal matrix of achievements. Alternatively, the same 

can be done using panel data, but this is not a requirement for implementing the proposed methodology. 

Naturally, the plausibility of assuming the initial achievement matrix as the pre-fiscal matrix relies on the 

specific 𝑗 = 1, … 𝑑 indicators that compose the matrix. They need to be indicators that must have been 

influenced by fiscal action, such as the development of infrastructure. In other words, they need to be 

indicators such that their change between 𝑡0 and 𝑡1 can only be reasonably attributed to the intervention 

of the State. Access to basic services, such as water, sanitation sewage, natural gas and electricity are natural 

options to consider. 

4.1.2 Joint deprivations 

The fact that multidimensional poverty looks at the joint distribution of deprivations brings complexities 

into the fiscal incidence analysis. Different combinations of deprivations may produce the same 

deprivation score and reducing it may be achieved by lifting different combinations of deprivations which 

in turn imply different fiscal costs. This has direct implications for constructing the impact and spending 

effectiveness indicators. 

Also, when an intermediate k-poverty cutoff is used, rather than a union one, the censored distribution of 

deprivations is used. The censoring of deprivations of households which are not poor is reasonable for 

focusing fiscal efforts on the poor, but it brings some technical difficulties that need to be considered in 

the search of the optimal distributions, as it will be explained below. 

4.1.3 Indivisibilities and Discontinuities 

The multidimensional context also has one characteristic that imposes restrictions: there are many 

indivisibilities which create discontinuities. 

The first indivisibility is given by the deprivation score 𝑐ℎ. Whenever 𝑤𝑗 = 1/𝑑 ∀𝑗, the deprivation score 

changes in steps of 1/𝑑 and - unlike $1- there is no way to ‘divide’ those values, which represent having 

vs. not having a deprivation. Other weighting schemes have other steps, but still indivisible. Equalizing a 

certain group of deprivation scores among the poorest, analogously to CEQ’s IE and SE indicators, is less 

applicable than one could think a priori. Lifting a certain deprivation may reduce a household’s deprivation 

score in more or in less than one would need to equalize it to the score of other households, depending 

on the weights and the combination of deprivation this and other households have. 
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The second indivisibility is given by the cost of removing each deprivation, typically expressed in a per 

household cost. In the income space, the fiscal effort is given by a certain budget that can be divided until 

the very last cent to be distributed across individuals so that incomes are equalized, generating the optimal 

distribution against which the actual distribution can be compared. In the multidimensional case, in 

contrast, the fiscal effort is also given by a certain spent budget, but this can only be discretely divided into 

-for example- a certain number of ‘connections’ to public services such budget can achieve. Bringing water 

or sewage sanitation to a household has a certain cost, and such benefit cannot be delivered in parts. It is 

either given, and such deprivation is lifted, or not given. 

The third indivisibility comes from the fact that people cohabitate in households, which have different 

sizes which, again, are indivisible. Many of the deprivations considered in the multidimensional context, 

especially those related to services, are equally experienced by all household members. When one of these 

deprivations is removed, for example, bringing running water to the household, it is removed to all 

household members together. One cannot remove this kind of deprivations only to certain household 

members. It is precisely because of this indivisibility that we have explicitly incorporated in the notation 

the fact that households are the unit of identification. 

As we will see, these three indivisibilities impose restrictions to the search of an optimal allocation of a 

certain fiscal budget. 

4.2 A Marginal Contribution Indicator in the multidimensional case 

Suppose the matrix of achievements at two points in time: 𝒙𝒕𝟎
 and 𝒙𝒕𝟏

 and the corresponding values of 

the multidimensional poverty index 𝑀0𝑡0
(𝒙; 𝑧) and 𝑀0𝑡1

(𝒙; 𝑧). Interpreting matrix 𝒙𝒕𝟎
 as the pre-fiscal 

distribution of 𝒙𝒕𝟏
, a natural and simple way to think of an analogue of CEQ’s 𝑀𝐶 indicator of a certain 

benefit (or tax) is to think of a Dimensional Marginal Contribution indicator. This indicator would indicate 

to what extent the fiscal action in reducing deprivation in one dimension has contributed to the reduction 

in total multidimensional poverty. 

Following Alkire et al. (2015, chapter 9), given that the 𝑀0 measure satisfies dimensional breakdown, 

marginal contributions can be directly equated to changes in the censored headcount ratios defined in 

equation (6) as a proportion of the total change in 𝑀0. Changes in the censored headcount ratios are given 

by: 

∆𝐶𝐻𝑗 =
∑ 𝑠ℎ𝑔ℎ𝑗𝑡1

0 (𝑘)
𝑇𝑡1
ℎ=1

𝑛1
−

∑ 𝑠ℎ𝑔ℎ𝑗𝑡0
0 (𝑘)

𝑇𝑡0
ℎ=1

𝑛0
   (11) 

It can also be verified that: 
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∆𝑀0,𝑡0−𝑡1
= 𝑀0(𝑥𝑡0

) − 𝑀0(𝑥𝑡1
) = ∑ 𝑤𝑗∆𝐶𝐻𝑗

𝑑
𝑗=1   (12) 

That is, the weighted sum of the changes in the censored headcount ratios (the ∆𝐶𝐻𝑗) equals the total 

change in the 𝑀0. Then, the expression of the marginal contribution of dimension 𝑗 to total poverty 

reduction is given by: 

𝑀𝐶𝑗
𝑀𝑃𝐼 =

𝑤𝑗∆𝐶𝐻𝑗

(𝑀0(𝒙𝒕𝟎
;𝑧)−𝑀0(𝒙𝒕𝟏

;𝑧))
  for any 𝑘 (13) 

such that ∑ 𝑀𝐶𝑗
𝑀𝑃𝐼𝑑

𝑗=1 = 1. In words, expression (13) registers the change in the proportion of the total 

population who has been identified as poor and is deprived in indicator 𝑗 between 𝑡0 and 𝑡1, weighted by 

the indicator’s weight, as a proportion of total poverty change, and thus it can be interpreted as a marginal 

contribution to multidimensional poverty. 

However, whenever the identification criterion departs from the union approach and an intermediate 

poverty cutoff is used, the interpretation of expression (13) as a dimensional marginal contribution should 

be done with caution. The reason is that the reduction of a certain deprivation 𝑗 between 𝑡0 and 𝑡1, may 

have lifted some households from multidimensional poverty, even when some deprivations remain. In 

such case, the deprivations of the no-longer poor households in 𝑡1 will be censored, and thus, these 

deprivations will not be counted in the censored headcount ratios in 𝑡1. In consequence, the contribution 

of the reduction in the deprivation/s that lifted these households from poverty can be under-estimated, 

underplaying the fiscal effort done in some dimension, and the contribution of other dimensions can be 

overestimated. Yet, one can resort to evaluate the change in the uncensored headcount ratios, as a 

complementary information, as recommended by Alkire et al. (2015, chapter 9). This point is further 

clarified with an example in Section 5.3. 

4.3 An Impact and a Spending Effectiveness Indicator in the multidimensional case12 

We now introduce an analogue of CEQ’s IE indicator for the multidimensional case. Assume that poverty 

is evaluated with an MPI, with the 𝑀0 mathematical structure composed of 𝑑 indicators that can be 

influenced by the intervention of the State. Consider the matrix of achievements at two points in time: 𝒙𝒕𝟎
 

and 𝒙𝒕𝟏
, and their corresponding multidimensional poverty index values 𝑀0(𝒙𝒕𝟎

; 𝑧) and 𝑀0(𝒙𝒕𝟏
; 𝑧). Let’s 

assume there has been a reduction in multidimensional poverty as measured by this MPI. Let’s also assume 

 

12 We must emphasize that the word ‘impact’ in these indicators does not have the meaning of the impact evaluation literature. 

We are within an accounting framework and our counterfactual (the achievement matrix in 𝑡0) depends on strong 
assumptions. 
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that there is information on the fiscal cost the State has incurred to remove one or more of the 𝑑 

deprivations to certain parts of the population, such as a program to bring piped water and sewage 

sanitation to shantytowns in urban areas. Has the fiscal investment done its best at reducing poverty? Or 

could the reductions in deprivations have been allocated differently to produce a more effective poverty 

reduction? 

Let 𝑀𝑃 denote a measure of multidimensional poverty. The change of such multidimensional poverty 

measure at two points in time can be noted as ∆𝑀𝑃𝑡0−𝑡1
. Thus, the IE indicator in the multidimensional 

case, name it 𝐼𝐸𝑀𝑃, will be defined as:  

𝐼𝐸𝑀𝑃 =
𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 ∆𝑀𝑃𝑡0−𝑡1

𝑶𝒑𝒕𝒊𝒎𝒂𝒍  ∆𝑀𝑃𝑡0−𝑡1

  (14) 

The twin indicator to the impact effectiveness indicator is the spending effectiveness indicator. 

Analogously to CEQ’s SP indicator, the spending effectiveness in the multidimensional case compares the 

𝐵 observed fiscal cost incurred to produce the observed poverty reduction ∆𝑀𝑃𝑡0−𝑡1
with the minimum 

fiscal effort 𝐵∗ that could have been spent to produce the same (or higher) poverty reduction. The 

expression of the Spending Effectiveness indicator in the multidimensional case 𝑆𝐸𝑀𝑃  is thus given by: 

𝑆𝐸𝑀𝑃 =
𝑶𝒑𝒕𝒊𝒎𝒂𝒍 𝐵∗ 𝑡𝑜 𝑎𝑐ℎ𝑖𝑒𝑣𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ∆𝑀𝑃𝑡0−𝑡1

𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 B
  (15) 

It is important to note that there is one fundamental difference between CEQ’s IE and SE indicators and 

the 𝐼𝐸𝑀𝑃and 𝑆𝐸𝑀𝑃proposed here. CEQ’s indicators look at how a given fiscal budget is allocated among 

a set of individuals to increase their incomes and reduce their distance to the poverty line. In contrast, the 

𝐼𝐸𝑀𝑃 and 𝑆𝐸𝑀𝑃 indicators will be looking at how a given fiscal budget is allocated among a set of 

individuals to convert a deprived achievement into a non-deprived one, but each of these has a different 

cost. That is, effectiveness in the multidimensional case needs to simultaneously consider the best 

allocation of money across dimensions (which deprivations to lift?) and across households (to whom 

should these deprivations bee lifted?). Additionally, as explained in Section 4.1.3, individuals are tied 

together in households, and deprivations are lifted in most cases at the household level. 

The first element to define the optimal allocation is to select a poverty measure. In the 𝐼𝐸𝑀𝑃 indicator, 

the optimal allocation of deprivation reductions will be such that the selected poverty measure reduction 

is maximized given the fiscal effort that has been observed between 𝑡0 and 𝑡1. In the  𝑆𝐸𝑀𝑃 indicator the 

optimal allocation of deprivation reductions will be such that the observed reduction in the selected 

poverty measure is achieved with the minimum budget possible. 
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In this paper we propose using an MPI, that is, a measure with the structure of 𝑀0(𝒙; 𝑧), as used in most 

national, regional, and global MPIs so far. As 𝑀0 is the incidence of multidimensional poverty adjusted by 

the intensity, using this measure avoids the perverse incentives of prioritizing the least intensely poor, 

which is in line with Sen’s (1976) warning for the unidimensional case. Reducing poverty intensity also 

reduces 𝑀0. Using 𝑀0 also avoids the somehow opposite perverse incentives of using poverty intensity 𝐴 

as the sole indicator: reduce intensity as long as no one leaves poverty (𝑞 is in the denominator of the 

measure). 

While being sensitive to intensity, it is important to note that because 𝑀0 is not sensitive to inequality 

among the poor, maximizing its reduction does not guarantee that the poorest poor households are lifted 

deprivations. Poverty intensity 𝐴 is an average, and given two households of equal size, 𝐴 and thus 𝑀0 

will be equally reduced either if we lift a certain number of deprivations to a household with a higher 

deprivation score or to a household with a lower deprivation score. Moreover, given two households ℎ =

1,2, such that one is more intensely poor but it is of smaller size than the other (i.e.  𝑐1(𝑘) > 𝑐2(𝑘), but 

𝑠1 < 𝑠2), 𝐴 and thus 𝑀0 will be reduced more if a deprivation is lifted to the bigger household than if the 

same deprivation is lifted to the smaller household, even when it is a poorer one. 

We present two alternative criteria to define the optimal distribution for the 𝐼𝐸𝑀𝑃 and 𝑆𝐸𝑀𝑃 indicators 

subsequently. In both criteria the costing of removing each considered deprivation naturally plays a critical 

role. Thus, in the next section we first address the issue of costing. Next, we present the two criteria for 

the optimal allocation. The first criterion for the 𝐼𝐸𝑀𝑃 indicator consists of maximizing the reduction in 

M0 given a certain budget, that is looking for the most cost-effective removal of deprivation such that 

these reach the greatest possible reduction in M0, in other words, to the greatest possible number of 

people. As a second guiding principle, deprivations are removed in decreasing order of poverty intensity, 

considering the Leave No One Behind (LNOB) pledge of the 2030 Agenda. We name this criterion the 

‘MaxN-LNOB’ criterion. The dual exercise for the 𝑆𝐸𝑀𝑃 indicator is to look for the minimum fiscal effort 

that would achieve the observed reduction in MPI, allocating it with the same guiding principle of reducing 

M0 the most first, and prioritizing the poorest poor next. One non-trivial issue is that of censoring. When 

the union criterion is used, i.e., when all deprivations are counted, finding the optimal allocation can be 

solved as a linear programming problem. However, when an intermediate poverty cutoff is used, such that 

the deprivations of the non-poor need to be censored, the optimization process needs to be implemented 

iteratively. 

Considering that maximizing the reduction in the MPI a priori does not guarantee reducing deprivations 

among the poorest poor, and to fully embody the Leave No One Behind Pledge, the second criterion for 
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the indicators inverts the order of the guiding principles: it first looks for the most cost-effective removal 

of deprivation such that these reach the most intensely poor households. As a second guiding principle, 

deprivations are removed in decreasing order of household size, i.e. maximizing the number of people to 

whom deprivations are removed. We name this criterion the ‘LNOB-MaxN’ criterion. This optimization 

procedure needs to be implemented iteratively, regardless of the deprivation cutoff used. 

It is however worth noting that if the identification of the poor was done at the individual level, and the 

cost of removing the deprivations was also at the individual level, the two criteria produce the same optimal 

distribution. Analogously if, despite identifying the poor and removing deprivations at the household level, 

household sizes are ignored, then the two criteria also produce the same results. 

4.3.1 Costing of removing deprivations 

A fundamental piece of information for the effectiveness indicators is the costing of removing each kind 

of deprivation. In this paper we are thinking in terms of indicators that reflect shared deprivations for the 

households, for example lack of access to basic services networks such as water, sanitation, natural gas 

and electricity. Housing indicators (for example, overcrowding) may also be considered. 

In the first place, let’s assume that there is a per household cost of removing each 𝑗 deprivation which we 

denote 𝑝ℎ𝑐𝑗, i.e. the cost ‘per connection’. 13 The ratio between the cost of removing each deprivation and 

the MPI’s weight of each deprivation 𝑝ℎ𝑐𝑗 𝑤𝑗⁄  suggests an ordering of cost-effectiveness of each 

dimension, as presented in Table 1. In the case in which dimensions are equally weighted, cost-

effectiveness is simply given by the cost. However, the ordering given by the 𝑝ℎ𝑐𝑗 𝑤𝑗⁄  ratio is only 

suggestive because the cost-effectiveness of removing a deprivation will also be influenced by the size of 

the poor households which are deprived in that indicator. It may be optimal to reduce deprivations in an 

indicator with a higher cost-weight ratio but also with a higher deprivation rate, i.e. more widespread 

deprivation. This will be exemplified in Section 5.1.1. 

Table 1. Cost-Weight ratios 

𝑝ℎ𝑐 of each 𝑗 dimension Weighting in the 𝑀0 of each 𝑗 
dimension 

Cost-Effectiveness Ratios Suggestive Priorities 

𝑝ℎ𝑐1 𝑤1 𝑝ℎ𝑐1 𝑤1⁄  From lowest cost-effectiveness 
ratio to highest 𝑝ℎ𝑐2 𝑤2 𝑝ℎ𝑐2 𝑤2⁄  

… …  

𝑝ℎ𝑐𝑑  𝑤𝑑 𝑝ℎ𝑐𝑑 𝑤𝑑⁄  

Presented in this way, the costing of removing each deprivation is assumed to be a) independent and 

constant across households, and b) independent between deprivations. However, for many public services 

 

13 This framework can also be adapted to costs expressed per capita. 
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this -a priori- may not sound accurate. As it is well known, expanding the water, sanitation, gas, or 

electricity network most typically entails very high fixed costs, which in turn imply that the households’ 

connection cost is decreasing in the number of households to be connected. In such case, the 𝑝ℎ𝑐𝑗 for 

one household would not be independent of the cost of other households. Also, certain services such as 

water and sewage sanitation, have technical complementarities. For example, the extension of the 

sanitation network first requires the extension of the water network. Thus, if an area already has the water 

network, the cost of bringing sanitation is lower than the cost of bringing sanitation to an area in which 

there is no piped water. Nevertheless, these considerations can be incorporated in the analysis. 

First, while it is true that expanding the access to a public service may entail a significant infrastructure 

investment, this is not always the case. Many urban areas in developing countries already have a network 

for these services and yet not all neighborhoods are connected to them. For example, Galiani et al (2009), 

evaluate the impact of a program of expansion of the water network in urban shantytowns in Argentina 

which was precisely focused on extending secondary connections, not the primary water network. 14 In 

such cases, the assumption of independent costs is not unrealistic. Second, the cost of removing 

deprivations can be discriminated by geographic area in the optimization process such that all kinds of 

specificities can be included. Remote areas that require a big infrastructure investment will have a higher 

connection cost than urban areas which have the primary network nearby. In such case, the per household 

cost would be 𝑝ℎ𝑎𝑐𝑗, depending on the area 𝑎 where the household is located. Also, in the cases in which 

a significant investment in infrastructure was required to bring connections to certain locations in a 

country, it should be possible to estimate the minimum number of households to connect to the service 

so that a certain per household connection cost would be achieved, and such minimum number of 

connections can be incorporated as a restriction into the optimization process. 

4.3.2 Defining the optimal allocation under the MaxN-LNOB criterion for the Impact Effectiveness Indicator 

4.3.2.1 Impact Effectiveness under the MaxN-LNOB criterion using a union poverty cutoff 

For simplicity in the exposition of the methodology, we will present it as if one had panel data. However, 

the implementation of the methodology does not require panel data. Assume that between 𝑡0 and 𝑡1 there 

has been a certain multidimensional poverty reduction of size ∆𝑀0𝑡0−𝑡1
= 𝐷𝑀. For the moment, assume 

that the total population has not changed 𝑛0 = 𝑛1 = 𝑛, nor the number of households 𝑇1 = 𝑇0 = 𝑇. For 

presenting the optimization problem it is useful to consider the change in the poverty measure. This is 

 

14 In fact, a technical condition for the shantytown to access the program was that the neighborhood had to be less than two 
hundred meters away from the main water network. 
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straightforward in the case of the union approach. With 𝑛 invariant over time, the change in 𝑀0, with 𝑘 =

min(𝑤𝑗) can be expressed as: 

∆𝑀0𝑡0−𝑡1
(𝑘 = min(𝑤𝑗)) = 𝑀0

𝑡0

(𝑘 = min(𝑤𝑗)) − 𝑀0𝑡1
(𝑘 = min(𝑤𝑗)) =

1

𝑛
[∑ 𝑤𝑗 ∑ 𝑠ℎ(𝑔ℎ𝑗𝑡0

0 − 𝑔ℎ𝑗𝑡1

0 )𝑇
ℎ=1

𝑑
𝑗=1 ] = 𝐷𝑀  (16) 

In words, under the union approach, the change in 𝑀0 can be expressed as the dimensionally weighted 

sum of the number of people (expressed in turn as the weighted sum of households, with weights being 

their corresponding sizes 𝑠ℎ) that have stopped being poor and deprived in each dimension. This does not 

hold for 𝑘 poverty cutoffs other than union because the remaining deprivations in 𝑡1 of those who have 

stopped being poor are censored. This is further explained below. 

Now assume that the poverty reduction 𝐷𝑀 has been achieved with a fiscal budget of amount 𝐵. Let’s 

assume that the cost of removing each 𝑗 deprivation is given by the per household cost 𝑝ℎ𝑐𝑗, with the 

considerations done in Section 4.3.1, such that these may be refined taking different values across 

geographical areas. The optimization problem consists of finding the sets of households 𝑅𝑗 =

{ℎ: (𝑔ℎ𝑗𝑡0

0 − 𝑔ℎ𝑗𝑡∗
0 ) = 1}, with size |𝑅𝑗| = 𝑇𝑗

𝑅, (i.e., 𝑇𝑗
𝑅 is the total number of households to which 

deprivation 𝑗 is removed between 𝑡0 and an optimal distribution 𝑡∗), for 𝑗 = 1, … 𝑑 ,such that: 

1) 
1

𝑛
[∑ 𝑤𝑗 ∑ 𝑠ℎ(𝑔ℎ𝑗𝑡0

0 − 𝑔ℎ𝑗𝑡∗
0 )

𝑇0
ℎ=1

𝑑
𝑗=1 ] is maximum, subject to: 

2) ∑ 𝑝ℎ𝑐𝑗𝑇𝑗
𝑅𝑑

𝑗=1 ≤ 𝐵 (the cost of reducing poverty must be within the observed fiscal budget) 

As explained in Section 4.3.1, if needed, a restriction on the required minimum number of connections to 

a service that need to be achieved, let it be denoted by 𝑒, can be incorporated as a further restriction: 

𝑒 ≤ 𝑇𝑗
𝑅 with 𝑒 ∈ ℝ++. 15 

Such a linear programming problem can be easily solved with a software like Mathematica. Moreover, the 

above optimization problem, which maximizes the reduction in MPI, and thus prioritizes bigger 

households, can be implemented within an algorithm that has, as a second guiding principle, the LNOB 

criterion. That is, given two households ℎ = 1,2, of equal size 𝑠1 = 𝑠2, such that it is optimal that a certain 

deprivation is removed to one of them, an algorithm which starts from the solution values of the linear 

 

15 If the exercise is implemented with household survey data which contains a survey weight variable 𝑝ℎ𝑡0
, the change in the 

poverty measure is given by: ∆𝑀0𝑡0−𝑡1
(𝑘 = min(𝑤𝑗)) = ∑ ∑ 𝑠ℎ𝑝ℎ𝑡0

(𝑔ℎ𝑗𝑡0

0 − 𝑔ℎ𝑗𝑡1

0 )/𝑛
𝑇0
ℎ=1

𝑑
𝑗=1 , and the budget constraint 

is expressed as ∑ 𝑝ℎ𝑡0
𝑝ℎ𝑐𝑗 𝑇𝑗

𝑅𝑑
𝑗=1 ≤ 𝐵.  
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programing problem can select the household with the highest deprivation score. If  𝑐1(𝑘) > 𝑐2(𝑘), then 

the deprivation will be removed to household 1. 

While this procedure can be relatively easily implemented, it is not general enough, as it does not hold for 

the case of poverty cutoffs which are not the union criterion. We address that case next. 

4.3.2.2 Impact Effectiveness under the MaxN-LNOB criterion in the general case: allowing an intermediate poverty cutoff 

Whenever the poverty cutoff k is not the one of the union criterion, the removal of a deprivation can lift 

a household from poverty, according to that k-cutoff, even when other deprivations remain. The 

remaining deprivations must be censored and should thus ‘disappear’ from the objective function of 

expression (16). Thus, the optimization in this case, cannot be solved with a linear programing problem. 

It must be solved as an iterative optimization problem, that re-identifies the poor after each removal of 

deprivations and censors the deprivations of those who have stopped being poor. 

To present the optimization process under the MaxN-LNOB criterion for the 𝐼𝐸𝑀𝑃 indicator in the 

general case of an any poverty cutoff, including an intermediate or even intersection one, it is useful to 

define a cost-effectiveness matrix 𝑪𝑬𝑰𝑬, which constitutes the decision tool. Whenever the 𝑘 poverty 

cutoff is different from the one corresponding to the union criterion (𝑘 > min (𝑤𝑗)), the 𝑪𝑬𝑰𝑬 matrix 

will change in each iteration. 

Denote with 𝑣 the iteration number, with 𝑣 = 1, … , 𝑉. Iteration number 𝑉 is such that an optimal 

distribution has been found. Let _𝑣 denote the current iteration, and thus _𝑣 − 1 as the previous one. The 

cost-effectiveness matrix for the 𝐼𝐸𝑀𝑃 indicator in each iteration, is given by 𝑪𝑬_𝒗
𝑰𝑬 = [𝑐𝑒ℎ𝑗_𝑣

𝐼𝐸 ], such that: 

𝑐𝑒ℎ𝑗_𝑣
𝐼𝐸 =

(𝑠ℎ/𝑛) 𝑤𝑗_𝑣
∗  𝑔ℎ𝑗(_𝑣−1)

0 (𝑘)

𝑝ℎ𝑐𝑗
  (23) 

where: 

𝑤𝑗_𝑣
∗ = ∑ 𝑤𝑗𝑔ℎ𝑗(_𝑣−1)

0𝑑
𝑗=1  if (𝑐ℎ(_𝑣−1) − 𝑤𝑗) < 𝑘 (is lifted from poverty) 

𝑤𝑗_𝑣
∗ = 𝑤𝑗  if (𝑐ℎ(_𝑣−1) − 𝑤𝑗) ≥ 𝑘 (remains poor) 

With 𝑐ℎ(_𝑣−1) = 𝑐ℎ𝑡0
 for 𝑣 = 1. 

In words, the numerator of each 𝑐𝑒ℎ𝑗_𝑣
𝐼𝐸  element indicates by how much the MPI would be reduced if 

deprivation 𝑗 was lifted to household ℎ. This general formula accounts for the case in which an 

intermediate poverty cutoff is used and thus the need to define the 𝑤𝑗
∗ parameter. When the weight of 

deprivation 𝑗, 𝑤𝑗 , is such that removing that deprivation would lift that household from poverty, that is, 

when (𝑐ℎ(_𝑣−1) − 𝑤𝑗) < 𝑘, then the full impact of removing that deprivation in the MPI reduction should 



Santos, Lustig and Zanetti  Counting and Accounting 

OPHI Working Paper 144 www.ophi.org.uk 21 

not only consider the j-th deprivation’s weight  𝑤𝑗 , but rather the sum of the weights of all the deprivations 

still experienced by that household up to the previous iteration (_𝑣 − 1) (𝑤𝑗_𝑣
∗ = ∑ 𝑤𝑗𝑔ℎ𝑗(_𝑣−1)

0𝑑
𝑗=1 ), as 

the remaining deprivations will be censored once the household is lifted up from poverty. Otherwise, 

when removing deprivation j is not sufficient for removing that household from poverty, i.e. when 

(𝑐ℎ(_𝑣−1) − 𝑤𝑗) ≥ 𝑘 , then only the j-th deprivation weight matters in the account of poverty reduction, 

and thus 𝑤𝑗_𝑣
∗ = 𝑤𝑗 . In turn, the denominator of each 𝑐𝑒ℎ𝑗 element indicates the cost of removing 

deprivation j. Altogether, each 𝑐𝑒ℎ𝑗_𝑣
𝑰𝑬  element of matrix  𝑪𝑬𝑰𝑬 indicates the reduction in 𝑀0 produced by 

one monetary unit spent in eliminating the j-th deprivation for household ℎ. 

It is also necessary to define the accumulated cost of removing deprivations up to each _𝑣 iteration, which 

is given by: 

𝐴𝑐𝑐𝐶𝑜𝑠𝑡_𝑣 = ∑ ∑ 𝑝ℎ𝑐𝑗 ∑ (𝑔ℎ𝑗(_𝑣−1)
0 (𝑘) − 𝑔ℎ𝑗_𝑣

0 (𝑘)) 𝑇
ℎ=1

𝑑
𝑗=1

_𝑣
𝑣=1  (24) 

with 𝑔ℎ𝑗(_𝑣−1)
0 = 𝑔ℎ𝑗𝑡0

0  for 𝑣 = 1. 

Expression (24) indicates that the accumulated cost up to iteration _𝑣 is given by the change of household 

ℎ from being deprived in indicator 𝑗 in the previous iteration to being non- deprived in the current 

iteration, in which case 𝑔ℎ𝑗(𝑣−1
0 (𝑘) − 𝑔ℎ𝑗𝑣

0 (𝑘) = 1, multiplied by the cost of removing deprivation 𝑗, 

𝑝ℎ𝑐𝑗, adding across all 𝑇 households and 𝑑 dimensions, accumulating all the iterations up to the current 

one. 

Now we can describe the optimization algorithm, written in Mathematica, which iteratively proceeds in 

this way. In each current _𝑣  iteration: 

1) It finds the maximum value(s) of the 𝑪𝑬_𝒗
𝑰𝑬 matrix.  

2) It verifies that the accumulated cost of removing that deprivation 𝑗 from household ℎ is within 

the budget, ie.: 𝐴𝑐𝑐𝐶𝑜𝑠𝑡_𝑣 ≤ 𝐵. 

a. If this is not the case, the algorithm discards removing that j deprivation to that household.  

b. If the condition holds, whenever there are two equal cost-effectiveness values, the 

algorithm selects the household which has the highest deprivation score and removes that 

deprivation from that household. 

3) The algorithm re-identifies the poor (according to the 𝑘 value) and censors the deprivations of the 

non-poor. It computes the 𝑪𝑬(_𝒗+𝟏)
𝑰𝑬  matrix (i.e. the cost-effectiveness matrix for the next 

iteration). 
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4) Steps 1-3 are repeated until the budget limit is reached, i.e.  until  

𝐴𝑐𝑐𝐶𝑜𝑠𝑡_𝑣 = 𝐵 16 

or until the remaining budget is not enough to remove any other deprivation. 

Implementing this algorithm is equivalent to solving the linear programming problem detailed before, but 

in the general case in which such problem needs to be solved iteratively. The MaxN-LNOB criterion is 

exemplified in Section 5.1.1.  

The algorithm can be implemented with household survey data, with a survey weight variable. Note that 

the values of the 𝑪𝑬𝑰𝑬 matrix remain the same as if there were no survey weights, because the survey 

weight 𝑝ℎ multiplies both the numerator (because the survey weight affects the MPI reduction) and the 

denominator (because the per household cost of removing deprivation 𝑗 to an ℎ household needs to be 

multiplied for as many households that household represents). However, both the computation of the 

poverty reduction 𝐷𝑀 as well as the accumulated cost, incorporate the survey weight variable in their 

expressions, as detailed in footnote 18. Thus, the selected deprivations to be removed to which 

households, will naturally differ from the case in which there are no survey weights. 

It is also worth noting that the algorithm can be adapted to include additional constrains, like (for instance) 

the restriction that deprivations must be removed for a minimum number of households for technical 

reasons related to costing. Similarly, the per household costs of removing each deprivation need not be 

the same across all households. Variations according to their geographical location can also be 

incorporated. 

4.3.3 Defining the optimal allocation under the MaxN-LNOB criterion for the Spending Effectiveness Indicator 

We now present the same criterion but for the 𝑆𝐸𝑀𝑃 indicator.  

4.3.3.1 Spending Effectiveness under the MaxN-LNOB criterion using a union poverty cutoff  

Looking for the optimal distribution under the MaxN-LNOB criterion for the 𝑆𝐸𝑀𝑃 indicator with a 

union poverty cutoff consists of solving the dual of the linear programming problem set for the 𝐼𝐸𝑀𝑃 

indicator, and this can be stated as follows. 

 

16 Equivalently, until ∑ 𝑝ℎ𝑐𝑗 𝑇𝑗
𝑅𝑑

𝑗=1 = 𝐵. 
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Find the sets of households 𝑅𝑗 = {ℎ: (𝑔ℎ𝑗𝑡0

0 − 𝑔ℎ𝑗𝑡∗
0 ) = 1}, with size |𝑅𝑗| = 𝑇𝑗

𝑅, for 𝑗 = 1, … 𝑑, such 

that: 

∑ 𝑝ℎ𝑐𝑗𝑇𝑗
𝑅𝑑

𝑗=1  is minimum, subject to: 

1

𝑛
[∑ 𝑤𝑗 ∑ 𝑠ℎ(𝑔ℎ𝑗𝑡0

0 (𝑘) − 𝑔ℎ𝑗𝑡∗
0 (𝑘))

𝑇0

ℎ=1

𝑑

𝑗=1
] ≥ 𝐷𝑀 

Like for the 𝑆𝐸𝑀𝑃, given the solution to the linear programming problem, for each household size to 

which a certain deprivation must be removed, one can select the households with the highest deprivation 

scores, such that the second guiding principle is the LNOB criterion. 

As with the 𝑆𝐸𝑀𝑃 indicator, to generalize the optimization process to any poverty cutoff, we need to 

define an iterative optimization process analogous to the one defined above. 

4.3.3.2 Spending Effectiveness under the MaxN-LNOB criterion in the general case: allowing an intermediate poverty cutoff 

Continuing with the same notation, we now define the cost-effectiveness matrix for the 𝑆𝐸𝑀𝑃 indicator. 

For that, it is necessary to define the accumulated poverty reduction until the iteration before the current 

_𝑣 iteration, which is given by: 

𝐴𝑐𝑐𝐷𝑀(_𝑣−1) =
1

𝑛
∑ ∑ 𝑤𝑗 ∑ 𝑠ℎ(𝑔ℎ𝑗_𝑣−2

0 (𝑘) − 𝑔ℎ𝑗(_𝑣−1)
0 (𝑘))𝑇

ℎ=1
𝑑
𝑗=1

_𝒗−1
𝑣=1  (25) 

Then, the cost-effectiveness matrix for the 𝑆𝐸𝑀𝑃indicator  𝑪𝑬_𝒗
𝑺𝑬 = [𝑐𝑒ℎ𝑗_𝑣

𝑆𝐸 ], is such that: 

𝑐𝑒ℎ𝑗_𝑣
𝑆𝐸 =

𝑀𝑖𝑛(𝐷𝑀−𝐴𝑐𝑐𝐷𝑀(_𝑣−1),   (𝑠ℎ/𝑛)𝑤𝑗𝑣
∗ 𝑔ℎ𝑗𝑡_𝑣

0 (𝑘))

𝑝ℎ𝑐𝑗
 (26) 

where 𝑤𝑗_𝑣
∗  is the same as defined in (23). Expression (26) indicates that, for each iteration _𝑣, the cost-

effectiveness coefficients of the 𝑪𝑬_𝒗
𝑺𝑬 matrix are the same coefficients of the 𝑪𝑬_𝒗

𝑰𝑬  matrix whenever these 

are smaller than the difference between the target poverty reduction and the accumulated poverty 

reduction up to the iteration previous to the current one. This will surely be the case for the first iterations. 

As poverty reduction progresses by lifting deprivations, the gap between the target poverty reduction and 

the already achieved one, i.e. 𝐷𝑀 − 𝐴𝑐𝑐𝐷𝑀(_𝑣−1),  will narrow and, at some advanced iteration, for at 

least one (ℎ, 𝑗), such distance will become smaller than the expression 𝑠ℎ 𝑤𝑗_𝑣
∗  𝑔ℎ𝑗(_𝑣−1)

0 (𝑘), which gives 

the reduction in poverty  that can be achieved by lifting deprivation 𝑗, to household ℎ. Then, the minimum 

value divided by the cost of removing that deprivation will be the 𝑐𝑒ℎ𝑗_𝑣
𝑺𝑬  coefficient. The intuition is that, 

because the optimal distribution for the spending effectiveness indicator is a minimization exercise, as the 

optimal allocation of the budget approaches meeting the target, the last selected deprivations to be 

removed do not need to be those with the biggest poverty reduction impact but rather those that just meet 
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the target. Otherwise, poverty reduction might exceed what is required by the exercise, and thus the budget 

would not be minimized. 

Using the 𝑪𝑬𝑺𝑬 matrix, the optimization algorithm, developed in Mathematica, iteratively proceeds in this 

way: 

1) It finds the maximum value(s) of the 𝑪𝑬_𝒗
𝑺𝑬 matrix.  

a. Whenever there are two equal cost-effectiveness values, it selects the household which has 

the highest deprivation score and it removes that deprivation from that household. 

2) It verifies that the accumulated poverty reduction has not yet reached the poverty reduction target 

𝐷𝑀, i.e. that  𝐴𝑐𝑐𝐷𝑀(_𝑣) < 𝐷𝑀 

3) It re-identifies the poor (according to the 𝑘 value) and censors the deprivations of the non-poor. 

It computes the 𝑪𝑬(_𝒗+𝟏)
𝑺𝑬  matrix (i.e. the cost-effectiveness matrix for the next iteration). 

4) Steps 1-3 are repeated until the accumulated decrease in 𝑀0 is at least 𝐷𝑀, i.e. until 𝐴𝑐𝑐𝐷𝑀(_𝑣) ≥

𝐷𝑀. 

This algorithm is exemplified in Section 5.1.2. The algorithm can be implemented with household survey 

data, with a survey weight variable. 

As explained above, the MaxN-LNOB criterion does not guarantee that the poorest poor households are 

lifted deprivations, but rather that the most cost-effective deprivations are lifted to the greatest number of 

people. In the above algorithms larger households will be prioritized and, as it will be exemplified in 

Section 5, in the optimal allocation under this criterion, the poorest households may be left as poor as they 

were initially, or with little change. While empirically it is frequently the case that the poorer households 

tend to be larger, this may not always hold. Then, it is reasonable to consider an optimization criterion 

that explicitly prioritizes the poorest poor, embodying the philosophical principle of prioritarianism, in the 

spirit of the Leave No One Behind claim of the 2030 Agenda. This criterion is detailed in what follows. 

Note however, that if deprivations were removed to individuals and not households, or if household sizes 

were ignored, the MaxN-LNOB criterion would coincide with the next proposed criterion, the LNOB-

MaxN. In fact, in such case, the elements of the 𝑪𝑬𝑰𝑬 and 𝑪𝑬𝑺𝑬 matrices would not have the household 

size variable 𝑠ℎ, and thus the most cost-effective indicators would be lifted to the poorest poor. 

4.3.4 Defining the optimal allocation under the LNOB-MaxN criterion for the Impact Effectiveness Indicator 

Under the LNOB-MaxN criterion the optimal allocation is such that deprivations are removed to the 

poorest poor households in the first place, even when this does not imply removing deprivations to the 
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greatest number of people. That is, the main criterion driving the optimization solution is that the most 

cost-effective deprivations are lifted to the poorest poor households. Naturally, the next guiding principle 

in the optimization problem is, from the poorest households, choose the largest ones, to guarantee that, 

among the poorest poor, deprivations are lifted to the greatest number. That is why we call this the LNOB-

MaxN criterion, as it simply inverts the order of the guiding optimization principles compared to the 

previous criterion. 

In this case, the optimization criterion needs to work iteratively even when the union poverty cutoff is 

used because poor households with the maximum deprivation score need to be identified after each round 

of lifting deprivations. Thus, we directly detail the algorithm. Noteworthy, the algorithm is based on the 

same decision tool as the MaxN-LNOB criterion, the 𝑪𝑬_𝒗
𝑰𝑬 matrix. The only difference is the order in 

which the elements of the matrix are selected. 

Using the 𝑪𝑬𝑰𝑬 matrix, the optimization LNOB-MaxN algorithm, developed in Mathematica, proceeds 

in this way: 

1) It orders the rows of the 𝑪𝑬_𝒗
𝑰𝑬 matrix by the censored deprivation score 𝑐𝑖(𝑘), from poorest to 

least poor. 

2) It finds the maximum value(s) of the 𝑪𝑬_𝒗
𝑰𝑬  matrix in the rows corresponding to the maximum 

deprivation score. 

a. Whenever there are two equal cost-effectiveness values for different households with the 

highest deprivation score, it selects the household which has the biggest size and removes 

that deprivation from that household. 

3) It verifies that the accumulated cost of removing that deprivation 𝑗 from household ℎ is within 

the budget, ie.: 𝐴𝑐𝑐𝐶𝑜𝑠𝑡_𝑣 ≤ 𝐵. If this is not the case, it discards removing that j deprivation to 

that household.  

4) The algorithm re-identifies the poor (according to the 𝑘 value) and it censors the deprivations of 

the non-poor. It computes the 𝑪𝑬(_𝒗+𝟏)
𝑰𝑬  matrix (i.e. the cost-effectiveness matrix for the next 

iteration). 

5) Steps 1-4 are repeated until the budget limit is reached, i.e.  until  

𝐴𝑐𝑐𝐶𝑜𝑠𝑡_𝑣 = 𝐵  

or until the remaining budget is not enough to remove any other deprivation. 
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4.3.5 Defining the optimal allocation under the LNOB-MaxN criterion for the Spending Effectiveness Indicator 

Analogously, the algorithm that implements the LNOB-MaxN criterion to find the optimal allocation for 

the 𝑆𝐸𝑀𝑃 indicator, uses the same decision tool as the MaxN-LNOB criterion, the 𝑪𝑬_𝒗
𝑺𝑬 matrix, with the 

only difference being the order in which the elements of the matrix are selected. 

Using the 𝑪𝑬𝑺𝑬 matrix, the optimization LNOB-MaxN algorithm, developed in Mathematica, proceeds 

in this way: 

1) It orders the rows of the 𝑪𝑬_𝒗
𝑺𝑬  matrix by the censored deprivation score 𝑐𝑖(𝑘), from poorest to 

least poor. 

2) It finds the maximum value(s) of the 𝑪𝑬_𝒗
𝑺𝑬 matrix in the rows corresponding to the maximum 

deprivation score. 

a. Whenever there are two equal cost-effectiveness values for different households with the 

highest deprivation score, it selects the household which has the biggest size and removes 

that deprivation from that household. 

3) It verifies that the accumulated poverty reduction has not yet reached the poverty reduction target 

𝐷𝑀, i.e. that  𝐴𝑐𝑐𝐷𝑀(_𝑣) < 𝐷𝑀. 

4) It re-identifies the poor (according to the 𝑘 value) and censors the deprivations of the non-poor. 

It computes the 𝑪𝑬(_𝒗+𝟏)
𝑺𝑬  matrix. 

5) It repeats steps 1-4 until the accumulated decrease in 𝑀0 is at least 𝐷𝑀, that is: 𝐴𝑐𝑐𝐷𝑀(_𝑣) ≥ 𝐷𝑀 

As a general note, we should remark that the four described algorithms (MaxN-LNOB and LNOB-MaxN, 

for impact and spending effectiveness), which are based in the 𝑪𝑬_𝒗
𝑰𝑬 and the 𝑪𝑬_𝒗

𝑺𝑬 matrices 

correspondingly could, in certain cases and due to the discrete character of the procedure (deprivations 

are lifted one household at a time), generate suboptimal allocations in the ‘last mile’ of the algorithm. That 

is, the last deprivations selected to be removed such that the constraint is satisfied, may result in falling 

short of using all the budget in IE, or in exceeding by too much the poverty reduction target in SE. In 

such cases, it may be possible to find an alternative combination of deprivations’ removal which may 

perfect the original matrix solution, approximating the satisfaction of the corresponding constraint with 

finer tuning. However, this is not a matter for concern when implementing the algorithms with real data, 

which have population sizes in which the discrete effect is diluted. To avoid those possible cases in which 

the solution would be sub-optimal the algorithms could adopt a different approach, doing a step-by-step 
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iterative optimization process but at the cost of a substantial longer computing time. We understand that 

such cost is not worth it given the marginal effective incidence of this issue in real data applications. 

5. Examples illustrating the methodology 

In this section we will exemplify the two alternative criteria to determine the optimal allocation for the 

𝐼𝐸𝑀𝑃 and the 𝑆𝐸𝑀𝑃indicators: MaxN-LNOB vs. LNOB-MaxN under a union poverty cutoff as well as 

under an intermediate poverty cutoff. In this example we assume equal weights. In Appendix 2 we provide 

an example with the same initial distribution using unequal weights. 

Assume a society of 10 households adding up to a total of 40 people. For simplicity we assume there are 

no survey weights, but these can be incorporated as detailed above. The example proceeds as if one had a 

panel and there was no population growth. In Section 7 we explain how to work with cross-section data 

and deal with population growth. Assume that multidimensional poverty is measured using four indicators 

which have received fiscal investment: water, sewage, natural gas and electricity. Let’s consider a baseline 

case in which all indicators weight the same: 𝑤𝑗 =
1

4
 for 𝑗 = 1,2,3,4. Consider the following per household 

costs of removing each deprivation. As in this case weights are equal across indicators, the order of priority 

is simply given by the cost, as detailed in Table 2. 

Table 2. Per Household Costs – Example with equal weights 

Dimension 𝑝ℎ𝑐 of each 𝑗 
dimension 

Weighting in the 𝑀0 of 
each 𝑗 dimension 

Cost-Effectiveness Ratios Priorities 

Water 800 0.25 3200 2 
Sanitation 2300 0.25 9200 4 
Gas 900 0.25 3600 3 
Electricity 400 0.25 1600 1 

5.1.1 Impact Effectiveness under different optimal criteria and different poverty cutoffs 

In Table 3 we present deprivation matrix in 𝑡0 and in 𝑡1, with households ordered from poorest to richest, 

using a union poverty cutoff (k=0.25), and the optimal distributions that result from the MaxN-LNOB 

and the LNOB-MaxN criteria correspondingly. We also present a column on whether the household is 

identified as poor or not in each distribution, as well as the censored deprivation score of each distribution, 

which, in this case, coincide with the uncensored deprivation scores. In Table 4 we present the same 

distributions but using an intermediate (high) poverty cutoff of k=0.75. Zeroes in light blue denote 

censored deprivations. 

According to the distributions, we are assuming that, between these two points in time, poverty was 

reduced removing deprivation in water to two households, deprivation in sanitation to one household, 
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deprivation in natural gas to two households and deprivation in electricity to three households, with a 

spent budget of $6,900 (𝐵 = 2 ∗ 800 + 1 ∗ 2300 + 2 ∗ 900 + 3 ∗ 400 = 6,900). Deprivations that are 

removed appear as a red zero in the deprivation matrix in 𝑡1 as well as in the optimal distributions. 

As detailed in the first rows of Table 7, from 𝑡0 to 𝑡1 there was a reduction of 0.163 in the MPI using a 

union poverty cutoff, which is the result of reducing the poverty headcount ratio in 0.05 (note that 

household #7 stopped being poor), and a reduction in poverty intensity of 0.149. If an intermediate 

poverty cutoff of k=0.75 is used, poverty was reduced in 0.244, also with a reduction both in H and A. 

Note that in this case, because of the higher poverty cutoff, three households (#2, #3 and #4) stopped 

being poor. 

Now suppose one wants to assess the impact effectiveness of that fiscal effort. Implementing the algorithm 

under the MaxN-LNOB criterion, which maximizes the reduction in 𝑀0, gives the distribution described 

in the third matrix of Table 3, with the red zeroes denoting the deprivations that the optimal allocation 

removes. This distribution results from implementing the described algorithm using the 𝑪𝑬𝑰𝑬 matrix. To 

illustrate the methodology, we present the 𝑪𝑬𝑰𝑬 matrix in Table 5, with red entries on the deprivations 

that is optimal to remove according to each criterion. As in this case a union poverty cutoff is used, the 

coefficients of the cost-effectiveness matrix can only change from their initial values to zero (when 

deprivations are removed) and thus we can simply present one matrix.17  

Note that in the optimal MaxN-LNOB distribution, the budget is used to completely remove deprivation 

in the most cost-effective dimension (i.w. that one with the lowest 𝑝ℎ𝑐𝑗/𝑤𝑗  ratio), electricity. It is also 

used to remove deprivation in the second most cost-effective dimension -water- to two of the five 

households deprived in that indicator, but not to the five of them. This is because three of the households 

deprived in water are small (households #2 and #3 are of three members, and household #7 is of two 

members), and it reduces poverty more to remove deprivation in the third most cost-effective dimension 

-gas- to households that are larger. Being sanitation the least cost-effective dimension, no household is 

removed deprivation in this dimension. The total budget used is $6,300. The remaining $600 are not 

enough for reducing any of the deprivations left. The total MPI reduction under this allocation is 0.269, 

much higher than the observed reduction of 0.163, and thus the impact effectiveness indicator in this case 

is 61%, as detailed in Table 7, indicating that the spent budget only achieved 61% of the potential MPI 

reduction. 

 

17 The MaxN-LNOB optimal distribution can also be obtained stating the linear programming problem in Mathematica, as 
detailed in Section 4.3.2.1. 
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However, also note that in this solution, two of the poorest households, households #2 and #3, which 

were deprived in all dimensions, only have seen reduced their weighted deprivations in 0.25, whereas, for 

example, household #4, with a lower initial deprivation score of 0.75, has seen its deprivation score being 

reduced in 0.5. As explained, this is because this the MaxN-LNOB criterion gives priority to removing 

deprivations to larger households over removing deprivations to more intensely poor households.  

Now, suppose we implement the LNOB-MaxN criterion, looking for the most cost-effective eradication 

of deprivations but prioritizing the poorest poor households in every round of deprivation removal. Under 

this optimal criterion, which distribution is depicted in the fourth matrix of Table 3, deprivation in the 

first and the second most cost-effective dimensions -electricity and water- are lifted to all poor and 

deprived households in those dimensions. Note that lifting water deprivation to all households differs 

from the MaxN-LNOB solution, in which households #7, #2 and #3 are not removed this deprivation. 

This is because the algorithm works iteratively looking in each iteration the highest coefficients of the 

𝑪𝑬𝑰𝑬 matrix among households with the highest deprivation score.18 In this case, the full $6,900 budget is 

used and the achieved MPI reduction is of 0.263, a bit lower than with the MaxN-LNOB criterion, thus, 

the impact effectiveness indicator is a bit higher under this optimal allocation, 62%.  

 

However, while the reduction of MPI with a union poverty cutoff is not necessarily maximized with the 

LNOB-MaxN criterion, note that with this distribution no household is left with a deprivation of 0.75 or 

higher (the distribution of deprivation scores of the MaxN-LNOB criterion and the LNOB-MaxN 

criterion can be compared in last two columns of Table 3). Thus, impact effectiveness under this criterion 

should also be evaluated with an MPI with a higher deprivation cutoff. Indeed, if an MPI with a k=0.75 is 

computed over the two optimal distributions, as detailed in the three last columns of Table 7, one can see 

that poverty is reduced to 0 under the LNOB-MaxN distribution, and thus impact effectiveness is reduced 

to 56%. In contrast, under the MaxN-LNOB criterion, MPI with k=0.75 is reduced only to 0.112, and so 

impact effectiveness of the observed distribution is higher, 75%. 

One way to visualize the difference between the two optimal allocations is depicting the multidimensional 

dominance curves introduced in Alkire et al (2015, ch. 7). Figure 5.2 depicts the Complementary 

 

18 The sequence is as follows. From the 𝑪𝑬𝑰𝑬 matrix depicted in the last four columns of Table 5, first deprivation in electricity 
is removed to household #1, next to households #2 and #3. Next, by looking at the maximum coefficients of all households 
with a deprivation score of 0.75 (now the highest), deprivation in electricity is removed to household #5. Then, deprivation 
in water is removed to household #4, and then to households #1, #2 and #3. Next, by looking at the maximum coefficients 
of all households with a deprivation score of 0.5 (now the highest), deprivation in electricity is removed to household #6. 
Finally, there is budget left to remove deprivation in gas to household #4. Finally, deprivation in natural gas can be removed 
to the poorest-biggest household (household #7) left after the removal of the other deprivations. 
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Cumulative Distribution Functions for MaxN-LNOB and LNOB-MaxN, which indicate (in the y-axis) 

the proportion of people who have a 𝑐𝑖 score equal or higher than each 𝑘 value, i.e., they indicate the 𝐻 

for the different 𝑘 values (in the x-axis). These are first order dominance curves. In turn, Figure5.3 depicts 

the Adjusted Headcount Ratio dominance curves, which indicate the 𝑀0 value at each possible k value. It 

is a second order dominance curve. The data used to construct these two curves is detailed in Appendix 

1, Table A1.1. In both cases, whenever a distribution A has a curve which lies somewhere below and 

nowhere above the curve of another distribution B, we can say that distribution A stochastically dominates 

distribution B, meaning, in the first case, that distribution A has an equal or lower 𝐻 than distribution B 

at all possible 𝑘 values and, in the second case, that distribution A has an equal or lower  𝑀0 than 

distribution B at all possible 𝑘 values. 

In both figures the curves of the MaxN-LNOB and the LNOB-MaxN cross. In Figure 5.1, for a k value 

of up to 0.5, the MaxN-LNOB solution dominates the LNOB-MaxN, as it has lower 𝐻, but from then 

onwards, the LNOB-MaxN dominates. In the second order dominance curves presented in Figure 5.2, we 

also notice a similar pattern: the MaxN-LNOB solution dominates the LNOB-MaxN up to a k of 0.75, 

meaning that it has a lower 𝑀0 value, but from then onwards, the LNOB-MaxN dominates. Therefore, it 

is reasonable that for MPI values with high poverty cutoffs the impact effectiveness assessment under the 

LNOB-MaxN optimal distribution is more demanding than the MaxN-LNOB, giving an effectiveness of 

only 56% vs. an effectiveness of 75%. This simply implies that with $6,900 multidimensional poverty of 

high intensity could have been reduced much more, and in this example -in fact- eradicated, had the 

poorest households been prioritized. 

What happens if the optimal distributions under the two alternative criteria are computed over the 

censored distribution? This is detailed in Table 4 for the case of an intermediate poverty cutoff 𝑘 = 0.75. 

With an intermediate cutoff one needs to ignore the deprivations of those who are not identified as poor 

(𝑐𝑖 < 0.75), marked in light blue. In this case, because of using a poverty cutoff higher than the union 

one, the coefficients of the 𝑪𝑬𝑰𝑬 matrix will change in each iteration, as deprivations are lifted not only to 

zero (when a deprivation is removed), but also because removing a deprivation may become more cost-

effective if, after the removal of some other deprivation: lifting some of the remaining ones would move 

the household out of poverty. This is exemplified in Table 6, which depicts how the 𝑪𝑬𝑰𝑬 matrix changes 

in each iteration when implementing the MaxN-LNOB criterion. 

In this case, because of the censoring of the deprivations of those with a lower deprivation score, the 

optimal distribution according to the MaxN-LNOB criterion coincides with that of the LNOB-MaxN 

criterion (although the sequence to arrive to the same result is different): both eradicate poverty, and thus, 

the evaluations of impact effectiveness also coincide in being 56%, suggesting that poverty reduction for 



Santos, Lustig and Zanetti  Counting and Accounting 

OPHI Working Paper 144 www.ophi.org.uk 31 

the poorest poor stayed about halfway (see Table 7). The fact that the two distributions coincide for a high 

poverty cutoff is not unequivocal however, it depends on the distribution of household sizes alongside 

the distribution of deprivation scores, and the particular k value used. In the unequal weights example 

presented in the Appendix 2, the two optimal distributions do not coincide even for high k values. 

Also note that because of the censoring, the available budget under the two optimal distributions is 

underutilized: poverty, as measured by an MPI with k=0.75, is eradicated with $4800, much less than the 

available budget of $6900, missing the opportunity to lift the censored deprivations. In particular, when 

the uncensored distribution of deprivations is used, the optimal distribution under the LNOB-MaxN 

criterion, once having eradicated deprivation scores of 1 and 0.75, uses the remaining budget to reduce 

deprivations among households with the next highest poverty intensity. 

If the aim is to reduce multidimensional poverty prioritizing the poorest poor and making use of all the 

available budget, the recommendable evaluation metric seems to be implementing the LNOB-MaxN 

optimization algorithm over the uncensored distribution of deprivations and evaluating impact 

effectiveness using alternative poverty cutoffs, from highest to lowest. Such evaluation will elucidate which 

poverty-intensity groups have been privileged by the fiscal effort. 
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Table 3. Impact Effectiveness – Equal Weights – Union Criterion (k=0.25) – MaxN-LNOB vs. LNOB-MaxN 

HH# HH 

Size 

Weighted deprivations t0 Weighted deprivations t1 Weighted deprivations 
Optimal MaxN-LNOB 

Weighted deprivations 
Optimal LNOB- MaxN 

P t0 P 

t1 

P 

M
N-
LN 

P 
LN

-
M
N 

ci(k) 

t0 

ci(k) 

t1 

ci(k) 

MaxN-
LNOB 

ci(k) 

LNOB
-

MaxN 
W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E 

1 4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0.25 0 0 0 0.25 0.25 0 1 1 1 1 1 1 0.25 0.5 

2 3 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0.25 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 1 0.5 0.75 0.5 

3 3 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0.25 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 1 0.5 0.75 0.5 

4 5 0.25 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0 0 0 0.25 0 0 1 1 1 1 0.75 0.5 0.25 0.25 

5 5 0 0.25 0.25 0.25 0 0.25 0.25 0.25 0 0.25 0 0 0 0.25 0.25 0 1 1 1 1 0.75 0.75 0.25 0.5 

6 5 0 0.25 0 0.25 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 1 1 1 1 0.5 0.25 0.25 0.25 

7 2 0.25 0.25 0 0 0 0 0 0 0.25 0.25 0 0 0 0.25 0 0 1 0 1 1 0.5 0 0.5 0.25 

8 7 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 1 1 1 1 0.25 0.25 0.25 0.25 

9 3 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 1 1 1 1 0.25 0.25 0.25 0.25 

10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of 
People 

40 17 34 23 20 10 32 17 9 8 34 9 0 0 34 18 0 37 35 37 37     

CHs  43% 85% 58% 50% 25% 80% 43% 23% 20% 85% 23% 0% 0% 85% 45% 0%         

Table 4. Impact Effectiveness – Equal Weights – Intermediate Criterion (k=0.75) – MaxN-LNOB vs. LNOB-MaxN 

HH# HH 

Size 

Censored 

Weighted deprivations t0 

Censored 

Weighted deprivations t1 

Censored 

Weighted deprivations  

Optimal MaxN-LNOB= 

=Optimal LNOB-MaxN 

P t0 P 

t1 

P 

MN-
LN= 

LN-MN 

ci(k) 

t0 

ci(k) 

t1 

ci(k) 

MaxN-
LNOB= 

LNOB-
MaxN W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E 

1 4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0.25 0.25 0 1 1 0 1 1 0 

2 3 0.25 0.25 0.25 0.25 0 0 0 0 0 0.25 0.25 0 1 0 0 1 0 0 

3 3 0.25 0.25 0.25 0.25 0 0 0 0 0 0.25 0.25 0 1 0 0 1 0 0 

4 5 0.25 0.25 0.25 0 0 0 0 0 0 0.25 0.25 0 1 0 0 0.75 0 0 

5 5 0 0.25 0.25 0.25 0 0.25 0.25 0.25 0 0 0 0 1 1 0 0.75 0.75 0 

6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Number of 
People 

40 15 20 20 15 4 9 9 9 0 15 15 0 20 9 0    

CHs  38% 50% 50% 38% 10% 23% 23% 23% 0% 37.5% 37.5% 0%       
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Table 5. Cost-effectiveness Matrix for Impact Effectiveness- Equal Weights – Union Criterion (k=0.25) – 
MaxN-LNOB vs. LNOB-MaxN 

HH# HH 
Size 

ci(k) t0 Cost-Effectiveness Matrix 
Selected values under MaxN-LNOB 

Cost-Effectiveness Matrix 
Selected values under LNOB-MaxN 

CE_W CE_S CE_G CE_E CE_W CE_S CE_G CE_E 

1 4 1 31.3 10.9 27.8 62.5 31.3 10.9 27.8 62.5 
2 3 1 23.4 8.2 20.8 46.9 23.4 8.2 20.8 46.9 
3 3 1 23.4 8.2 20.8 46.9 23.4 8.2 20.8 46.9 
4 5 0.75 39.1 13.6 34.7 0.0 39.1 13.6 34.7 0.0 
5 5 0.75 0.0 13.6 34.7 78.1 0.0 13.6 34.7 78.1 
6 5 0.5 0.0 13.6 0.0 78.1 0.0 13.6 0.0 78.1 
7 2 0.5 15.6 5.4 0.0 0.0 15.6 5.4 0.0 0.0 
8 7 0.25 0.0 19.0 0.0 0.0 0.0 19.0 0.0 0.0 
9 3 0.25 0.0 0.0 20.8 0.0 0.0 0.0 20.8 0.0 
10 3 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Note: Values of the CE matrix have been multiplied by 1,000,000 to facilitate the visualization. 

Table 6. Cost-effectiveness Matrix for Impact Effectiveness- Equal Weights – Intermediate Criterion 
(k=0.75)  MaxN-LNOB  

H
H
# 

HH 
Size 

ci(k) 
t0 

MaxN-LNOB 
ITERATION 1 

MaxN-LNOB 
ITERATION 2 

MaxN-LNOB 
ITERATION 3 

   W_A W_S W_G W_E W_A W_S W_G W_E W_A W_S W_G W_E 

1 4 1 31.3 10.9 27.8 62.5 31.3 10.9 27.8 62.5 93.8 24.5 83.3 0 

2 3 1 23.4 8.2 20.8 46.9 23.4 8.2 20.8 46.9 70.3 24.5 62.5 0 

3 3 1 23.4 8.2 20.8 46.9 23.4 8.2 20.8 46.9 70.3 24.5 62.5 0 

4 5 0.75 117.2 40.8 104.2 0.0 0 0 0 0 0 0 0 0 

5 5 0.75 0 40.8 104.2 234.4 0 0 0 0 0 0 0 0 

6 5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 

7 2 0.5 0 0 0 0 0 0 0 0 0 0 0 0 

8 7 0.25 0 0 0 0 0 0 0 0 0 0 0 0 

9 3 0.25 0 0 0 0 0 0 0 0 0 0 0 0 

10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 

   Cost=400+800=$1200 Cost=1200+3*400=$2400 Cost=2400+3*800=$4800 

Figure 5.1. Complementary Cumulative Distribution Functions for MaxN-LNOB and LNOB-MaxN 
optimal distributions computed under the uncensored distributions – Equal Weights 
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Figure 5.2. The Adjusted Headcount Ratio Dominance Curves for MaxN-LNOB and LNOB-MaxN 
optimal distributions computed under the uncensored distributions - Equal Weights 

 

Table 7. Impact Effectiveness Indicators under different poverty cutoffs –  
Equal Weights- MaxN-LNOB vs. LNOB-MaxN 

 
Distribution 

 Union criterion Intermediate criterion 

 H 
(k=0.25) 

A 
(k=0.25) 

MPI 
(k=0.25) 

H 
(k=0.75) 

A 
(k=0.75) 

MPI 
(k=0.75) 

𝑡0 Poverty Measures 0.925 0.635 0.588 0.50 0.875 0.438 

𝑡1 Poverty Measures 0.875 0.486 0.425 0.225 0.861 0.194 

Observed poverty reduction 0.05 0.149 0.163 0.275 0.014 0.244 

Observed spent budget $6900 $6900 

Optimal MaxN-LNOB 
(over uncensored 
distribution) 

Poverty Measures 
0.925 
 
 

0.345 
 
 

0.319 
 
 

0.15 
 
 

0.75 
 
 

0.112 
 
 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 0 0.291 0.269 0.35 0.125 0.326 

Budget 
$6300 $6300 

IEMPI 
0.163/0.269=61% 0.244/0.326=75% 

Optimal LNOB-MaxN 
(over uncensored 
distribution) 

Poverty Measures 0.925 
 
 

0.351 
 
 

0.325 
 
 

0 0 0 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0 0.284 0.263 0.500 0.875 0.438 

Budget 
$6900  $6900  

IEMPI 0.163/0.263=62% 0.244/0.438=56% 

Optimal MaxN-LNOB 
(over censored 
distribution) 

Poverty Measures 

NA 

0 0 0 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0.500 0.875 0.438 

Budget 
$4800 

IEMPI 0.244/0.438=56% 

Optimal LNOB-MaxN 
(over censored 
distribution) 

Poverty Measures 

NA 

0 0 0 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0.500 0.875 0.438 

Budget 
$4800 

IEMPI 0.244/0.438=56% 

NA: Non-applicable 
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5.1.2 Spending Effectiveness under different optimal criteria and different poverty cutoffs 

Given the same initial and final deprivation matrices presented in Section 5.1.1, as well as the same 

weighting scheme and the same per household costs, we now want to know what would have been the 

minimum amount of fiscal effort 𝐵 to achieve at least the same poverty reduction as the one observed. 

The matrices associated to this exercise are detailed in Table 8 for the case of the union poverty cutoff 

and in Table 9 for the case of a k=0.75. 

With a union poverty cutoff, the poverty reduction target is the observed 0.163, which costed $6,900. The 

optimal distribution under the MaxN-LNOB criterion indicates that a slightly higher reduction, of 0.181,  

could have been achieved with a budget of $3600, if deprivations had been lifted in this way: remove 

deprivation in electricity (the most cost-effective dimension in this case) in five households in total, two 

of 5 members, one of 4 members and two of 3 members; remove deprivation in water (the second most 

cost-effective dimension) to one household of 5 members and one  household of 4 members. As detailed 

in Table 10, with this benchmark, spending effectiveness is only 52%: the same and even higher MPI 

reduction could have been achieved with about half of the spent budget.19 Naturally, in this example, this 

is because the budget in the optimal allocation is concentrated in the most cost-effective indicators, 

whereas in the observed one, some deprivations in sanitation -the most expensive dimension- were lifted. 

Note however, that if sanitation was a highly valued dimension, despite being the most expensive 

deprivation to lift, this could be accounted for in the weighting of the MPI indicators, and the ‘cost-

effectiveness’ of removing this deprivation would change. This is exemplified with the case of unequal 

weights in the Appendix 2. 

If we now consider the optimal allocation under the LNOB-MAxN criterion, we can see that the same 

poverty reduction of 0.169 is achieved with a budget of $4,000, higher than the one used with the MaxN-

LNOB criterion. The distribution is as follows: the most cost-effective dimension (electricity) is lifted to 

the three poorest households, and then to household 5 with a deprivation score of 0.75 (the poorest after 

removing the first three deprivations). Next, deprivation in water is lifted to household4 and household 

1, with a score of 0.75 and of the biggest size among the poorest and deprived in water. Finally, 

 

19 This is an example of a case in which the algorithm that operationalizes the MaxN-LNOB criterion in a reasonable computing 
time may produce a suboptimal allocation. In fact, poverty could be reduced in 0.169 if deprivation in electricity was lifted to 
households #1, #2, #4 and #5, and deprivation in water and gas was lifted to household #4, with a budget of $3300. This 
occurs because the algorithm proceeds one iteration at a time and decides in each iteration the optimal value. But as it 
approaches the end (i.e. as it is reaching the poverty reduction target in SE, and the budget in IE), better options may arise if 
the algorithm could evaluate two iterations forward, for example. Similar cases may arise for impact effectiveness and for the 
LNOB-MaxN criterion. However, as explained at the end of Section 4.3.5, the occurrence of suboptimal allocations is unlikely 
to have incidence in real data applications with big population sizes. 
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deprivation in water is lifted to household 2, also with a score of 0.75, and of the biggest size among the 

deprived in that dimension. Note that this poverty reduction is lower than the one achieved with the 

MaxN-LNOB criterion and yet more expensive. This is because LNOB-MaxN prioritizes reducing the 

deprivations in the households with the highest deprivation scores in the first place, and not necessarily 

the biggest ones. As the minimum budget under the LNOB-MaxN optimal distribution is higher than 

under the MaxN-LNOB one, spending effectiveness evaluated under the LNOB-MaxN criterion is also 

higher (58%) (Table 10). 

As detailed in Table 9, the MaxN-LNOB and the LNOB-MaxN optimal distributions for spending 

effectiveness computed over the censored distribution with k=0.75 coincide in this case (but this need not 

always be the case for high poverty cutoffs). The poverty reduction target with this poverty cutoff is 0.244. 

The achieved reduction under the optimal distributions is 0.250, with a budget of $2400. In such case, 

spending effectiveness is evaluated to be of only 35% (see Table 10). That is, if focused on the poorest 

poor, an MPI reduction of 0.244 could have been achieved with only 35% of the spent budget. 
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Table 8. Spending Effectiveness – Equal Weights – Union Criterion (k=0.25) – MaxN-LNOB vs. LNOB-MaxN 

HH# HH 
Size 

Weighted deprivations t0 Weighted deprivations t1 Weighted deprivations Optimal 
MaxN-LNOB 

Weighted deprivations Optimal 
LNOB- MaxN 

P t0 P 
t1 

P 
M
N-
LN 

P 
LN
-
M
N 

ci(k) 
t0 

ci(k) 
t1 

ci(k) 
MaxN-
LNOB 

ci(k) 
LNOB
-
MaxN 

W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E 

1 4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 1 1 0.75 0.5 
2 3 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0.25 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 1 0.5 0.75 0.5 
3 3 0.25 0.25 0.25 0.25 0.25 0.25 0 0 0.25 0.25 0.25 0 0.25 0.25 0.25 0 1 1 1 1 1 0.5 1 0.75 
4 5 0.25 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 0.75 0.5 0.25 0.5 
5 5 0 0.25 0.25 0.25 0 0.25 0.25 0.25 0 0.25 0.25 0 0 0.25 0.25 0 1 1 1 1 0.75 0.75 0.5 0.5 
6 5 0 0.25 0 0.25 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0.25 1 1 1 1 0.5 0.25 0.25 0.5 
7 2 0.25 0.25 0 0 0 0 0 0 0.25 0.25 0 0 0.25 0.25 0 0 1 0 1 1 0.5 0 0.5 0.5 
8 7 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 1 1 1 1 0.25 0.25 0.25 0.25 
9 3 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 0 0 0.25 0 1 1 1 1 0.25 0.25 0.25 0.25 
10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Number of 
People 

40 17 34 23 20 10 32 17 9 12 34 18 3 8 34 20 5 37 35 37 37     

Censored 
HRs 

 43% 85% 58% 50% 25% 80% 43% 23% 30% 85% 45% 8% 20% 85% 50% 13%         

Table 9. Spending Effectiveness – Equal Weights – Intermediate Criterion (k=0.75) – MaxN-LNOB vs. LNOB-MaxN 

HH# HH 
Size 

Censored 
Weighted deprivations t0 

Censored 
Weighted deprivations t1 

Censored 
Weighted deprivations  
Optimal MaxN-LNOB= 
=Optimal LNOB-MaxN 

P  
t0 

P 
t1 

P 
MN-LN= 
LN-MN 

ci(k) 
t0 

ci(k) 
t1 

ci(k) 
MaxN-
LNOB= 
LNOB-
MaxN W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E 

1 4 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0 1 1 1 1 1 0.75 
2 3 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0 1 0 1 1 0 0.75 
3 3 0.25 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0 1 0 1 1 0 0.75 
4 5 0.25 0.25 0.25 0 0 0 0 0 0 0.25 0.25 0 1 0 0 0.75 0 0 
5 5 0 0.25 0.25 0.25 0 0.25 0.25 0.25 0 0.25 0.25 0 1 1 0 0.75 0.75 0 
6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Number of People 40 15 20 20 15 4 9 9 9 10 20 20 0 20 9 10    

Censored HRs  38% 50% 50% 38% 10% 23% 23% 23% 25% 50% 50% 0%       
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Table 10. Spending Effectiveness Indicators under different poverty cutoffs –  
Equal Weights- MaxN-LNOB vs. LNOB-MaxN 

  Union criterion Intermediate criterion 

Distribution  H 
(k=0.25) 

A 
(k=0.25) 

MPI 
(k=0.25) 

H 
(k=0.75) 

A 
(k=0.75) 

MPI 
(k=0.75) 

𝑡0 Poverty Measures 0.925 0.635 0.588 0.50 0.875 0.438 

𝑡1 Poverty Measures 0.875 0.486 0.425 0.225 0.861 0.194 

Observed poverty reduction 
(TARGET) 

0.05 0.149 0.163 0.275 0.014 0.244 

Observed spent budget $6900 $6900 

 
Optimal MaxN-LNOB 
(over uncensored 
distribution) 

Poverty Measures 0.925 
 

0.453 
 

0.419 
 

NA 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 0 0.182 0.181 

Minimum Budget 
$3600 

𝑺𝑬𝑴𝑷𝑰 
3300/6900=52% 

Optimal LNOB-MaxN 
(over uncensored 
distribution) 

Poverty Measures 0.925 
 

0.453 
 

0.419 
 

NA 
Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0 0.182 0.169 

Minimum Budget $4000 

𝑺𝑬𝑴𝑷𝑰 4000/6900=58% 

Optimal MaxN-LNOB 
(over censored 
distribution) 

Poverty Measures 

NA 

0.250 
 

0.750 
 

0.188 
 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0.250 0.125 0.250 

Minimum Budget $2400 

𝑺𝑬𝑴𝑷𝑰 2400/6900=35% 

Optimal LNOB-MaxN 
(over censored 
distribution) 

Poverty Measures 

NA 
 

0 0 0 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0.250 0.125 0.250 

Minimum Budget $2400 

𝑺𝑬𝑴𝑷𝑰 2400/6900=35% 

NA: Non-applicable. 

5.2 Examples on the marginal contribution indicator with union and intermediate poverty cutoffs 

As detailed in Section 4.2, the change in the censored headcount ratio of each 𝑗 dimension can be 

interpreted as a marginal contribution indicator to poverty reduction. Continuing with the same example, 

Table 11 presents the censored headcount ratios with a union poverty cutoff 𝑘 = 0.25, which coincide 

with the uncensored headcount ratios, and with an intermediate poverty cutoff of 𝑘 = 0.7, at the initial 

and final moment. Neatly, the weighted sum of the change in the four censored headcount ratios equals 

the total change in 𝑀0. Thus, the ratio of the weighted change in each censored headcount ratio to the 

total change in 𝑀0 can be interpreted as the marginal contribution of dimension 𝑗 to poverty reduction. 

In this example, with the union poverty cutoff we see that the dimension that contributed the most to 

multidimensional poverty reduction has been electricity (42.3%), followed by water (26.9%), gas (23.1%), 

and in fourth place, sanitation (7.7%). 

The same analysis can be done if an intermediate poverty cutoff is used, such as 𝑘 = 0.75. Note however, 

that in that case, electricity appears as the dimension contributing the least to poverty reduction, and the 

reduction in deprivation in water appears as contributing the same as the reduction in deprivations in 
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sanitation and gas. However, as it can be seen from the exercise with the union poverty cutoff, i.e., the 

reductions of the uncensored headcount ratios, electricity and water were the ones with the biggest 

reductions. Moreover, comparing the uncensored initial and final distributions detailed in Table 4, one can 

see that the removal of deprivations in electricity and water led household 4, 2 and 3 to reduce their 

deprivation score below 0.75, that is, to being lifted out from multidimensional poverty. Because of this, 

their remaining deprivations are not counted any longer (i.e. are censored) and thus they do not ‘appear’ 

in the numerator of the other censored headcount ratios, magnifying the reduction in these other 

headcount ratios. For this reason, and especially considering that we aim at evaluating the effectiveness of 

the fiscal effort in reducing non-monetary deprivations, it seems recommendable to use a union criterion 

for the evaluation of the marginal contributions or, alternatively, to consider the changes in the censored 

headcount ratios alongside the changes in the uncensored headcount ratios.20 

Table 11. Dimensional Marginal contributions – Observed and hypothetical ones- Equal Weights 

 Poverty cutoff 𝑀0 𝐶𝐻𝑤𝑎𝑡𝑒𝑟  𝐶𝐻𝑠𝑎𝑛𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝐻𝑔𝑎𝑠 𝐶𝐻𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 

𝑡0  
k=0.25 (union) 

0.588 0.43 0.85 0.58 0.50 

𝑡1 0.425 0.25 0.80 0.43 0.23 

𝐶ℎ𝑎𝑛𝑔𝑒 0.163 0.18 0.05 0.15 0.28 

𝑀𝐶𝑗
𝑀𝑃𝐼   26.9% 7.7% 23.1% 42.3% 

𝑡0  
k=0.75 
(intermediate) 

0.438 0.38 0.50 0.50 0.38 

𝑡1 0.194 0.10 0.23 0.23 0.23 

𝐶ℎ𝑎𝑛𝑔𝑒 0.244 0.28 0.28 0.28 0.15 

𝑀𝐶𝑗
𝑀𝑃𝐼   28.2% 28.2% 28.2% 15.4% 

MaxN-LNOB  
k=0.25 (union) 

0.319 0.20 0.85 0.23 0 

𝐶ℎ𝑎𝑛𝑔𝑒  
(𝑡0 − 𝑀𝐴𝑥𝑁 − 𝐿𝑁𝑂𝐵) 

 
0.269 

 
0.22 

 
0 

 
0.35 

 
0.50 

𝑀𝐶𝑗
𝑀𝑃𝐼   21.0% 0% 32.5% 46.4% 

LNOB-MaxN  
k=0.25 (union) 

0.325 0 0.85 0.45 0 

𝐶ℎ𝑎𝑛𝑔𝑒 

(𝑡0 − 𝐿𝑁𝑂𝐵 − 𝑀𝑎𝑥𝑁) 

 
0.263 

 
0.43 

 
0 

 
0.13 

 
0.50 

𝑀𝐶𝑗
𝑀𝑃𝐼   40.4% 0% 11.9% 47.5% 

Note: Percent contributions may not add exactly to 100% due to rounding. CH: censored headcount ratio. 

Interestingly, the observed dimensional marginal contributions can be compared to those that would have 

resulted if the optimal distributions had been achieved, which is exemplified for the case of the union 

approach in the last two blocks of rows of Table 11. For instance, both under the MaxN-LNOB and the 

LNOB-MaxN optimal distributions, the contribution of the reduction of deprivations in electricity would 

have been the greatest to overall poverty reduction (46.4% and 47.5% correspondingly), but in the MaxN-

LNOB distribution this would have been followed by reducing deprivations in natural gas (contributing 

with 32.5% to poverty reduction), whereas in the LNOB-MaxN distribution this would have been 

followed by reductions in deprivations in water (contributing with 40.4% to poverty reduction). 

 

20 See also Seth and Alkire (2015). 
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6. A brief note on reranking 

Up to this point we have not addressed the fact that, as a result of the fiscal intervention, households may 

change their relative position in the distribution of deprivation scores, that is, there might be reranking. In 

the income space, “the definition of horizontal equity postulates that the pre-fiscal policy income ranking 

should be preserved (Duclos and Araar, 2006). In other words, if individual A was poorer than individual 

B before the fiscal interventions, individual A should continue to be poorer than individual B after the 

interventions.” In fact, “…reranking is interpreted as a measure of fiscally induced horizontal inequality.” 

(Lustig et al., 2018, p. 11-12). 

Taken to the multidimensional context, this principle would imply that when constructing the optimal 

distributions -by any criterion- the original ranking of deprivation scores should be preserved. However, 

because of the indivisibilities detailed in Section 4.1.3, preserving the original ranking may not always be 

possible. The removal of deprivations produces indivisible reductions in deprivation scores that inevitably 

affect the ranking. This can be noticed in the examples of Section 5, comparing the columns of the 

censored deprivation scores. For instance, in the example of Table 3, households #2 and #3 have an initial 

deprivation score of 0.75, among the poorest, yet in the optimal LNOB-MaxN allocation, household #2  

ends with a deprivation score of 0.25, in a better position than household #3, which ends with a 

deprivation score of 0.5. The example of unequal weights in Appendix 2 gives examples of even more 

dramatic re-rankings, simply by lifting one highly weighted deprivation. While it seems difficult to always 

comply with the horizontal equity principle in the multidimensional case, it must however be noted, that 

no one is made worse-off in absolute terms under any of the alternative optimal allocations. 

7. Implementing the methodology with real data 

The indicators proposed in this paper can be implemented with real data for two purposes. In the first 

place they can be implemented as an ex-post evaluation of the fiscal action. Second, they can be 

implemented ex-ante, as a government programmatic way to reduce multidimensional poverty. In this 

section we first explain how to deal with two technical issues when using real data, and then we detail the 

key pieces of information that are required for each kind of real-world implementations. 

7.1 Dealing with population growth 

In the proposed methodology we are considering the deprivation matrix in 𝑡0 as the pre-fiscal matrix of 

the deprivation matrix in 𝑡1. Until now we have assumed that the population of the deprivation matrices 

in 𝑡0 and 𝑡1 are the same, as well as the households’ configurations, as if we had panel data. However, this 
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methodology is intended to be implemented using repeated cross-sectional data. We have already detailed 

how to incorporate survey weights in the generation of the optimal distributions. Yet one further issue to 

consider is that, naturally, there will be population growth over time. Population growth affects the costing 

of poverty reduction. Reducing the MPI in “x” percent points is more costly if there is population growth 

than if there is not, as more households will have to be connected to services. Population growth can be 

easily incorporated through the survey weight variable. 

To evaluate the fiscal effort done in reducing multidimensional poverty between 𝑡0 and 𝑡1, the relevant 

population size to consider is 𝑛1, as that is the population over which MPI is computed in the final 

observation. One can compute the population growth between 𝑡0 and 𝑡1 and expand the survey weight 

variable in 𝑡0, 𝑝ℎ𝑡0
, by the population growth between 𝑡0 and 𝑡1 (𝑛𝑔 = (𝑛1 − 𝑛0)/𝑛0): 

𝑝ℎ𝑡0

′ = 𝑝ℎ𝑡0
(1 + 𝑛𝑔) 

By definition, ∑ 𝑠ℎ𝑝ℎ𝑡0

′𝑇0
ℎ=1 = 𝑛1 = ∑ 𝑠ℎ𝑝ℎ𝑡1

𝑇1
ℎ=1 . The optimizing algorithms should then be implemented 

over the initial deprivation matrix 𝒈𝑡0
0 , but using the expanded survey weights 𝑝ℎ𝑡0

′ . By the replication 

invariance property, all the deprivation and poverty rates will remain unchanged using these expanded 

survey weights. In this way, the algorithm is implemented over the same deprivation and poverty metrics 

that a policy maker observes in 𝑡0, but considering that the population will be that of 𝑡1 by the time 

investments in removing deprivations are finalized. 

There is, however, one limitation of proceeding in this way, which is that it assumes that all households, 

of different sizes, increase in the same proportion given by the population growth-rate. This may not 

always hold as households may tend to become smaller over time. That is, it is very likely that the number 

of households grows more than the population. Given that the costing of lifting deprivations is at the 

household level, the proposed procedure could overestimate the potential for poverty reduction that the 

observed budget could achieve if optimally allocated. At the same time, it is also worth noting that poor 

households, which in general tend to be bigger, may not register substantial reductions in their average 

size, at least in relatively short periods of time. In such case, applying the homogeneous population growth 

rate across households’ sizes may not be that problematic in practice. 

7.2 Data requirements for implementing the methodology as an ex-post evaluation of the fiscal 

action 

If the methodology is implemented as an ex-post evaluation of the fiscal action one needs to define several 

issues simultaneously and interconnectedly: the indicators over which the fiscal action will be evaluated, 

the period for the evaluation, and check the availability of microdata for that period and the indicators 



Santos, Lustig and Zanetti  Counting and Accounting 

OPHI Working Paper 144 www.ophi.org.uk 42 

that will be considered. The selection of indicators is not trivial. As argued earlier, the selected indicators 

need to be such that reductions in their deprivation rates can be reasonably attributed to the fiscal action. 

For the effectiveness analysis two cross-section household survey data, at the initial and final point in time 

-the 𝑡0 and 𝑡1 moment, are required. For certain analysis, microdata from censuses could be convenient, 

as it covers all areas in a country and offers disaggregated level data, which household surveys do not. The 

drawback is that it is only collected every ten years. 

Once the period, indicators and data sources have been decided, it is fundamental to have two additional 

pieces of information for the fiscal analysis: a) estimates of the cost of removing each deprivation under 

consideration, b) information on the public spending on those items over the period under study. While 

this kind of information should be available, it may be not so straightforward to find or obtain. 

The provision of public services varies greatly across countries, from regulated private companies to public 

ones, with mixed ownership in between, and -very frequently- with different companies supplying different 

areas of a country. Thus, obtaining information on the cost of removing deprivation in services such as 

water, sewage sanitation, gas or electricity, may require investing some considerable time and resources. 

In most countries, there is a government department that collects that information, although it is not 

always readily available.21 As mentioned in Section 4.3.1, most likely, there will be geographical variation 

of such costs. 

The information on the public spending done in each area under analysis over the study period is relatively 

easier to obtain. Note, however, that for a proper assessment of effectiveness, this information should 

have the greatest level of disaggregation as possible, both in terms of the spending items (capital 

investments, operation or maintenance) as well as in terms of the geographical areas where this spending 

was allocated. 

Finally, an important normative decision is the weighting scheme to implement in the MPI, as it directly 

determines the cost-effectiveness of removing each deprivation. Clearly, the weighting scheme needs to 

be properly justified. In any case, it is advisable that a robustness analysis is performed within a certain 

reasonable range of weights. 

With this information, alongside the proposed procedure to deal with population growth, the optimal 

distributions under the alternative optimal criteria MaxN-LNOB and LNOB-MaxN can be computed, and 

 

21 Despite data limitations and diverse technical complexities, Hutton and Varughese (2016) offer global costing estimates of 
extending water, sanitation and hygiene (WASH) services to meet the 6th SDG. 
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thus the 𝐼𝐸𝑀𝑃 and 𝑆𝐸𝑀𝑃 indicators can be calculated. The dimensional marginal contributions to poverty 

reduction can also be computed and contrasted with those that would emerge from the optimal allocations.  

7.3 Data requirements for implementing the methodology as an ex-ante poverty reduction 

government programme 

Alternatively, a government may want to intervene in reducing multidimensional poverty and seek for the 

most cost-effective way to accomplish that. In such case, the optimal distributions under the MaxN-LNOB 

or the LNOB-MaxN criteria can be a guide. In particular, if the aim is to help the poorest poor, the LNOB-

MaxN criterion should be implemented. 

When implementing this analysis ex-ante, one needs microdata on the indicators on which the government 

plans to take action. In this case data at the starting point 𝑡0 will serve both as a diagnosis of the initial 

state of deprivations, as well as the basis for planning the intervention. To cost and compute the optimal 

distribution under any of the two criteria, the government will have to consider the population projection 

for the target year, such that population growth can be factored in the budget as detailed in Section 7.1. 

The information on the costing of the services on which the government wants to expand access will 

naturally also be needed, as in the ex-post case, as well as the intended budget for this poverty reduction 

programme. Note that depending on the results of the effectiveness analysis, it may happen that the 

relative allocation of funds across different ministries changes, which will require political negotiation. One 

more time, the weighting of the indicators will have to be transparently decided upfront.22 

7.4 Assessing by geographical areas and decomposing by population subgroups 

The proposed methodology assesses whether a certain public spending for expanding households’ access 

in different dimensions was allocated in the best way across dimensions and households. Throughout the 

paper we have referred to the case of expanding access to public services as natural candidates for the 

multidimensional measure to consider. In consequence, to seek plausible optimal allocations, it is advisable 

that the proposed algorithms are implemented by areas within a country, which can be regions, provinces, 

or municipalities, depending on their extension. The prioritization of them within a country can follow 

different criteria, with the MPI value being an obvious strong candidate. 

 

22 See the discussion in Barbieri and Higgins (2015) about the setting of the MPI’s indicators weights from a political economy 
point of view. 
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Additionally, both for an ex-post or an ex-ante implementation of the methodology, decompositions 

across population subgroups, such as mono-parental-female headed households vs. biparental households, 

vs. households with no children can be incorporated, as the MPI is fully decomposable. 

7.5 Considering a more comprehensive MPI 

The assessment of impact and spending effectiveness on a few indicators, such as access to public services, 

on which there has been a fiscal effort to reduce deprivation can be implemented within a broader MPI, 

one that considers other key poverty dimensions. In fact, many countries now have a national MPI and 

may want to assess the fiscal effort done on a subgroup of indicators but keeping the complete national 

MPI as the metric (which may include nutrition, education or employment, for example). In such case, the 

methodology can be implemented with the following considerations. The observed change in the MPI, 

which is the denominator of the  𝐼𝐸𝑀𝑃 indicator and the target for the 𝑆𝐸𝑀𝑃 indicator, would only need 

to consider the change in the indicators that are under scrutiny, i.e. those reduced by the fiscal effort. 

However, note that both optimal criteria, MaxN-LNOB as well as LNOB-MaxN, would rank the 

households by their initial full MPI value. 

8. Concluding remarks 

In this paper we proposed analogue indicators of CEQ’s fiscal incidence indicators for the case of 

multidimensional poverty under the AF measurement framework using the 𝑀0 measure, with which a 

Multidimensional Poverty Index (MPI) can be defined. We have proposed an impact and a spending 

effectiveness indicator which can be implemented using cross-sectional household survey (or census) data 

at two points in time, alongside information on the cost of removing each deprivation at the household 

level, and information on the public spending the government has allocated or plans to allocate to the 

dimensions under analysis. We have also noted that changes in the censored headcount ratios (associated 

to the 𝑀0 measure) expressed as a proportion of total change in poverty can be interpreted as an observed 

dimensional marginal contribution indicator, which in turn can be compared to the ones that emerge from 

the optimal allocations. 

In the methodology presented here, poverty is identified at the household level and deprivations are also 

lifted at the household level, with per household costs associated to removing each considered deprivation. 

However, poverty is computed in population terms. This brings one tension: whether the optimal 

distribution to be considered for the impact and spending effectiveness indicators should prioritize 

reducing poverty to the biggest number, what we have named the MaxN-LNOB criterion, or rather to the 

poorest poor, what we have named the LNOB-MaxN criterion (LNOB for “Leave No One Behind”), a 
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prioritarianism criterion. The first optimal criterion will produce a reduction of the MPI always equal or 

greater than the second criterion, but it may leave the poorest poor just as they were at the beginning. We 

consider that the LNOB-MaxN criterion truly embodies the 2030 Development Agenda as well as a more 

sensible ethical principle and should thus be preferred over the MaxN-LNOB one. We recommend 

implementing the LNOB-MaxN optimization algorithm over the uncensored distribution of deprivations 

and evaluating impact effectiveness using alternative poverty cutoffs, from highest to lowest, to elucidate 

which poverty-intensity groups have been privileged by the fiscal effort. Interestingly however, if poverty 

is identified at the individual level or if household sizes are ignored, the two criteria coincide. 

Throughout the paper we have referred to the case of expanding access to public services as natural 

candidates for the multidimensional measure to consider. In such case, it is advisable that the proposed 

algorithms are implemented by areas within a country, which can be regions, provinces, or municipalities, 

depending on their extension. Their prioritization within a country can follow different criteria. While the 

MPI value is an obvious strong candidate, other options, such as the number of multidimensionally poor 

people may be justifiable. 

The proposed indicators can be implemented ex-post, as an assessment of the effectiveness of certain areas 

of public spending over a certain period, but also ex-ante, to guide a poverty reduction programme. 

Decompositions across relevant population subgroups can be incorporated, as the MPI is fully 

decomposable. While the methodological requirement of information on the costing of removing 

deprivation in certain fundamental dimensions of wellbeing such as access to basic services can be 

challenging, it is not impossible, and the payoff of a more effective allocation of the fiscal budget for 

poverty reduction surely outweighs the difficulties of assembling such data. We hope this methodology 

can be useful for a better targeting of the policy aimed at reducing poverty in its many dimensions, 

contributing in this way to the achievement of the first SDG and related ones. 
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Appendix 1. Distributional data to construct multidimensional poverty curves 

Table A1.1. Distributional Data to construct multidimensional poverty dominance curves for  

MaxN-LNOB and LNOB-MaxN distributions. Example 1 

 Frequency Cumulative Frequency Complementary Cumulative 
Frequency (1-Cumul Freq.) 

Complementary Cumulative M0 

ci MaxN-
LNOB 

LNOB-
MaxN 

MaxN-
LNOB 

LNOB-
MaxN 

MaxN-LNOB  
 

LNOB-MaxN  MaxN-LNOB LNOB-MaxN 

0 0.075 0.075 0.075 0.075 0.925 0.925 0.319 0.325 

0.25 0.725 0.55 0.8 0.625 0.20 0.375 0.319 0.325 

0.5 0.05 0.375 0.85 1 0.15 0 0.137 0.187 

0.75 0.15 0 1 1 0 0 0.112 0 

1 0 0 1 1 0 0 0 0 

Example: Columns 4 and 5: In the MaxN-LNOB distribution there is one household of 3 members with a deprivation score 
of 0. That represents 3/40=0.075 of the population. Then, there are 6 households with a deprivation score of 0.25. These 
households add up to a total of 29 people, out of a total of 40, which is 29/40=0.725 of the population. Adding 0.075 with 
0.725, we get 0.8, as detailed in second row, third column. And so on, with the other values. Columns 6 and 7 are the 
complementary of columns 4 and 5. Columns 8 and 9 are obtained computing the average of censored deprivation scores up 
to each ci value. In simpler terms, it is computing the M0 measure for the different k values. For example, for k=0.25, for 
distribution MaxN-LNOB, M0=0*0.075+0.25*0.725+0.5*0.05+0.75*0.15+1*0=0.319. For k=0.5, for distribution MaxN-
LNOB, M0=0.5*0.05+0.75*0.15+1*0=0.137, and so on for higher k values. 

Appendix 2. Examples illustrating the methodology with unequal weights 

In this Appendix we illustrate the methodology using unequal weights. We assume the same initial and 

final distributions and the same costs, but we now assume that each indicator has a different weight, which 

may emerge from participatory studies or normative reasons. In this case we suppose that overcoming 

deprivation in sanitation is highly valued, for example, because of its strong links to improvements in 

health outcomes. 

Consider the per household costs of removing each deprivation and the weighting structure of the MPI 

indicators presented in Table A2.1. Now, sanitation, despite being the most expensive deprivation to 

remove, it is the most cost-effective because of its high weight in the MPI. We are assuming – on purpose 

– a very disbalanced weighting scheme with the aim of exemplifying the flexibility of the methodology. In 

real world exercises such imbalances should be very rare. 

Table A2.1. Per Household Costs – Example with unequal weights 

Dimension 𝑝ℎ𝑐 of each 𝑗 dimension Weighting in the 𝑀0 of each 𝑗 
dimension 

Cost-Effectiveness Ratios Priorities 

Water 800 0.075 10,666.66 4 
Sanitation 2300 0.75 3066.66 1 
Gas 900 0.125 7200 2 
Electricity 400 0.05 8000 3 

Impact Effectiveness under different optimal criteria and different poverty cutoffs 

In Table A2.2 we present deprivation matrix in 𝑡0 and in 𝑡1, with households ordered from poorest to 

richest, using a union poverty cutoff (k=0.05), and the optimal distributions that result from the MaxN-
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LNOB criterion and the LNOB-MaxN criteria correspondingly. In Table A2.3 we present the same 

distributions but using an intermediate (high) poverty cutoff of k=0.80. Once again, zeroes in light blue 

denote censored deprivations. We are assuming that poverty was reduced lifting the same deprivations as 

in the example with equal weights, with a spent budget of $6,900. Deprivations that were removed appear 

as a red zeroes. For brevity of the tables, we are not including the columns on the poverty status of each 

household, but this can be easily inferred from the censored deprivation scores columns. 

As detailed in the first rows of Table A2.4, from 𝑡0 to 𝑡1 there was a reduction in MPI using a union 

poverty cutoff and the unequal weighting scheme of 0.083. If an intermediate poverty cutoff of k=0.80 is 

used, poverty was reduced in 0.177. In both cases there were reductions of both H and A. 

Now suppose one wants to assess the impact effectiveness of that fiscal effort. Implementing the algorithm 

under the MaxN-LNOB criterion, which maximizes the reduction in 𝑀0 gives a distribution that allocates 

the $6,900 budget exclusively to the reduction of the most cost-effective deprivation -sanitation- to the 

three poor biggest households. While this deprivation was removed only to three households, because it 

is so highly valued, it reduces poverty in 0.319, much more than the observed reduction. Thus, impact 

effectiveness is only 26% (Table A2.4), indicating that, under this weighting scheme and optimal 

distribution, the spent budget achieved only 26% poverty reduction of what it could have achieved. 

However, note that in this optimal distribution the three most intensely deprived households, husehold 

1, 2 and 3, which have a deprivation score of 𝑐ℎ𝑡0
= 1, are not lifted any deprivation. 

Under the LNOB-MaxN criterion, the budget is also completely spent in removing deprivation in 

sanitation to three households, but the selected households are the poorest ones, such that no household 

remains with a deprivation score of 1. As these households are not the biggest ones, MPI is reduced in 

0.187, over twice the observed reduction but less than with the MaxN-LNOB criterion. In consequence, 

impact effectiveness is evaluated to be 44%. (Table A2.4). However, as in the equal weights case, given 

that the LNOB-MaxN criterion prioritizes the poorest poor, it is convenient to also evaluate effectiveness 

using an MPI with a higher deprivation cutoff. Indeed, when an MPI with k=0.80 is used, poverty 

reduction with the LNOB-MaxN criterion (implemented over the uncensored distribution) is 0.249, higher 

than the 0.234 reduction achieved with the MaxN-LNOB criterion also implemented over the uncensored 

distribution (see Table A2.4). Therefore, with this MPI, impact effectiveness is lower with the LNOB-

MaxN benchmark (71%) than with the MaxN-LNOB criterion (75%). 

As with the case of equal weights, FigureA2.1 depicts the Complementary Cumulative Distribution 

Functions for MaxN-LNOB and LNOB-MaxN and Figure A2.2 depicts the Adjusted Headcount Ratio 

dominance curves. Once again, the curves cross in both cases, indicating that while the MaxN-LNOB 

distribution dominates the LNOB-MaxN distribution, both in terms of 𝐻 (first order dominance) as in 



Santos, Lustig and Zanetti  Counting and Accounting 

OPHI Working Paper 144 www.ophi.org.uk 50 

terms of 𝑀0 (second order dominance) for the first part of the possible k values, for high k values, the 

converse holds. 

Let’s now consider the two criteria being implemented over the censored distribution. It is interesting to 

note that with k=0.80, the deprivation in sanitation of household #8, of 7 people, is censored. Thus, in 

contrast with the uncensored case, this deprivation is not lifted in the MaxN-LNOB optimal distribution. 

Household #6, of 5 people, is chosen instead. With this distribution, the MPI is reduced in 0.334 (Table 

A2.4), almost twice the observed reduction of 0.177, such that impact effectiveness is only 53%. Yet, note 

that even using this high poverty cutoff, the poorest poor households are left unchanged. In fact, the MPI 

reduction is achieved through a significant reduction in 𝐻 but a simultaneous (small) increase in 𝐴 (as the 

number of the poor was reduced). In turn, the LNOB-MaxN optimal distribution, focused on lifting the 

poorest poor, is the same as with the uncensored distribution: it lifts deprivation in sanitation to 

households #1, #2 and #3. As these are not the biggest households, the MPI with k=0.8 is reduced in 

0.249, higher than the observed 0.177 reduction but lower than the reduction achieved with the MaxN-

LNOB criterion, and thus, impact effectiveness is higher (71%) (Table A2.4). However, if the MPI was 

computed over these two distributions using an even higher poverty cutoff, for example with k=0.81, it 

could be appreciated that the LNOB-MaxN distribution removed the most intense poverty, and 

effectiveness would be evaluated to be lower as compared to the MaxN-LNOB criterion. 

As argued with the equal weights example, it is recommendable to implement the LNOB-MaxN 

optimization algorithm over the uncensored distribution of deprivations and evaluate impact effectiveness 

using alternative poverty cutoffs, from highest to lowest, for an assessment of which poverty-intensity 

groups have been privileged by the fiscal effort. 
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Table A2.2. Impact Effectiveness – Unequal Weights – Union Criterion (k=0.05) – MaxN-LNOB vs. LNOB-MaxN 

HH# HH 
Size 

Weighted deprivations t0 Weighted deprivations t1 Weighted deprivations Optimal 
MaxN-LNOB 

Weighted deprivations Optimal 
LNOB- MaxN 

ci(k) 
t0 

ci(k) 
t1 

ci(k) 
MaxN-
LNOB 

ci(k) 
LNOB-
MaxN 

W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E     

1 4 0.075 0.75 0.125 0.05 0.075 0.75 0.125 0.05 0.075 0.75 0.125 0.05 0.075 0 0.125 0.05 1 1 1 0.25 
2 3 0.075 0.75 0.125 0.05 0.075 0.75 0 0 0.075 0.75 0.125 0.05 0.075 0 0.125 0.05 1 0.825 1 0.25 
3 3 0.075 0.75 0.125 0.05 0.075 0.75 0 0 0.075 0.75 0.125 0.05 0.075 0 0.125 0.05 1 0.825 1 0.25 
4 5 0.075 0.75 0.125 0 0 0.75 0.125 0 0.075 0 0.125 0 0.075 0.75 0.125 0 0.95 0.875 0.2 0.95 
5 5 0 0.75 0.125 0.05 0 0.75 0.125 0.05 0 0 0.125 0.05 0 0.75 0.125 0.05 0.925 0.925 0.175 0.925 
7 2 0.075 0.75 0 0 0 0 0 0 0.075 0.75 0 0 0.075 0.75 0 0 0.825 0 0.825 0.825 
6 5 0 0.75 0 0.05 0 0.75 0 0 0 0.75 0 0.05 0 0.75 0 0.05 0.8 0.75 0.8 0.8 
8 7 0 0.75 0 0 0 0.75 0 0 0 0 0 0 0 0.75 0 0 0.75 0.75 0 0.75 
9 3 0 0 0.125 0 0 0 0.125 0 0 0 0.125 0 0 0 0.125 0 0.125 0.125 0.125 0.125 
10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of 
people 

40 17 34 23 20 10 32 17 9 17 17 23 20 17 24 23 20     

Cens. 
HRs 

 43% 85% 58% 50% 25% 80% 43% 23% 43% 43% 58% 50% 43% 60% 58% 60%     

Table A2.3. Impact Effectiveness – Unequal Weights – Intermediate Criterion (k=0.80) – MaxN-LNOB vs. LNOB-MaxN 

HH# HH 
Size 

Censored 
Weighted deprivations t0 

Censored 
Weighted deprivations t1 

Censored 
Weighted deprivations  
Optimal MaxN-LNOB 

Censored 
Weighted deprivations  
Optimal LNOB-MaxN 

ci(k) 
t0 

ci(k) 
t1 

ci(k) 
MaxN-
LNOB 

ci(k) 
LNOB-
MaxN 

W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E     

1 4 0.075 0.75 0.125 0.05 0.075 0.75 0.125 0.05 0.075 0.75 0.125 0.05 0.075 0 0.125 0.05 1 1 1 0 
2 3 0.075 0.75 0.125 0.05 0.075 0.75 0 0 0.075 0.75 0.125 0.05 0.075 0 0.125 0.05 1 0.825 1 0 
3 3 0.075 0.75 0.125 0.05 0.075 0.75 0 0 0.075 0.75 0.125 0.05 0.075 0 0.125 0.05 1 0.825 1 0 
4 5 0.075 0.75 0.125 0 0 0.75 0.125 0 0.075 0 0.125 0 0.075 0.75 0.125 0 0.95 0.875 0 0.95 
5 5 0 0.75 0.125 0.05 0 0.75 0.125 0.05 0 0 0.125 0.05 0 0.75 0.125 0.05 0.925 0.925 0.175 0.925 
7 2 0.075 0.75 0 0 0 0 0 0 0.075 0.75 0 0 0.075 0.75 0 0 0.825 0 0.825 0.825 
6 5 0 0.75 0 0.05 0 0 0 0 0 0 0 0 0 0.75 0 0.05 0.8 0 0 0.8 
8 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of 
people 

40 17 34 33 20 10 20 14 9 17 12 20 20 17 17 20 20     

Cen. 
HRs 

 43% 85% 58% 50% 25% 50% 35% 23% 43% 30% 50% 50% 43% 43% 50% 50%     
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Figure A2.1. Complementary Cumulative Distribution Functions for MaxN-LNOB and LNOB-MaxN 

optimal distributions computed under the uncensored distributions – Unequal Weights 

 

 

Figure A2.2. The Adjusted Headcount Ratio Dominance Curves for MaxN-LNOB and LNOB-MaxN 

optimal distributions computed under the uncensored distributions – Unequal Weights 
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Table A2.4. Impact Effectiveness Indicators under different poverty cutoffs – Unequal Weights- MaxN-

LNOB vs. LNOB-MaxN 

  Union criterion Intermediate criterion 

Distribution  H 
(k=0.05) 

A 
(k=0.05) 

MPI 
(k=0.05) 

H 
(k=0.80) 

A 
(k=0.80) 

MPI 
(k=0.80) 

𝑡0  0.925 0.828 0.766 0.675 0.927 0.626 

𝑡1  0.875 0.781 0.683 0.5 0.898 0.449 

Observed poverty 
reduction 

 
0.05 0.047 0.083 0.175 0.029 0.177 

Observed spent budget  $6900 $6900 

Optimal MaxN-LNOB 
(over uncensored 
distribution) 

Poverty Measures 0.75 
 

0.597 
 

0.447 
 

0.425 
 

0.921 
 

0.391 
 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 0.175 
 

0.231 
 

0.319 
 

0.25 0.006 0.234 

Budget 
$6900 $6900 

IEMPI 
0.083/0.319=26% 0.177/0.234=75% 

Optimal LNOB-MaxN 
(over uncensored 
distribution) 

Poverty Measures 0.925 
 

0.626 
 

0.579 
 

0.425 
 

0.884 
 

0.376 
 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0 0.202 0.187 0.25 0.043 0.249 

Budget 
 $6900   $6900  

IEMPI 0.083/0.187=44% 0.177/0.249=71% 

Optimal MaxN-LNOB 
(over censored 
distribution) 

Poverty Measures 

NA 

0.30 
 

 

0.971 
 
 

0.291 
 
 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0.375 -0.044 0.334 

Budget 
$6900 

IEMPI 0.177/0.334=53% 

Optimal LNOB-MaxN 
(over censored 
distribution) 

Poverty Measures 

NA 

0.425 0.884 0.376 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0.25 0.043 0.249 

Budget 
$6900 

IEMPI 0.177/0.249=71% 

NA: Non-applicable. 

Spending Effectiveness under different optimal criteria and different poverty cutoffs 

We now turn to the dual indicator of spending effectiveness for the unequal weights case. The matrices 

associated to this exercise are detailed in Table A2.5 for the case of the union poverty cutoff and in Table 

A2.6 for the case of a k=0.80. 

With these unequal weights and a union poverty cutoff the poverty reduction target is the observed 0.083, 

which costed $6,900. The optimal distribution under the MaxN-LNOB criterion indicates that a higher 

reduction of 0.131 could have been achieved with a budget of $2300, by simply lifting deprivation in 

sanitation to the biggest poor household (household #8). Note that because of removing this deprivation, 

this household stops being poor (and this is also why 𝐴 increases). Then, as detailed in Table A2.7, with 

this benchmark, spending effectiveness is only 33%: an MPI reduction even higher than the observed one 
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could have been achieved with a third of the spent budget, had the budget been allocated to the most cost-

effective dimension. 

If we now consider the optimal allocation under the LNOB-MAxN criterion, we can see that the same 

poverty reduction of 0.131 requires twice the budget, $4600. This is because deprivation in sanitation is 

removed to the poorest households, which in this case are not the biggest ones, and thus two households 

need to be removed this deprivation to achieve the target poverty reduction. As the minimum budget 

under the LNOB-MaxN optimal distribution is twice the minimum budget under the MaxN-LNOB one, 

spending effectiveness evaluated under the LNOB-MaxN criterion is also twice spending effectiveness 

under MaxN-LNOB (66%) (Table A2.7).  

If we now look for the optimal distributions computed over the censored distribution with k=0.80, the 

target poverty reduction is 0.177. We can see in Table A2.6, that the MaxN-LNOB distribution now 

requires lifting two deprivations in sanitation to achieve the target poverty reduction, because the 

deprivation in sanitation of household #10 is now censored. Thus, the minimum budget is $4600, and 

now spending effectiveness is 66%. In turn, with the LNOB-MaxN criterion, deprivation in sanitation is 

lifted to the two poorest households (#1 and #2), and to achieve the target poverty reduction, deprivation 

in electricity is lifted to household #3. This is an example in which because the remaining poverty 

reduction to achieve the target is very small, it is optimal to lift a less costly deprivation as electricity, rather 

than sanitation, as captured in expression (26) of the 𝐶𝐸𝑆𝐸 coefficients. In such way poverty is reduced in 

0.179, just above the required 0.177, with a budget of $5000. Thus, spending effectiveness in this case is 

72%. 
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Table A2.5. Spending Effectiveness – Unequal Weights – Union Criterion (k=0.05) – MaxN-LNOB vs. LNOB-MaxN 

HH# HH 
Size 

Weighted deprivations t0 Weighted deprivations t1 Weighted deprivations Optimal 
MaxN-LNOB 

Weighted deprivations Optimal 
LNOB- MaxN 

ci(k) 
t0 

ci(k) 
t1 

ci(k) 
MaxN-
LNOB 

ci(k) 
LNOB-
MaxN 

W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E     

1 4 0.075 0.75 0.125 0.05 0.075 0.75 0.125 0.05 0.075 0.75 0.125 0.05 0.075 0 0.125 0.05 1 1 1 0 
2 3 0.075 0.75 0.125 0.05 0.075 0.75 0 0 0.075 0.75 0.125 0.05 0.075 0 0.125 0.05 1 0.825 1 0 
3 3 0.075 0.75 0.125 0.05 0.075 0.75 0 0 0.075 0.75 0.125 0.05 0.075 0.75 0.125 0.05 1 0.825 1 1 
4 5 0.075 0.75 0.125 0 0 0.75 0.125 0 0.075 0.75 0.125 0 0.075 0.75 0.125 0 0.95 0.875 0.95 0.95 
5 5 0 0.75 0.125 0.05 0 0.75 0.125 0.05 0 0.75 0.125 0.05 0 0.75 0.125 0.05 0.925 0.925 0.925 0.925 
7 2 0.075 0.75 0 0 0 0 0 0 0.075 0.75 0 0 0.075 0.75 0 0 0.825 0 0.825 0.825 
6 5 0 0.75 0 0.05 0 0.75 0 0 0 0.75 0 0.05 0 0.75 0 0.05 0.8 0.75 0.8 0.8 
8 7 0 0.75 0 0 0 0.75 0 0 0 0 0 0 0 0.75 0 0 0.75 0.75 0 0.75 
9 3 0 0 0.125 0 0 0 0.125 0 0 0 0.125 0 0 0 0.125 0 0.125 0.125 0.125 0.125 
10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No. of 
people 

40 17 34 23 20 10 32 17 9 17 27 23 20 17 27 23 20     

Cens. HRs 43% 85% 58% 50% 25% 80% 43% 23% 43% 68% 58% 50% 43% 68% 58% 50%     

Table A2.6. Spending Effectiveness – Unequal Weights – Intermediate Criterion (k=0.80) – MaxN-LNOB vs. LNOB-MaxN 

HH# H
H 
Siz
e 

Censored 
Weighted deprivations t0 

Censored 
Weighted deprivations t1 

Censored 
Weighted deprivations  
Optimal MaxN-LNOB 

Censored 
Weighted deprivations  

Optimal LNOB-MaxN(*) 

ci(k) 
t0 

ci(k) 
t1 

ci(k) 
MaxN-
LNOB 

ci(k) 
LNOB-
MaxN 

W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E W_W W_S W_G W_E     

1 4 0.075 0.75 0.125 0.05 0.075 0.75 0.125 0.05 0.075 0.75 0.125 0.05 0.075 0 0.125 0.05 1 1 1 0 
2 3 0.075 0.75 0.125 0.05 0.075 0.75 0 0 0.075 0.75 0.125 0.05 0.075 0 0.125 0.05 1 0.825 1 0 
3 3 0.075 0.75 0.125 0.05 0.075 0.75 0 0 0.075 0.75 0.125 0.05 0.075 0.75 0.125 0 1 0.825 1 0.95 
4 5 0.075 0.75 0.125 0 0 0.75 0.125 0 0.075 0 0 0 0.075 0.75 0.125 0 0.95 0.875 0 0.95 
5 5 0 0.75 0.125 0.05 0 0.75 0.125 0.05 0 0 0 0 0 0.75 0.125 0.05 0.925 0.925 0 0.925 
7 5 0.075 0.75 0 0 0 0 0 0 0.075 0.75 0 0 0.075 0.75 0 0 0.825 0 0.825 0.825 
6 2 0 0.75 0 0.05 0 0 0 0 0 0.75 0 0.05 0 0.75 0 0.05 0.8 0 0.8 0.8 
8 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

No of 
people 

40 17 34 33 20 10 20 14 9 17 17 20 20 17 20 20 20     

Cen. HRs  43% 85% 58% 50% 25% 50% 35% 23% 43% 43% 50% 50% 43% 50% 50% 50%     
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Table A2.7. Spending Effectiveness Indicators under different poverty cutoffs – Unequal Weights- 

MaxN-LNOB vs. LNOB-MaxN 

  Union criterion Intermediate criterion 

Distribution  H 
(k=0.05) 

A 
(k=0.20) 

MPI 
(k=0.05) 

H 
(k=0.80) 

A 
(k=0.80) 

MPI 
(k=0.80) 

𝑡0 Poverty Measures 0.925 0.828 0.766 0.675 0.927 0.626 

𝑡1 Poverty Measures 0.875 0.781 0.683 0.5 0.898 0.449 

Observed poverty reduction 
(TARGET) 

0.05 0.048 0.083 0.175 0.029 0.177 

Observed spent budget $6900 $6900 

 
 
 
 
Optimal MaxN-
LNOB 
(over entire 
distribution) 

Poverty Measures 
0.75 

 
0.847 

 
0.635 

 

NA 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 0.175 -0.019 0.131 

Minimum Budget 

$2300 

𝑺𝑬𝑴𝑷𝑰 
2300/6900=33% 

Optimal 
LNOB-MaxN 
(over entire 
distribution) 

Poverty Measures 0.925 0.686 0.635 

NA 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0 0.142 0.131 

Minimum Budget $4600 

𝑺𝑬𝑴𝑷𝑰 4160/6900=66% 

Optimal MaxN-
LNOB 
(over censored 
distribution) 

Poverty Measures 

NA 

0.425 0.921 0.391 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0.25 0.006 0.235 

Minimum Budget $4600 

𝑺𝑬𝑴𝑷𝑰 4600/6900=66% 

Optimal 
LNOB-MaxN 
(over censored 
distribution) 

Poverty Measures 

NA 

0.5 0.894 0.447 

Poverty Reduction 

(𝑡0 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙) 
0.175 0.033 0.179 

Minimum Budget $5000 

𝑺𝑬𝑴𝑷𝑰 5000/6900=72% 

NA: Non-applicable. 
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