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Abstract 
Composite measures such as multidimensional poverty indices depend crucially on the 
weights assigned to the different dimensions and their indicators. A recent strand of the 
literature uses endogenous weights, determined by the data at hand, to compute poverty 
scores. Notwithstanding their merits, we demonstrate both analytically and empirically 
how a broad class of endogenous weights violates key properties of multidimensional pov-
erty indices such as monotonicity and subgroup consistency. Without these properties, anti-
poverty policy targeting and assessments are bound to be seriously compromised. Using real-
life data from Ecuador and Uganda, we show that these violations are widespread. Hence, 
one should be extremely careful when using endogenous weights in measuring poverty. Our 
results naturally extend to other welfare measures based on binary indicators, such as the 
widely studied asset indices. 

Keywords: Multidimensional poverty, Endogenous weights, Measurement externalities, Prin-
cipal components analysis (PCA), Frequency weights, Dual-cutoff counting approach 

JEL Classification: I32 

*University of Manchester Email: I.Dutta@manchester.ac.uk. 
**OPHI, University of Oxford, Email: ricardo.nogales@qeh.ox.ac.uk. 

***Corresponding author. University of Leeds, Email: G.Yalonetzky@leeds.ac.uk. 

This study has been prepared within the OPHI theme on multidimensional measurement. 

mailto:I.Dutta@manchester.ac.uk
mailto:ricardo.nogales@qeh.ox.ac.uk
mailto:G.Yalonetzky@leeds.ac.uk


Acknowledgments 
We would like to thank James Foster as well as seminar participans at the Workshop: Recent 
developments in distributional analysis (Leeds, April 2019) and the OPHI Seminar Series 
(Oxford, November 2020) for very helpful comments and suggestions. 

Citation: Dutta, I., Nogales, R., and Yalonetzky, G. (2021): ‘Endogenous weights and mul-
tidimensional poverty: A cautionary tale’ OPHI Working Paper 135, University of Oxford. 

The Oxford Poverty and Human Development Initiative (OPHI) is a research cen-
tre within the Oxford Department of International Development, Queen Elizabeth 
House, at the University of Oxford. Led by Sabina Alkire, OPHI aspires to build 
and advance a more systematic methodological and economic framework for reduc-
ing multidimensional poverty, grounded in people’s experiences and values. 

The copyright holder of this publication is the Oxford Poverty and Human Development Initiative (OPHI). 
This publication will be published on the OPHI website and will be archived in the Oxford University Research 
Archive (ORA) as a Green Open Access publication. The author may submit this paper to other journals. 

This publication is covered by copyright; however, it may be reproduced without fee for teaching or nonprofit 
purposes, but not for resale. Formal permission is required for all such uses and will normally be granted 
immediately. For copying in any other circumstances, for reuse in other publications, or for translation or 
adaptation, prior written permission must be obtained from OPHI and may be subject to a fee. 

Oxford Poverty & Human Development Initiative (OPHI) 
Oxford Department of International Development 
Queen Elizabeth House (QEH), University of Oxford 
3 Mansfield Road, Oxford OX1 3TB, UK 

Tel. +44 (0)1865 271915 Fax +44 (0)1865 281801 
ophi@qeh.ox.ac.uk http://www.ophi.org.uk 

The views expressed in this publication are those of the author(s). Publication does not imply endorsement by 
OPHI or the University of Oxford, nor by the sponsors, of any of the views expressed. 

ISSN 2040-8188 ISBN 978-1-912291-26-7 

mailto:ophi@qeh.ox.ac.uk
http://www.ophi.org.uk


Dutta et al. Endogenous weights and multidimensional poverty 

1 Introduction 

It has become increasingly common to understand deprivation from a multidimensional per-
spective. Practitioners undertaking such multidimensional assessments must make several 
nontrivial methodological decisions, including which dimensions and indicators of depri-
vation to consider among the several possible and how to combine them into one single 
composite index of multidimensional poverty. In combining these dimensions and their in-
dicators into a composite index, a natural question to ask is how much weight should be 
assigned to each of them. This paper examines, both analytically and empirically, the im-
plications of using endogenous (i.e. data-driven) weights on a set of desirable properties for 
multidimensional poverty indices (see Bourguignon and Chakravarty, 2003; Alkire and Fos-
ter, 2011) and demonstrates their failure to satisfy these key properties under endogenous 
weights. 

One of the key methodological challenges in computing composite measures like multidi-
mensional poverty indices is how to weight the observed dimensions of deprivation and 
their associated indicators. A common approach is to use exogenous weights, which are in-
dependent of the dataset and reflect the value judgements of the society, the analyst or the 
policymaker. In contrast, we focus on a growing body of literature which relies on the al-
ternative of endogenous weights, which are determined by the dataset, as a way to reflect 
the importance of the different indicators in the composite measure of deprivation (OECD, 
2008; Decanq and Lugo, 2013). We consider a general array of endogenous weights, including 
those based on statistical methods and factorial techniques, such as principal component anal-
ysis (henceforth PCA) applied to appropriately defined correlation matrices, and frequency-
based weights, which are functions of the frequency of deprivation among the population in 
the different indicators according to some normative judgements.1 

The applications of these endogenous weights are widespread. For instance, the Mexican 
anti-poverty programme ‘Prospera’ used PCA-based indices to select the localities where the 
program was implemented (Skoufias et al., 2001; Dávila Lárraga, 2016). Likewise, popular 
and well-established indices such as the Social Progress Index or the Human Needs Index 
are constructed using endogenous weights based on PCA.2 Similarly, a Comprehensive Vul-

1Endogenous weights based on data-reduction factorial techniques such as PCA (see e.g. Njong and Ningaye, 
2008; Asselin and Anh, 2008; Asselin, 2009; Alkire et al., 2015; Coromaldi and Drago, 2017; Wittenberg and 
Leibbrandt, 2017) use optimisation procedures applied to statistical concepts such as correlation or variance. 
Meanwhile, depending on normative judgements, frequency-based weights increase (or decrease) with the pro-
portions of people deprived in a particular indicator. 

2The Social Progress Index is calculated based on inverted indicators, and hence looks at deprivation. In justi-
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nerability Monitoring Exercise recently established by the World Food Program assesses 
livelihood vulnerabilities of refugees in Turkey based on an index constructed using PCA 
(WFP, 2019).3 Influential studies such as Asselin and Anh (2008) claimed that other factorial 
data-reduction techniques, such as Multiple Correspondence Analyses (henceforth MCA), 
are particularly well suited to evaluating multidimensional poverty composed of categori-
cal indicators. This led to a surge in studies using MCA-based weights (e.g. Ki et al., 2005; 
Ezzrari and Verme, 2012; Noglo, 2017; Dhongde and Haveman, 2017). A strand of the litera-
ture even suggests endogenous weights as benchmarks for multidimensional poverty analyses, 
claiming that they can be regarded as ‘superior’ approaches to identify weighting structures 
for indicators. For instance, Pasha (2017) recently relied on MCA-based weights to criticise 
the Multidimensional Poverty Index (henceforth MPI) of the United Nations Development 
Programme (UNDP) and OPHI, concluding that ‘equal weighting of the three dimensions 
cannot be statistically justified’ (p. 268). In a similar critical spirit, using Confirmatory Fac-
tor Analyses – another factorial technique for data reduction, Nájera Catalán and Gordon 
(2019) qualify exogenous weights in multidimensional poverty measurement as statistically 
‘unreliable’. As another example, based on PCA/factor-analysis-like approaches, Heshmati 
et al. (2008) claim to put forth ‘more sophisticated’ methods to assess child poverty com-
pared to UNICEF’s approaches that are not based on such data-driven weights (UNICEF, 
2005, 2007). Likewise, examples of frequency-driven endogenous weights are ubiquitous in 
the literature on multidimensional poverty measurement (see e.g. Deutsch and Silber, 2005; 
Njong and Ningaye, 2008; Aaberge and Brandolini, 2014; Whelan et al., 2014; Alkire et al., 
2015; Cavapozzi et al., 2015; Rippin, 2016; Datt, 2019; Abdu and Delamonica, 2018).4 

This paper demonstrates that combining a broad class of endogenous weights with a general 
class of multidimensional poverty indices based on the popular counting approach (Alkire 
and Foster, 2011) leads to the violation of two fundamental properties in poverty measure-
ment: monotonicity and subgroup consistency.5 Monotonicity states that if the poverty 
experience of an individual worsens in any indicator, then the overall poverty experience of 

fying PCA for the Social Progress Index, Stern et al. (2018, p. 13) state that: ‘It essentially assigns each indicator 
a weight, a method we select over equal weighting to ensure that indicators are meaningfully contributing to a 
component score, while accounting for similarities between them.’ 

3See https://www.wfp.org/publications/turkey-comprehensive-vulnerability-monitoring-exercise. 
4Moreover, the broad class of endogenous weights considered in this paper also includes hybrid weights, where 

data-driven weights are used for some dimensions in combination with exogenous weights for other dimensions 
(see e.g. Dotter and Klasen, 2014). 

5The Alkire and Foster (2011) counting approach, which relies on a minimum weighted number of deprived 
indicators as a threshold to identify the multidimensionally poor, is broadly the path followed by around sev-
enty countries and organisations that measure multidimensional poverty, including the flagship UNDP–OPHI 
MPI, which is used to evaluate multidimensional poverty globally (see Alkire et al., 2015; MPPN, 2019). 
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the society to which this individual belongs should not improve (Tsui, 2002). Subgroup con-
sistency requires that changes in overall poverty in a population should coherently reflect 
the changes in poverty happening at the smaller population subgroup level. For instance, if 
the population of a country is divided into two subgroups based on regions, say North and 
South, then if the poverty of the North increases while the poverty of the South remains un-
changed, overall poverty in the country should not decrease under fulfillment of subgroup 
consistency. Moreover, subgroup consistency requires that overall poverty should not de-
crease whether the North is paired with the South, the East or the West, as long as poverty 
did not change in the latter three regions. 

Failure of the poverty index to satisfy monotonicity implies that we may observe societal pov-
erty falling even when the poverty of some individuals in that society has increased, without 
any countervailing decrease in any other individuals’ poverty. Violation of monotonicity 
can lead to perverse policies whereby increasing individuals’ deprivation in some indicators 
can be deemed beneficial since it will lead to an overall decrease in multidimensional poverty. 
Meanwhile, failure of subgroup consistency can lead to a situation where an increase in pov-
erty in some regions or population subgroups, ceteris paribus, may decrease societal poverty, 
depending on which other regions or population subgroups with unchanged poverty levels 
are taken into account for the computation. This in turn can lead to policies that ignore 
increasing poverty in one region or one population subgroup because overall poverty has de-
creased. Without these key properties, it would be futile to use a poverty index to undertake 
any kind of comparative exercise, whether across time, regions or population groups, and 
thus any evaluation of anti-poverty policies would be ineffective (see Sen, 1976; Foster and 
Shorrocks, 1991). 

In our context, endogenous weights generate a measurement externality since they depend on 
the distribution of deprivations across the indicators. Change in one person’s deprivation 
status (e.g. because they are no longer deprived in some indicator) affects the deprivation 
scores of many other people through its impact on the weighting vector. Our appraisal of 
other people’s poverty is thus altered, despite the absence of any objective change in their de-
privation status. By contrast, this measurement externality is nonexistent if weights are set 
exogenously. This paper examines the implications of this measurement externality in multi-
dimensional poverty measurement. We derive results explaining how, specifically, measure-
ment externalities operate, including how they lead to the violation of monotonicity and 
subgroup consistency. Moreover, our results can easily be extended to encompass societal 
welfare measures dependent on binary variables, like the popular asset indices pioneered by 
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Filmer and Pritchett (2001) and measures of material deprivation in Europe (see e.g. Guio 
et al., 2016), thus demonstrating that these measures suffer from similar problems. In addi-
tion, we illustrate these violations using real-world data from two countries with structurally 
different patterns of multidimensional poverty: the 2013/14 Ecuador Living Conditions Sur-
vey and the 2015/16 Uganda National Panel Survey. 

The rest of the paper is organised as follows. Section 2 introduces the notation and discusses 
the basic poverty measurement framework, including the important properties of mono-
tonicity and subgroup decomposability. In section 3 we introduce a general class of endoge-
nous weights. All we assume for our weights is that if the weight of one indicator is reduced, 
then the weight(s) of some other indicator(s) is (are) increased; that is, that the weights’ val-
ues need to be relative to each other in some meaningful sense. Using real-world data from 
Ecuador and Uganda, section 4 presents an empirical illustration of violation of the prop-
erties of monotonicity and subgroup decomposability under commonly used endogenous 
weighting rules. Then, in order to explain the causes of such violations, section 5 shows 
how measurement externalities operate once a person’s deprivation status in some indicator 
changes, followed by section 6, which provides the main theoretical results on measurement 
externality and violation of monotonicity and subgroup consistency properties under en-
dogenous weights. The final section summarises the paper’s main message with some con-
cluding remarks. 

2 Preliminaries: Multidimensional Poverty Measurement 

Consider a deprivation matrix XND, with each of the N > 1 rows representing an individual 
(or household) and each of the D > 1 columns representing a deprivation indicator. We 
denote any individual as n, where n = 1,2, ..., i , i 0 , ...,N , and any indicator as d , where 
d = 1,2, ..., j , j 0 , ..., D . Let ρnd ∈ {0,1} denote the deprivation of person n in indicator d in 
the deprivation matrix XND. For any individual n, poverty is determined by the deprivations 
faced by the individual across the different indicators, which are given by the deprivation vec-
tor ρXND : {ρn1,ρn2, ...,ρnD }. Further, let X•d be the column vector associated with indicator n 

d of XND, i.e. {ρ1d ,ρ2d , ...,ρN d }. Note that, for our purpose, we assume that individuals are 
either fully deprived in an indicator (ρnd = 1) or not at all (ρnd = 0). 

Let each indicator of XND be weighted; the weight of indicator d is represented as wXN D .d 
XN D XN D XNDThen we have a weighting vector of strictly positive entries wXND = (w , w , ..., w )1 2 D

PDsuch that d 
XN D = 1. As alluded to before, weights can be determined either endoge-=1 wd 
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nously or exogenously. The values of exogenous weights can, for instance, remain constant 
across different deprivation matrices because by definition they are independent from the 
data, whereas endogenous weights take into account the distribution of deprivation in each 
indicator. Thus, under endogenous weights, two different deprivation matrices XND and 
X0 XN D XN D XN D 

ND will have different weights for the indicators. Specifically, wXND = (w , w , ..., w )1 2 D 
X 0 X 0 X 0 X 0 

ND N D N D N D XN D N D XN D and wX0 = (w , w , ..., w ), where for some j and j 0 , w =6 w and wj 0 =61 2 D j j 

N D wX 0 . We describe the weighting functions with precision in section 3.j 0 

2.1 Individual Poverty 

In the counting approach proposed by Alkire and Foster (2011), individual poverty is mea-
sured through a two-step procedure: (i) identifying whether an individual is multidimension-
ally deprived based on the number of indicators they are deprived in, and if so, (ii) computing 
a weighted aggregate of their deprivation over all the indicators (in practice, Alkire and Fos-
ter (2011) propose a weighted count of deprivations). Thus, the resulting individual poverty 
function has two components: a poverty identification function, ψ, and a poverty severity 
function, s (Silber and Yalonetzky, 2013). 

PDFor an individual n, let the total count of deprivations be tn = d=1 vd ρnd , where v1, v2, ..., vD 

are weights adding up to 1, from a vector of weights v potentially different from wXND and 
potentially exogenous. Following Alkire and Foster (2011), a person is considered multidi-
mensionally deprived if their total deprivation count is at least as high as an exogenously 
specified cutoff. That is, the identification function ψ : [0,1] → {0,1} compares t against a n 

cutoff 0 < k ≤ 1 in order to identify the person as either poor or nonpoor from a multiple-
deprivation perspective.6 Thus, 

ψ(t ; k) = I(t ≥ k). (1)n n 

When 0 < k ≤ min{v1, v2, ..., vD }, the poverty identification function follows a union ap-
proach, whereby any person with at least one deprivation is deemed poor. On the other ex-
treme, when k = 1, poverty identification follows an intersection approach, which regards 
as poor only those who are deprived in all indicators. Hence, under the union and intersec-
tion approaches, the weights do not really have a role in identifying whether an individual 

6We suggest using exogenous weights at the identification stage in order to avoid violating the focus axiom (see 
Alkire and Foster (2011, p. 480)), which captures the idea that improvements in the wellbeing of the nonpoor 
should not change the level of societal poverty. 
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is multidimensionally deprived or not. Between both extremes, several other intermediate 
approaches exist in a counting framework, corresponding to the other values that k can take 
(Alkire and Foster, 2011). Within the literature advocating endogenous weights, a notable 
example of data-driven weights combined with an intermediate approach to poverty identifi-
cation is provided by Pasha (2017), who essentially uses v = wXND .7 In our empirical analysis 
we use an union approach to identification which is adopted in practice by a swathe of the 
literature, especially studies using endogenous weights based on data-reduction techniques 
(e.g. Njong and Ningaye, 2008; Asselin and Anh, 2008; Asselin, 2009; Coromaldi and Drago, 
2017). 

The severity component, s : [0,1] → [0,1], measures the severity of the multiple-deprivation 
experience among poor people (Chakravarty and D’Ambrosio, 2006; Alkire and Foster, 2011; 
Silber and Yalonetzky, 2013), where the weighted deprivation score (or counting function) 
is 

¨ 
PD 

d=1 wd ρnd if ψ(tn; k) = 1
Cn(XND) = (2)

0 if ψ(tn; k) = 0. 

The severity component satisfies the following properties: s(Ci ) > s(Cj ) whenever Ci > 

Cj , s(0) = 0 and s(1) = 1. We may also include the restriction that s 00(C ) ≥ 0 (assuming n 

differentiability of s ). Thus, the severity function is monotonic in the weighted deprivation 
count of each individual, and it increases at a nondecreasing rate. Straightforward examples 
of s(C ) used in the literature include s(C ) = C (Alkire and Foster, 2011), s(C ) = eαCn −1n n n n 

with α > 0 (Chakravarty and D’Ambrosio, 2006) and s(C ) = (C )β with β ≥ 1 (Datt, 2019).n n 

Thus, for any deprivation matrix XND, the individual poverty function for an individual n, 
pn

XN D : {0,1}× [0,1] −→ [0,1], takes the form 

pn 
XN D (t ,C ; k) = ψ(t ; k)s(C ). (3)n n n n 

It combines the identification and the severity components to yield a measure of overall 
deprivation at the individual level. In order to align our empirical illustration in section 4 to 
some of the most commonly used poverty functions in multidimensional poverty analyses 
(see e.g. Atkinson, 2019), we calculate individual poverty based on a linear severity function: 
p = ψ(t ; k)C .8 

n n n 

7Hence, the analysis in Pasha (2017) violates the crucial focus axiom. 
8Our results carry over onto the quadratic case. Available upon request. 
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2.2 Societal Poverty 

The societal poverty function aggregates the individual poverty experiences measured by the 
individual poverty function in (3). Therefore, we can represent it as P : [0,1]N −→ [0,1]. In 
its most general form it could be written as 

XN D XN D XN D P XND (XND; , k) = g ( p , p , ...., p ),1 2 N 

where ∂ P/∂ pi ≥ 0 and ∂ P 2/∂ pi ∂ pj = 0 (assuming differentiability of g ). These two 
assumptions imply that societal poverty P should be at the very least nondecreasing in its 
constituent parts, which in turn should be strongly separable (Blackorby et al., 1978). There 
are different methods of aggregation, each satisfying a set of properties. Throughout the 
rest of the paper, we follow a common additively subgroup-decomposable societal poverty 
function: 

X 
P (XND; k) = 

1 N 

pn 
XN D . (4)

N n=1 

Societal poverty indices like P are expected to fulfill certain desirable properties. Chief 
among them is monotonicity, which requires societal poverty not to decrease if a poor indi-
vidual suffers from an additional deprivation. For a formal definition, consider a deprivation 
matrix XND where individual i is deemed poor, i.e. ψ(ti ; k) = 1 . Then let X0 be obtained ND 

from XND by a simple increase in deprivation in indicator j of individual i in XND; meaning 
X0 X0 N D XN D N D XN D that (i) ρ = 1, (ii) ρ = 0 and (iii) ∀(n, d ) =6 (i , j ), ρ = ρ . Then the monotonicity i j i j nd nd 

axiom can be written as follows. 

Axiom 1 Monotonicity (M): Suppose X0 is obtained from XND by a simple increase in depri-ND 

vation in indicator d of individual i . Then ΔP = P X0 ND − P XND ≥ 0. 

Another important property is subgroup consistency (Foster and Shorrocks, 1991; Alkire 
and Foster, 2011), which requires societal poverty to change (e.g. in a country across time) 
in the same direction of a change in the poverty levels of a subgroup (e.g. within a region 
across time), if the poverty levels of all other subgroups remain unchanged. For a formal 
definition, consider a subgroup-decomposable deprivation matrix XND formed by vertical 
concatenation of two matrices XN1D and XN2D where N = N1 + N2. We represent it as 
XND = (XN1D k XN2D). Then the axiom of subgroup consistency can be stated as follows. 

Axiom 2 Subgroup Consistency (SC): Suppose XND = (XN1D k XN2D) and YND = (YN1D k 
YN2D) are two subgroup-decomposable deprivation matrices. The societal poverty function P sat-
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isfies subgroup consistency if [P (XN1D;wXN1D , k) > P (YN1D;wYN1D , k) ∧ P (XN2D;wXN2D , k) = 

P (YN2D;wYN2D , k)] ⇒ P (XND;wXND , k) > P (YND;wYND , k). 

3 Examples of Endogenous Weights 

For a general class of endogenous weights, consider a deprivation matrix XND with the weight 
of indicator d represented as 

wd = Hd (h1, ...,hd , ...,hD ), (5) 

where h j = h(X•j) represents a transformation of the column vector associated with indicator 
j of XND. For PCA, h j = X∗

•j reflects a standardised column vector; for frequency-based 

weights we shall use h j = X•j. Further, for all j , Δh j implies ΔHd (h1, ...,hd , ...,hD ) Ô 0. 
That is, we allow for the possibility that changes in the vector of deprivation in indicator 
j may impact the weight of indicator d . Since these are weights over indicators, a natural 
constraint requires that the weights should add up to one, i.e. 

D
X 

wd = 1. (6) 
d=1 

Together, equations (5) and (6) characterise a broad class of endogenous weights. Specific 
examples of frequency-based weights for indicator j are given by 

F
f (X•j)

w = , (7)j PD f (X•d)d=1 

where f 0(X•j) ¿ 0 (assuming differentiability of f ). One example of f with f 0(X•j) > 0 is 
PNf (X•j) = n=1 ρn j ψ(tn; k)/N , which implies that as more people become deprived in an 

indicator, it becomes a more important indicator of multidimensional poverty, and hence it 
should carry a higher weight in the composite index. On the other hand, an example of f 

PNwith f 0(X•j) < 0 is f (X•j) = − ln( n=1 ρn j ψ(tn; k)/N ) (see Deutsch and Silber, 2005, p. 150). 
PNAnother possibility is f (X•j) = 1 − ( n=1 ρn j ψ(tn; k)/N ), which essentially captures the 

intuition that if deprivation in one particular indicator becomes endemic, it may no longer 
serve as a distinguishing factor and hence should be weighted less in the composite index. 

Another common way of constructing composite indices with endogenous weights consists 
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of identifying orthogonal linear combinations of the standardised column vectors of XND, de-
noted by X∗

•d,∀d = 1,2, ..., D , in such a way as to reproduce their variance and interlinkages 
as closely as possible. This logic underlies a range of factorial techniques for data reduction, 
including factor analysis, PCA and MCA (Asselin and Anh, 2008; Krishnakumar and Nagar, 
2008). 

In our setting, let Σ denote the variance-covariance matrix of {X∗
•1, ...,X∗ }. One way to •D 

account for the binary nature of the elements in these vectors is to define the off-diagonal el-
ements of Σ as bivariate tetrachoric correlation coefficients (see e.g. Kolenikov and Angeles, 
2009; Howe et al., 2012).9 Let us also write the eigenvalues of Σ as λ1, ...,λD in descending or-
der, and the corresponding D×1 eigenvectors as ν1, ..., νD . Then the ̀ th principal component, 
a`, is given by 

D
X 

a` = XND 
∗ ν` = ν`, j X

∗
•j,∀` = 1,2, ..., D , (8) 

j =1 

and its variance is V (a`) = λ`, ∀` = 1,2, ..., D . Clearly, each principal component is a linear 
combination of the standardised deprivation indicators where the eigenvectors of Σ define 
their relative importance, i.e. their weights. 

In practice, the first principal component is the most commonly used ‘summary’ indica-
tor that can be derived from PCA (Asselin and Anh, 2008). The first principal component, 
PDa1 = X∗ ν1 = •j, is the one that reproduces the highest proportion of the ‘total’ ND j =1 ν1, j X

∗ 

PDvariance in the data (computed as trace(Σ) = j =1 λ j ). Thus, ν1 is the vector of nonnor-
malised weights for each indicator in the first principal component. 

Importantly, being linear combinations of standardised variables, principal components do 
not have a specific unit of measure or a cardinal interpretation (see e.g. Jolliffe and Cadima, 
2016). Once we have identified the first principal component, it can be rescaled in a mean-
ingful way by means of a monotonic transformation that perfectly preserves the ordering of 
individuals by their scores in that component. In particular, the first principal component 

a1 λ1can be rescaled such that ã1 ≡ PD with V (ã1) = PD 
=1 ν j )2

. This implies that 
=1 ν j (j j 

9The tetrachoric correlation coefficients can be estimated by taking the observed indicators two-by-two and 
applying an ML fit to a biprobit model that only includes constants as explanatory variables in each equation 
(Edwards and Edwards, 1984). 
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D
X 

PC A PC Aj X∗ ã1 = X∗ = w •j, (9)NDw 
j =1 

where wPC A ≡ PD 

ν j 

ν j 0
∀ j = 1, ..., D and 

PD 
=1 w

PC A = 1. These normalised weights are j j j
j 0=1 

quantitative representations of the relative importance of each indicator in the first principal 
component. 

Intuitively, the first-principal-component approach gauges the extent to which each indica-
tor contributes to reproducing the largest portion of the total variance in the dataset. This is 
entirely driven by the indicators’ variance-covariance matrix. After standardisation, the in-
dicators that are, overall, highly correlated with the others will receive higher weights. The 
reason is that these highly correlated indicators form a ‘dominant’ indicator subset that essen-
tially determines the first principal component. Conversely, those indicators that hold weak 
correlations with the elements of this ‘dominant’ indicator subset are regarded as redundant 
and thus receive lower weights in the principal component. 

4 Empirical Illustration 

To illustrate the violation of the key properties of monotonicity and subgroup consistency 
by a multidimensional counting poverty index under endogenous weights, we consider the 
cases of Ecuador and Uganda. Inherently, as for any endogenous weight procedure, PCA 
and frequency weights are data-adaptive techniques, which is why our empirical illustration 
concerns two countries with structurally different multidimensional poverty patterns (see 
OPHI (2018); Alkire et al. (2020) for a recent description of multidimensional poverty pat-
terns in these countries). 

4.1 Data and Indicators 

We use nationally representative household-level data for both countries: Encuesta de Condi-
ciones de Vida 2013/14 in the case of Ecuador (N=108,093) and the Uganda National Panel 
Survey 2015/16 (N=17,465). 

Based on the UNDP–OPHI global MPI, our analysis considers ten indicators pertaining to 
three wellbeing dimensions: health, education and living standards (OPHI, 2018; Alkire and 
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Kanagaratnam, 2020). We argue that this index is ideal for our illustration due to its wide 
acceptance in academic and policymaking spheres (Atkinson, 2019; World Bank, 2018). The 
dimensions and their indicators along with the deprivation thresholds are presented in Table 
1. 

Deprivation headcount rates are lower in Ecuador compared to Uganda in every single ob-
served indicator (Fig. 1). If one defines a person as being multidimensionally poor by the 
union approach, then the deprivation rates in Fig. 1 allow the structure of the poverty mea-
sure to be intuitively predicted by a wide family of frequency weights. For instance, if rare 
deprivations are considered particularly important to gauging poverty (Deutsch and Silber, 
2005), then deprivations with the lowest frequencies will be assigned higher weights. This 
is the case for electricity and school attendance in Ecuador, and nutrition and school atten-
dance in Uganda. Conversely, deprivations with the highest frequencies in each country will 
be assigned lower weights, as they are more commonly observed in the data. This is the case 
for nutrition and sanitation in Ecuador, and cooking fuel and electricity in Uganda. 

Having a sense of the weights that would be assigned to each indicator by a covariance-based 
technique, such as PCA, is less straightforward. The reason is that they are much more com-
plex transformations of the interlinkages between standardised deprivation vectors. As a 
starting point, however, it is important to stress that the joint distribution of deprivations in 
both countries is fundamentally different (Fig. 2). Around half of the population in Ecuador 
does not face any deprivation, and one out of four people faces one single deprivation. Mean-
while, the modal number of simultaneous deprivations in Uganda is five, and less than 5% 
of the population face just one deprivation. 

A quick visual inspection of the tetrachoric correlation coefficients in the Ecuador data (Ta-
ble 2) shows that the health indicators (nutrition and child mortality) tend to have relatively 
low correlations with the rest of the indicators: their correlation coefficients – in absolute 
value – range from 0.064 to 0.226. In turn, the living standard indicators tend to be more 
highly correlated with the rest, with coefficients ranging from 0.116 to 0.816. Thus, by a 
first-principal-component PCA approach, the health indicators would tend to have lower 
weights than the living standard indicators. 

Due to the higher frequency of multiple deprivations in Uganda, clear correlation patterns 
for each indicator are less discernible at first glance (Table 3). Note, however, that the child 
mortality indicator appears to be the one most weakly correlated with all the rest; it has 
tetrachoric coefficients lower than 0.10 with school attendance, cooking fuel, housing and 
assets. Thus, child mortality would tend to have a relatively low weight in a first-principal-
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Table 1: Dimensions, observed indicators and deprivation thresholds 

Dimension Indicators A person is deprived if... 

Health 
Nutrition Any household member under 70 for whom 

there is nutritional information is undernour-
ished. 

Child mortality Any child has died in the household in the last 
five years preceding the survey. 

Education 
Years of schooling 

School attendance 

No household member aged 10 years or older 
in the household has completed six years of 
schooling. 
Any school-aged child in the household is not 
attending school up to the age at which he/she 
would complete class 8. 

Living Standards 

Cooking fuel 

Sanitation 

Drinking water 

Electricity 
Housing 

The household cooks with dung, agricultural 
crop, shrubs, wood, coal or charcoal. 
The household’s sanitation facility is not im-
proved (according to SDG guidelines), or it is 
improved but shared with other households. 
The household does not have access to im-
proved drinking water (according to SDG 
guidelines, or safe drinking water is at least a 
30-minute walk from home, roundtrip. 
The household has no electricity. 
The household has inadequate housing: the 
floor is of natural meterials or the roof or walls 

Assets 
are of rudimentary materials. 
The household does not own more than one 
radio, TV, telephone, computer, animal cart, 
bike, motorbike or refrigerator and does not 
own a car or truck. 

Source: Adapted from OPHI (2018). 
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Figure 1: Deprivation headcount ratios 

Note: Nutr: Nutrition; Cm: Child mortality, Educ: Years of schooling; Satt: School 
attendance; Ckfl: Cooking fuel; Sani: Sanitation; Wtr: Drinking water; Elct: Electricity; 
Hsg: Housing; Asst: Assets 

Figure 2: Distribution of simultaneous deprivations 
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component PCA-based poverty measure. 

4.2 Weighting Vectors, Monotonicity and Subgroup Consistency: A 

Simulation Analysis 

Let us now turn to an empirical assessment of the response of multidimensional poverty in-
dices to changes in the deprivation matrices. We will compare indices based on exogenous 
and endogenous weights in order to show that the latter weighting structures violate mono-
tonicity and subgroup consistency. By focusing on Ecuador and Uganda, we illustrate that 
these violations take place in contexts of both high and low overall structural poverty. We 
omit country labels for the sake of notational simplicity. 

Our baseline scenario is defined by the deprivation matrices XND effectively observed in both 
datasets. We simulate changes to these matrices by adding random deprivations in three in-
dicators, one at a time: nutrition (nutr), access to safe drinking water (wtr) and access to 
electricity (elct). These indicators roughly cover the spectrum of relative deprivation preva-
lence in both countries as well as interlinkages with the other deprivations. The aim of our 
simulation analysis is not to perform an exhaustive scrutiny of all possible situations, but 
rather to offer a compelling illustration of axiom violations in a wide array of empirical het-
erogeneity. 

For our simulations, for each country we assign random identifiers to the population that is 
nondeprived in each of the three indicators, one at a time. We use these identifiers to form 
random ventiles of nondeprived people in each indicator. Then, in a cumulative process for 
one indicator at a time, we gradually assign simulated deprivations to each random ventile; 
we first assign simulated deprivations to 5% of the relevant population, then to an additional 
5% (for a total of 10%), and so on. At the higher end, we assign the simulated status of 
deprived to 95% of the part of the population that is originally nondeprived in the indicator 
that is the object of the simulation. 

We will denote the ensuing deprivation matrices as Xsi , with si = {0,5%,10%, ..., 95%} rep-ND 

resenting the proportion of nondeprived individuals that are assigned simulated deprivations 
iin indicator i , where i = {nutr, elct,wtr}. Note that X0

ND = XND and that ∀si 
0 > si , X

s0 
ob-ND 

jectively represents a Pareto-inferior state of affairs where nobody has fewer deprivations 
and at least one person has more deprivations vis-a-vis Xsi Only endogenous weighting ND. 
procedures (i.e. data-adaptive techniques) will capture these changes and readjust the weights 
accordingly. Naturally, an exogenous weighting procedure is data-agnostic, thereby yielding 
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Table 2: Ecuador – Tetrachoric correlation coefficients 

Nutr Cm Educ Satt Ckfl Sani Wtr Elct Hsg Asst 
Nutr 1.000 0.112 -0.205 0.226 0.176 0.116 0.153 0.190 0.064 0.141 
Cm 0.112 1.000 -0.109 0.167 0.225 0.149 0.134 0.222 0.152 0.168 
Educ -0.205 -0.109 1.000 0.056 0.369 0.248 0.209 0.252 0.375 0.435 
Satt 0.226 0.167 0.056 1.000 0.342 0.297 0.253 0.369 0.206 0.361 
Ckfl 0.176 0.225 0.369 0.342 1.000 0.537 0.542 0.721 0.587 0.714 
Sani 0.116 0.149 0.248 0.297 0.537 1.000 0.500 0.632 0.406 0.587 
Wtr 0.153 0.134 0.209 0.253 0.542 0.500 1.000 0.662 0.165 0.513 
Elct 0.190 0.222 0.252 0.369 0.721 0.632 0.662 1.000 0.289 0.816 
Hsg 0.064 0.152 0.375 0.206 0.587 0.406 0.165 0.289 1.000 0.472 
Asst 0.141 0.168 0.435 0.361 0.714 0.587 0.513 0.816 0.472 1.000 

Note: Nutr: Nutrition; Cm: Child mortality, Educ: Years of schooling; Satt: School 
attendance; Ckfl: Cooking fuel; Sani: Sanitation; Wtr: Drinking water; Elct: Electricity; 
Hsg: Housing; Asst: Assets 

Table 3: Uganda – Tetrachoric correlation coefficients 

Nutr Cm Educ Satt Ckfl Sani Wtr Elct Hsg Asst 
Nutr 1.000 0.146 0.191 0.171 -0.070 0.226 0.109 0.346 0.162 0.134 
Cm 0.146 1.000 0.154 0.092 0.019 0.142 0.100 0.286 0.076 0.085 
Educ 0.191 0.154 1.000 0.392 0.126 0.410 0.211 0.628 0.431 0.546 
Satt 0.171 0.092 0.392 1.000 0.118 0.316 0.136 0.321 0.365 0.433 
Ckfl -0.070 0.019 0.126 0.118 1.000 0.072 0.239 0.334 0.189 0.174 
Sani 0.226 0.142 0.410 0.316 0.072 1.000 0.136 0.503 0.588 0.425 
Wtr 0.109 0.100 0.211 0.136 0.239 0.136 1.000 0.471 0.273 0.135 
Elct 0.346 0.286 0.628 0.321 0.334 0.503 0.471 1.000 0.700 0.609 
Hsg 0.162 0.076 0.431 0.365 0.189 0.588 0.273 0.700 1.000 0.507 
Asst 0.134 0.085 0.546 0.433 0.174 0.425 0.135 0.609 0.507 1.000 

Note: Nutr: Nutrition; Cm: Child mortality, Educ: Years of schooling; Satt: School 
attendance; Ckfl: Cooking fuel; Sani: Sanitation; Wtr: Drinking water; Elct: Electricity; 
Hsg: Housing; Asst: Assets 
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a simulation-invariant set of weights. 

Throughout the simulation, we adopt a union approach to identify the multidimensionally 
deprived.10 Hence, the weighting choices are only relevant for the individual poverty severity 
functions. We follow the global MPI (OPHI, 2018) to select exogenous weights correspond-
ing to a nested-weight structure by which each dimension is assigned an equal weight (1/3). 
This reflects a consideration of health, education and living standards being equally impor-
tant in gauging poverty. In turn, indicators within poverty dimensions are also assigned equal 
weights; the education and health indicators are assigned a 1/6 (=0.1667) weight, and each 
living standards dimension is assigned a 1/18 (=0.0667) weight. This reflects a judgment in 
which each observed indicator is deemed equally important within its respective dimension. 

For endogenous weights, we take into account two weighting procedures. The first is PCA 
based on the tetrachoric correlations, and the second is frequency weighting operationalised

PNby f (X•j) = − ln( n=1 ρn j /N ), for any observed indicator j (see Eq. 7). In line with the intu-
itive scrutiny of the data presented above, this configuration of frequency weights amounts to 
considering deprivations with low prevalence as more important in the poverty assessment. 

For the sake of parsimony, let us focus on nutrition deprivation simulations as an example. 
In Tables 4 and 5, we show the weighting vectors for selected snutr values. 

The intuition gained from the inspection of tetrachoric correlation matrices is corroborated. 
In the baseline PCA weight structure for Ecuador (PCA, snutr = 0 column in Table 4), the 
living standard indicators tend to have a higher weight, followed by the education indicators 
and then the health indicators. In Uganda (see PCA, snutr = 0 column in Table 5), child mor-
tality has the lowest weight by this approach, while living standard indicators tend to have 
the highest. In both countries, when nutrition deprivations increase, the nutrition indicator 
is assigned lower weights. That is, the simulation reconfigures the correlation patterns be-
tween this indicator and the rest in such a way that nutrition becomes redundant in the first 
principal component. In compensation, all the other indicators in Ecuador are given higher 
weights in a relatively uniform manner. In Uganda, higher weights tend to be assigned to 
education, housing and assets. 

Turning now to the frequency weights, once more we corroborate the intuition gained from 
the patterns of relative deprivation prevalence in each country. In the baseline frequency 
weighting vectors (Freq., snutr = 0 columns in Tables 4 and 5), electricity and school atten-

10This ensures the fulfillment of the focus axiom. We could easily extend our analysis to different identification 
cutoffs based on equation (1). 
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Table 4: Ecuador – Indicator weights by structure and proportion of people assigned simulated 
deprivations in nutrition 

Indicator Exog. PCA Freq. 
snutr =0 snutr =50 snutr =95 snutr =0 snutr =50 snutr =95 

Nutr 0.167 0.037 0.014 0.005 0.061 0.019 0.001 
Cm 0.167 0.045 0.045 0.046 0.099 0.103 0.105 
Educ 0.167 0.072 0.077 0.078 0.103 0.108 0.110 
Satt 0.167 0.080 0.080 0.081 0.135 0.141 0.144 
Ckfl 0.056 0.143 0.146 0.147 0.104 0.108 0.110 
Sani 0.056 0.124 0.127 0.128 0.072 0.075 0.077 
Wtr 0.056 0.114 0.117 0.118 0.086 0.090 0.092 
Elec 0.056 0.144 0.147 0.148 0.148 0.154 0.157 
Hsg 0.056 0.097 0.100 0.101 0.103 0.107 0.109 
Asst 0.056 0.145 0.148 0.149 0.088 0.092 0.094 
Total 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Notes: 
1. Nutr: Nutrition; Cm: Child mortality, Educ: Years of schooling; Satt: School 
attendance; Ckfl: Cooking fuel; Sani: Sanitation; Wtr: Drinking water; Elct: Electricity; 
Hsg: Housing; Asst: Assets. 

reflects the percentage of households with simulated deprivations in nutrition. 2. snutr 
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Table 5: Uganda – Indicator weights by structure and proportion of people assigned simulated 
deprivations in nutrition 

Indicator Exog. PCA Freq. 
snutr =0 snutr =50 snutr =95 snutr =0 snutr =50 snutr =95 

Nutr 0.167 0.062 0.022 0.008 0.158 0.057 0.005 
Cm 0.167 0.046 0.046 0.047 0.133 0.149 0.157 
Educ 0.167 0.127 0.133 0.135 0.124 0.138 0.146 
Satt 0.167 0.098 0.102 0.103 0.285 0.320 0.337 
Ckfl 0.056 0.054 0.059 0.061 0.001 0.001 0.002 
Sani 0.056 0.119 0.123 0.124 0.023 0.026 0.028 
Wtr 0.056 0.075 0.078 0.079 0.087 0.097 0.102 
Elec 0.056 0.155 0.160 0.162 0.013 0.014 0.015 
Hsg 0.056 0.136 0.142 0.144 0.055 0.061 0.065 
Asst 0.056 0.128 0.135 0.137 0.121 0.136 0.143 
Total 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Notes: 
1. Nutr: Nutrition; Cm: Child mortality, Educ: Years of schooling; Satt: School 
attendance; Ckfl: Cooking fuel; Sani: Sanitation; Wtr: Drinking water; Elct: Electricity; 
Hsg: Housing; Asst: Assets. 

reflects the percentage of households with simulated deprivations in nutrition. 2. snutr 
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dance have the highest weights in Ecuador, as do school attendance and nutrition in Uganda. 
In turn, the lowest weights are assigned to nutrition and sanitation in Ecuador and to cooking 
fuel and electricity in Uganda. 

4.2.1 Violations of Monotonicity and Subgroup Consistency 

We now assess the empirical response of three common additively decomposable societal 
poverty functions with linear severity components to a gradual increase in deprivations in 
both countries. Each function corresponds to one of the weighting procedures, namely, ex-
ogenous (denoted by EX), PCA and frequency-based (denoted by F). Omitting the country 

1 PN C EX ,si 1 PN C PC A,siindex, the poverty functions are, respectively: P si = n , P si = n and1 N n 2 N n 

P si 1 PN C F ,si= n . The poverty identification functions ψsi are omitted purposefully, as we 3 N n 

are adopting a union approach to poverty identification, meaning ψsi (t ; 0) = 1 for all n, inn 

order to secure fulfillment of the focus axiom. 

Our simulations yield compelling, unequivocal results: (i) monotonicity and subgroup con-
sistency are never violated under exogenous weights, but (ii) these axioms are bound to be 
violated under endogenous weights. For conciseness, we discuss only the results of simulated 
nutrition deprivations (i = nutr); all the other results lead to the same qualitative conclusions 
and can be found in Appendix B. 

Let us first focus on violations of monotonicity. In both countries (see Fig. 3 for Ecuador 
and Fig. 4 for Uganda), the poverty measure constructed with exogenous weights, P1 

si , is 
in theory a nondecreasing function of si . In our empirical illustration it always increases 
as societal welfare deteriorates with a gradual increase in nutrition deprivations. That is, 
P s 0 − P sii ≥ 0,∀s 0 ≥ si . This is not true for P si and P3 

si . We can clearly see in Fig. 3 that in 1 1 i 2 

− P 40i − P 35iEcuador, P si < 0 for some 45% ≤ s ≤ 95% and P si < 0 for all 40% ≤ s ≤ 95%.2 2 3 3 

−P 70i −P 50iSimilarly, in Uganda (see Fig. 4), P si < 0 for some 75% ≤ s ≤ 95% and P si < 0 for 2 2 3 3 

all 55% ≤ s ≤ 95%. Thus, there are many instances where these endogenous-weights-based 
poverty measures decrease when there has been an unequivocal increase in the proportion 
of people suffering nutrition deprivations, ceteris paribus. These are flagrant violations of 
monotonicity. As shown in Appendix B, we observe similar violations of monotonicity for 
other indicators such as water and electricity. 

To assess possible violations of subgroup consistency, we perform another set of deprivation 
simulations in an identical way, except that the nondeprived population eligible for simula-
tion deprivations is solely concentrated in one specific subnational region in each country. 
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Figure 3: Violations of monotonicity: Ecuador, simulated nutrition deprivations 

Figure 4: Violations of monotonicity: Uganda, nutrition indicator 

Our data in Ecuador allows for a representative disaggregation of the additively decompos-
able poverty functions at the level of four geographical regions: Mountains (47.7% of the 
sample), Coast (33.1%), Amazon (17.6%) and Galapagos Island (1.6%). In Uganda, this is 
possible for four regions as well: Central (25.9%), Eastern (26.4%), Northern (23.9%) and 
Western (22.8%). The regional poverty measures take an identical form to their national-
level counterparts. Omitting the country index, the poverty functions for a generic region 

1 PNR C EX ,si 1 PNR C PC A,si 1 PNRR are given by P si , P si and P si C F ,si 
1,R = NR n∈R n∈R 2,R = NR n∈R n∈R 3,R = NR n∈R n∈R. 

For our analysis, we focus on the Eastern region in Uganda and the Coast in Ecuador. We 
verified that choosing other regions does not alter our main qualitative results: subgroup con-
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Figure 5: Violations of subgroup consistency: Ecuador, nutrition indicator 

Figure 6: Violations of subgroup consistency: Uganda, nutrition indicator 

sistency is never violated under exogenous weights, but it can be violated under endogenous 
weights. 

In both countries, the regional and national poverty measures under exogenous weights in-
crease (monotonically) with additional simulated nutrition deprivations in that region (see 

i iFig. 5 for Ecuador and Fig. 6 for Uganda). That is, (P s 0 − P si ≥ 0) =⇒ (P s 0 − P si ≥1,R 1,R 1 1 

0),∀s 0 ≥ s . However, there are several instances in which the subnational poverty measures 
based on PCA or frequency-based weights increase (respectively decrease) while the ensuing 
national poverty measures decrease (respectively increase), even though deprivations in all 
the other regions within each country are held constant. In Fig. 5, we can see that in Ecuador, 
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0 0 0 
i i i(P s − P si =⇒ (P s − P si < 0) for some s 0 > s with s , s 0 > 20%, and (P s − P si 

2,R 2,R > 0) 2 2 3,R 3,R < 
i0) =⇒ (P s 0 − P si > 0),∀ 30% ≤ s , s 0 ≤ 65% such that s 0 > s . We can clearly see violations of 3 3 

i isubgroup consistency in Uganda as well (see Fig. 6): (P2, 
s 0 

R − P2, 
si

R < 0) =⇒ (P2 
s 0 − P2 

si > 0) for 
i isome s 0 > s with s , s 0 > 75%, and (P3, 

s 0 

R −P3, 
si

R < 0) =⇒ (P3 
s 0 −P3 

si > 0),∀s , s 0 > 40% such that 
s 0 > s . These violations under endogenous weights do not seem to follow any particular pat-
tern. In some cases we observe several violations, while in others, just a few. The important 
point is that, under these circumstances, any comparative exercise will be difficult because 
even if poverty in the affected region decreases, poverty at the national level might increase, 
ceteris paribus. 

5 Endogenous Weights and Measurement Externalities 

Why do we observe these violations of basic properties when using endogenous weights? In 
this section, we investigate this issue in greater depth. Our focus will be on the weighted 
deprivation score (or counting function) Cn (see (2)); that is where the endogenous weights 
come into play, because the severity functions depend on these scores under the counting ap-
proach to poverty measurement.11 We establish that the change in one person’s deprivation 
status in one indicator changes the counting functions for everyone else too. Thus, there 
are clear measurement externalities among individuals, which, as will be shown later, lead to 
situations where fundamental properties of the poverty functions are violated. 

Consider a deprivation matrix XND where individual i is deemed poor. Let X0 be obtained ND 

from XND by a simple increase in deprivation in indicator j of individual i in XND (as defined 
in section 2.2). Then the change in the counting function of any individual n 6= i , who is 
also identified as poor, is 

D 

= C X 0 − C XN D 
X 

ΔC N D (10)n n n = ρn j Δwj + ρnd Δwd , 
d=1 
d 6= j 

where ΔC = Cn 
X0 N D − Cn 

XN D and Δwd = w X
0 
N D − w XN D , ∀d ∈ {1,2, ..., D},. For simplicity n d d 

XN D N D of notation we write ρ = ρn j and ρX0 = ρ0 n j nd nd . 

11As previously discussed, a combination of endogenous weights in the identification function with an inter-
mediate approach to poverty identification leads to violation of the focus axiom. Meanwhile, the extreme 
identification approaches, union and intersection, never violate the focus axiom but neither do they rely on 
deprivation weights. 
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For the i th individual who became deprived in the j th indicator, we know that ρ0 i j w
0 
j − 

ρi j wj = w 0 
j . Thus, ΔCi due to a change in the deprivation of person i with respect to 

indicator j is given by 
D
X 

ΔCi = w 0 (11)j + ρi d Δwd . 
d=1 
d 6= j 

As long as person i is also deprived in some other indicator, the changes in the other weights 
produced by the change in i ’s status regarding j (i.e. Δwd ,∀d 6= j ) also affect the total change 
in Ci . These same changes in weights led by the change in deprivation status of person i in 
indicator j produce, in turn, changes in the counting function of every other person. 

Note that in (10), the change in the counting function will depend on how the endogenous 
weights change (the signs of Δwd ∀d ), which, in turn, depends on the weighting rule. Hence, 
a priori, the change in any person’s counting function (which in turn affects their individual 
poverty measure, p ) is ambiguous. Proposition 1 captures how changes in ρi j can impact n 

weights in each indicator and, through that channel, the counting function of everybody 
besides person i . 

Proposition 1 Suppose X0 is obtained from XND by a simple increase in deprivation in indi-ND 

cator j for individual i . For all n 6= i : 

(i) if ρnd = 0,∀d ∈ {1, ..., D} or ρnd = 1,∀d ∈ {1, ..., D} then ΔC = 0 
( 

n 

PD ΔCn Ó 0 ⇐⇒ Δwj Ó 0 if ρn j = 1 
(ii) if 0 < d=1 ρnd < D then . 

ΔCn Ô 0 ⇐⇒ Δwj Ó 0 if ρn j = 0 

Proof: See Appendix A. 

Proposition 1 states that the impact of the increased deprivation of individual i in indicator 
j on the counting function of other individuals, n 6= i , depends only on the direction of 
change in the weight of indicator j , in combination with the deprivation status of n in indi-
cator j . Note that indicator j is the only one where the number of deprived people changes. 
It plays a central role in understanding the changes in the counting function and, as a result, 
changes in individual poverty levels. If individual n is deprived in j , then an increase (respec-
tively decrease) in the weight of j leads to an increase (respectively decrease) in n’s counting 
function. If n is not deprived in j , then an increase (respectively decrease) in the weight of 
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j reduces (respectively increases) n’s counting function. Naturally, there is no impact if n is 
either not deprived in any indicator or deprived in all indicators. 

6 Endogenous Weights and Societal Poverty 

In this section, we discuss how endogenous weights impact on the fulfillment of important 
properties of the societal poverty measures. 

6.1 Monotonicity 

One of the main implications of Proposition 1 for societal poverty indices based on endoge-
nous weights (at least those of the form (6)) is that they can violate the desirable axiom of 
monotonicity (Axiom 1). This violation implies, inter alia, that when poor individuals in 
a society become less deprived, societal poverty may increase, and vice versa. In order to 
understand how this situation comes about, it is important to derive the impact produced 
by this change in the deprivation status of person i on the societal poverty index. 

For any XND, let Pr[ρn j = 1|n 6= i] ≡ N 
1 
−1 

PN
n=1,n 6=i I(ρn j = 1|n =6 i) (and a similar definition 

for Pr[ρn j = 0|n 6= i]). Suppose X0 is obtained from XND by a simple increase in depriva-ND 

tion in indicator j of individual i . For any individual i 0, let the change in poverty be denoted 
by Δ pi 0 = p XN D 

0
− p XN D . Then,i 0 i 0 

ΔP = 1 Δ pi 
N−1 1 + 

N 

Pr[ρn j = 1|n 6= i] 
PN I(ρn j = 1|n =6 i)Δ pn (12)N (N−1) Pr[ρn j =1|n 6=i] n=1,n 6=i 

N−1 1 PN+ N Pr[ρn j = 0|n 6= i] (N−1) Pr[ρn j =0|n 6=i] n=1,n=6 i I(ρn j = 0|n =6 i)Δ pn, 

where 
Δ pn = ψ(tn; k)s(C XN D + ΔC ) − ψ(t ; k)s(Cn

XN D ). (13)n n n 

That is, the change in societal poverty, ΔP , depends on (i) the change in person i ’s in-
dividual poverty (Δ pi ), (ii) the total change in deprivation of other individuals deprived 
in j (captured in (12) as the average change in the poverty of other people deprived in j
� � 

(N−1) Pr[ρ 
1 

n j =1|n 6=i] 

PN
n=1,n=6 i I(ρn j = 1|n 6= i)Δ pn multiplied by the proportion of other peo-

ple deprived in j (Pr[ρn j = 1|n 6= i])), and (iii) the total change in deprivation of other 
individuals who are not deprived in j (shown in (12) as the average change in the poverty of 
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� � 
other people not deprived in j (N−1) Pr[ρ 

1 

n j =0|n=6 i] 

PN
n=1,n=6 i I(ρn j = 0|n 6= i)Δ pn multiplied 

by the proportion of other people not deprived in j (Pr[ρn j = 0|n =6 i])). 

In the following discussion, we show how the three components above react to an increase in 
one person’s deprivation. First, we show that an increase in deprivation in any one indicator 
for any individual does not decrease their poverty. 

Corollary 1 Let X0 be obtained from XND by a simple increase in deprivation in indicator ND 

j of individual i . Then individual i ’s poverty function does not decrease; that is, Δ pi ≥ 0. 

Proof: See Appendix A. 

Since an increase in a person’s deprivation does not decrease their individual poverty func-
tion, the main problem with counting poverty functions relying on endogenous weights lies 
elsewhere with the presence of measurement externalities. 

Next, we investigate how the poverty of other individuals changes as a result of the change 
in i ’s deprivation. Two helpful corollaries stem from (10) combined with Proposition 1 and 
the definition of individual poverty (3). 

Corollary 2 Let X0 be obtained from XND by a simple increase in deprivation in indicator ND 

j of individual i . Suppose Δwj > 0. For any individual n 6= i , 

Δ pn ≥ 0 ⇐⇒ Δwj > | 
PD

d=1,d=6 j ρnd Δwd | if ρn j = 1,
PDΔ pn ≤ 0 ⇐⇒ d=1,d=6 j ρnd Δwd < 0 if ρn j = 0. 

Similarly, we get the following result when Δwj < 0. 

Corollary 3 Let X0 be obtained from XND by a simple increase in deprivation in indicator ND 

j of individual i . Suppose Δwj < 0. For any individual n 6= i , 

PDΔ pn ≤ 0 ⇐⇒ Δwj > d=1,d=6 j ρnd Δwd if ρn j = 1,
PDΔ pn ≥ 0 ⇐⇒ d=1,d=6 j ρnd Δwd > 0 if ρn j = 0. 

Corollary 2 and Corollary 3 demonstrate that, with endogenous weights, Δρi j 6= 0 is bound 
to produce changes in the poverty of other individuals, i.e. Δ pn =6 0 where n =6 i , which will 
differ based on their deprivation status regarding j . Therefore, the aforementioned average 
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changes (among those deprived in j and among those not deprived in j ) will bear opposite 
signs. Hence, a priori, expression (12) may be positive, negative or even nil. Thus, we can 
deduce the following result. 

Proposition 2 Let X0 be obtained from XND by a simple increase in deprivation in indicator ND 

j of individual i . Then ΔP = P X0 ND − P XND Ô 0, thereby violating monotonicity (Axiom 1). 

This is a general result, not relying on any particular functional form of the weighting func-
tion or any particular parameters or data. It demonstrates that the change in societal poverty, 
ΔP , resulting from a change in deprivation in any one indicator experienced by any one poor 
individual would be ambiguous, thereby violating monotonicity (Axiom 1). Therefore, un-
der endogenous weights it is quite possible that if the deprivation of an individual increases 
in some indicator, overall poverty will decline (or vice versa).12 

From (13) we know the magnitude of change depends on k; therefore, the same change in 
the deprivation status of i (regarding j ) may generate different values and signs for ΔP , de-
pending on the choice of k. Likewise, the specific functional forms chosen for the weights 
and the severity function, s , also influence the total effect. 

Finally note that, by contrast, with exogenous weights, the score of everybody except i 
remains unaltered: ΔCn = 0,∀n 6= i . Consequently, Δ pn = 0,∀n 6= i . Hence, finally, 
ΔP = N 

1 Δ pi . That is, with exogenous weights, societal poverty changes coherently with the 
change in person i ’s individual poverty, as the latter does not affect the poverty measurement 
of anybody else. Hence, monotonicity is fulfilled. 

6.2 Subgroup Consistency 

A key implication of Proposition 1 is that societal poverty indices based on endogenous 
weights (respecting the form (6)) can also violate the desirable property of subgroup consis-
tency (Axiom 2). In other words, we may find that poverty in a subgroup of the population 
has declined, with the poverty of all the other subgroups remaining unchanged, yet the pov-
erty of the whole society has increased. However, this does not mean that subgroup consis-
tency is only relevant when the poverty of one subpopulation changes while the poverty of 
the other subpopulations remains unaltered. Through repeated application of the property 

12Note that this result also holds for any hybrid weighting rule where endogenous weights have been used 
alongside exogenous weights. 
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of subgroup consistency, we can compare situations when the poverty of one or more of the 
subpopulations changes (Foster and Szekely, 2008). Violation of subgroup consistency, on 
the other hand, will essentially imply that societal poverty may increase even if the poverty 
of all the subpopulations has declined. Thus, this is a powerful axiom which ensures that 
changes in the poverty of the total population is consistent with the changes happening at 
the subpopulation level. We claim the following. 

Proposition 3 Suppose for any deprivation matrix XND, the societal poverty measure is given 
by an additively decomposable poverty function P (XND;w, k), where w represents the class of en-
dogenous weights respecting equation (6). Then P (XND;w, k) fails to satisfy subgroup consistency 
(Axiom 2). 

Proof: See Appendix A. 

Proposition 3 thus demonstrates, in general terms, that endogenous weights will lead to the 
violation of subgroup consistency (Axiom 2). Note that the class of endogenous weights 
used is very general.13 

7 Conclusions 

The use of endogenous weights in multidimensional poverty measurement has enjoyed some 
popularity, yet the implications of letting weights depend on the dataset have not been stud-
ied in depth, above and beyond some reflections and sensible warnings (e.g. Alkire et al., 
2015). In this paper we focus on a broad class of endogenous weights based on several in-
stances of policy applications. We find that endogenous weighting leads to violations of 
monotonicity and subgroup consistency for a general class of multidimensional poverty in-
dices based on the counting approach. Changes in the deprivation status of a household 
(or individual) generate measurement externalities in the form of changes in the counting 
function of many other households (or people), despite the absence of any changes in the lat-
ter’s deprivation profiles. These transformations operate through the effect of the original 
changes in deprivation status on the weights. 

Even though we focus on poverty indices, our analysis is equally relevant to societal welfare 
indices. For example, in the case of asset indices, each binary indicator could denote owner-

13As before, this result will also apply to any hybrid weights which include both endogenous and exogenous 
weights, so long as the changes in deprivation status are happening in indicators where the weights are endoge-
nous. 

OPHI Working Paper 135 27 www.ophi.org.uk 

www.ophi.org.uk


Dutta et al. Endogenous weights and multidimensional poverty 

ship of a specific asset (e.g. equal to one) or lack thereof (e.g. equal to zero). The asset score 
for each individual or household could be the weighted sum of the binary indicators. This 
is equivalent to the counting function (equation 2) in our paper. Since we are measuring wel-
fare, we can implicitly adopt a union approach to identification. The societal poverty index 
in our paper can then be interpreted as the societal asset index, which would essentially be 
the average of the individual or household asset scores. Monotonicity in that context would 
require that a loss of ownership of any asset (e.g. losing livestock) by an individual should not 
be accompanied by an increase in the overall societal asset index. Similarly, subgroup con-
sistency would imply that if the asset score of a subgroup decreases, with asset scores of the 
other subgroups unchanged, then the overall societal asset index should not increase. In all 
such cases where the properties of monotonicity and subgroup consistency are required, our 
results will hold and the use of a broad class of endogenous weights would be problematic. 

Likewise, our analysis also bears important implications for individual living standard in-
dices based on binary indicators, such as the burgeoning asset indices pioneered by Filmer 
and Pritchett (2001) and prominent measures of material deprivation in Europe (see e.g. Guio 
et al., 2016). In these cases, if individual living standards are measured by a weighted sum of bi-
nary indicators using endogenous weights, then a change in one household’s vector of binary 
indicators representing asset holdings would generate measurement externalities in the form 
of changes in the living standard scores of other households despite any objective changes 
in their asset holdings, and with the concomitant rerankings among many households not 
necessarily involving the household whose objective living conditions changed. 

By contrast, societal composite measures based on exogenous weights will satisfy monotonic-
ity and subgroup consistency, so that if one household’s deprivation (respectively achieve-
ment) worsens, then the societal measure of poverty (respectively wellbeing) will not increase, 
ceteris paribus. At the individual level, a change in a household’s asset holdings will produce 
many fewer rerankings, always involving that same household, if the living standards score 
is computed using exogenous weights. 

Of course, resorting to exogenous weights involves tricky, even potentially arbitrary, choices. 
Best-practice suggestions for choosing exogenous weights are in their infancy but are cer-
tainly emerging. For instance, Esposito and Chiappero-Martinetti (2019) monitor multidi-
mensional poverty in the Dominican Republic using exogenous weights generated from a 
field experiment (i.e. information independent from their main dataset). 

One way of using endogenous weights while satisfying monotonicity and subgroup consis-
tency could be to compute endogenous weights with one particular dataset and then leave 
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them fixed for future comparisons. This is precisely what Asselin and Anh (2008) do in their 
application to poverty comparisons in Vietnam with weights derived from MCA. However, 
this option would not really simplify the complexity of the decision regarding weight selec-
tion, since one would still need to decide which dataset to use in order to compute the weights 
for poverty comparisons (e.g. should one use a particular dataset or pool datasets?). More-
over, as pointed out by Alkire et al. (2015, p. 99), if datasets are pooled to compute weights 
based on data-reduction techniques (e.g. MCA, principal component analysis, factor analy-
sis), there is no guarantee that a poverty comparison will be robust to sample updating, e.g. 
adding new time periods and including the new datasets in a recalculation of weights. Clearly, 
the latter decisions are hardly less arbitrary than choosing a vector of exogenous weights. 
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A Appendix: Proofs 

Proof of Proposition 1: 
Case (i): Suppose individual n is not deprived in any indicator. In that case, ∀d ∈ {1,2, ..., D}, 
= 0. Thus, from (10), we know that ΔC = 0. Now suppose individual n is deprived ρnd n

PDin all D indicators. Since d=1 wd = 1, we can deduce that 

D
X 
Δwj = 0. (A1) 

d=1 

Thus, 
D
X 

Δwj = − Δwd . (A2) 
d=1 
d 6= j 

Hence, from (10), ΔCn = 0. 

Case (ii): Suppose for n, ρn j = 1 and ∃d =6 j such that ρnd = 0. Then, from (A2), we can 
infer 

D
X 

Δwj > ρnd Δwd , 
d=1 
d 6= j 

since the right-hand side of the inequality aggregates over only those indicators in which 
individual n is deprived, except j . Thus, 

ΔC Ô 0 ⇐⇒ Δwj =Ô 0.n 

On the other hand, if, for n, ρn j = 0, then from (10) we get 

D
X 

ΔC = n ρnd Δwd . 
d=1 
d 6= j 

Then, 
D
X 
ρnd Δwd Ô 0if Δwj Ó 0. 

d=1 
d 6= j 
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Thus, ΔC Ô 0 ⇐⇒ Δwj =Ó 0.n 

Proof of Corollary 1: 
First we prove that Δρi j > 0 leads to ΔCi > 0. From equation (11) we can get 

D
X 

ΔCi = w 0 
j + ρi d Δwd , (A3) 

d=1 
d 6= j 

PDwhere w 0 is the weight of indicator j in X0 Since = 0, Δwj ¿ 0 implies j ND. d=1 Δwd
PD 

j Δwd · 0. Thus,d=1,d=6 

D D
X X 

Δwj = Δwd ≥ ρi d Δwd . (A4) 
d=1 d=1 
d=6 j d=6 j 

Suppose Δwj > 0. Thus, from (A4), |w 0 | > | 
PD

j ρi d Δwd |, which from (A3) implies j d=1,d=6 
PDΔCi > 0. Likewise, if Δwj < 0, we know from (A4) that j Δwd > 0. Given w 0 

j > 0,d=1,d=6 

we can deduce from (A3) that ΔCi > 0. 

Let ti be the (exogenously weighted) number of indicators in which individual i is deprived 
and k is the cutoff for the (weighted) number of indicators one has to be deprived in to be 
identified as poor. Then if ti ≥ k , given ΔCi ≥ 0 and the definition of pn, we can infer that 
Δ p ≥ 0. Likewise, if ti < k and t 0 ≥ k given ΔCi > 0, then again Δ p > 0. Otherwise, n i n 

Δ pn = 0. 

Proof of Proposition 3: 
Consider a deprivation matrix decomposed by subgroups XN D = (XN1D k XN2D ) where N = 

N1+N2,∀n ∈ XN1D , ρn j = 1 and ∀n ∈ XN2D , ρn j = 0. Suppose XN D 
0 = (XN1D k X0 

N2D ), where 
X0 

N2D is obtained from XN2D by a simple increase in deprivation of person i in indicator j , 
i.e. Δρi j = 1, i ∈ XN2D . Suppose for X0 

N2D : Δwj = wj (ρi j = 1) − wj (ρi j = 0) < 0. 

N D N2DTo be subgroup consistent, it must be the case that ΔP X0 −XN D Ó 0 if and only if ΔP X0 −XN2D Ó 

0. Applying (12), we get 

X0 N2 
N2D −XN2D 1 X0 −XN2D 1 X X0 −XN2DN2D N2DΔP = Δ p + I(ρ = 0)Δ pn . (A5)nm N2 

i N2 n 6=i 
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X0 X0 N2D −XN2D N2D −XN2DIn (A5), Δ pi ≥ 0 from Corollary (1). Also, Δ pn ≥ 0, ∀n 6= i due to Corol-
X0 −XN2D

lary 3. Therefore, ΔP N2D ≥ 0. 

Now, 

X0 X0 X X0 X X0 N D −XN D 1 N D −XN D 1 N 
N D −XN D 

N 
N D −XN D 

ΔP = Δ p + [ I(ρ = 0)Δ p + I(ρ = 1)Δ p ]i nm n nm nN N n=6 i n 6=i 

(A6) 
X0 X0−XN D PN −XN D N D N D Again, in (A6), Δ p ≥ 0. Likewise, I(ρ = 0)Δ p ≥ 0. However, i n=6 i nm n 

X0 X0PN −XN D −XN D N D N D from Corollary 3, I(ρ = 1)Δ p ≤ 0. Therefore, ΔP Ó 0, unlike n 6=i nm n 

ΔP X0 X0 N D −XN D N2D −XN2D ≥ 0. In fact, with N1 →∞, we can obtain ΔP ≤ 0. 
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B Appendix: Additional Deprivation Simulation Results 

Figure 7: Violations of monotonicity: Ecuador 

Figure 8: Violations of monotonicity: Uganda 
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Figure 9: Violations of monotonicity: Ecuador 

Figure 10: Violations of monotonicity: Uganda 

Figure 11: Violations of subgroup consistency: Ecuador 
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Figure 12: Violations of subgroup consistency: Uganda 

Figure 13: Violations of subgroup consistency: Ecuador 

Figure 14: Violations of subgroup consistency: Uganda 
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