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Abstract 
The adjusted headcount ratio M0 of Alkire and Foster (2011a) is increasingly being adopted by countries 
and international organizations to measure poverty. Three properties are largely responsible for its growing 
use: Subgroup Decomposability, by which an assessment of subgroup contributions to overall poverty can be 
made, facilitating regional analysis and targeting; Dimensional Breakdown, by which an assessment of 
dimensional contributions to overall poverty can be made after the poor have been identified, facilitating 
coordination; and Ordinality, which ensures that the method can be used in cases where variables only have 
ordinal meaning. Following Sen (1976), a natural question to ask is whether sensitivity to inequality among 
the poor can be incorporated into this multidimensional framework. We propose a Dimensional Transfer 
axiom that applies to multidimensional poverty measures and specifies conditions under which poverty 
must fall as inequality among the poor decreases. An intuitive transformation is defined to obtain 
multidimensional measures with desired properties from unidimensional FGT measures having analogous 
properties; in particular, Dimensional Transfer follows from the standard Transfer axiom for 
unidimensional measures. A version of the unidimensional measures yields the M-gamma class !"

# 
containing the multidimensional headcount ratio for γ = 0, the adjusted headcount ratio M0 for γ = 1, and 
a squared count measure for γ = 2, satisfying Dimensional Transfer. Other examples show the ease with 
which measures can be constructed that satisfy Subgroup Decomposability, Ordinality, and Dimensional 
Transfer. However, none of these examples satisfies Dimensional Breakdown. A general impossibility 
theorem explains why this is so: Dimensional Breakdown is effectively inconsistent with Dimensional 
Transfer. Given the importance of Dimensional Breakdown for policy analysis, we suggest maintaining 
the adjusted headcount ratio as a central measure, augmented by the squared count measure or other 
indices that capture inequality among the poor. The methods are illustrated with an example from 
Cameroon. 

Keywords: poverty measurement, multidimensional poverty, inequality, transfer axiom, dimensional 
breakdown, FGT measures, decomposability, axioms, identification, ordinal variables. 
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1. Introduction 

The multidimensional poverty measures of Alkire and Foster (2011a) were designed with practical 

applications in mind, and there are many examples that illustrate their usefulness in monitoring 

poverty, targeting poor populations, and coordinating poverty reduction efforts in real world settings.1 

The effectiveness of these measures originates in the properties they satisfy, and these include: 

Subgroup Decomposability, by which an assessment of subgroup contributions to overall poverty can 

be made, thus facilitating regional analysis and targeting, and Dimensional Breakdown, by which an 

assessment of dimensional contributions to overall poverty can be made, thereby facilitating policy 

coordination.2 In addition, the most common measure – the adjusted headcount ratio – satisfies a third 

property that ensures its broad applicability: Ordinality allows it to be used in the all too common cases 

where variables only have only ordinal significance. 

A natural question to ask is whether inequality can be usefully incorporated into this form of poverty 

measurement. Following Sen (1976), the literature on income (or unidimensional) poverty expresses 

the concern for inequality using a transfer principle that requires poverty to fall as result of a 

progressive transfer among the poor. This in turn has led to an array of distribution-sensitive income 

poverty measures satisfying this property.3 In the multidimensional setting, there are two competing 

notions of inequality, leading to two distinct ways of conceiving of inequality in multidimensional 

poverty. The first, linked most closely to Kolm (1977), generalizes the notion of a progressive transfer 

(or more broadly a Lorenz comparison) to the multidimensional setting by applying the same 

bistochastic matrix to every variable.4 This results in a coordinated “smoothing” of the distributions 

that preserves their means. The associated transfer principle for poverty measures requires poverty to 

                                                
1
 See Atkinson (2003) concerning the practicality of counting measures. For a global application see Alkire and Santos 

(2010, 2014); official national poverty applications include Castillo Añazco and Jácome Pérez (2016) for Ecuador, 
CONPES (2012) for Colombia, Gob. De Chile (2015) for Chile, Royal Govt. of Bhutan (2010, 2012) for Bhutan; other 
applications include the Gross National Happiness Index of Bhutan (Ura et al. 2012, 2015) and the Women’s 
Empowerment in Agriculture Index (Alkire et al. 2013).  

2
 Subgroup Decomposability (or Decomposability) is defined for unidimensional measures in Foster, Greer, and Thorbecke 

(1984) and for multidimensional measures in Chakravarty, Mukherjee, and Renade (1998), Tsui (2002), and 
Bourguignon and Chakravarty (2003). Dimensional Breakdown and Ordinality were outlined in Alkire and Foster 
(2011a) and are formally presented below.  

3
 See Sen (1976), Clark, Hemming, and Ulph (1981), and Foster, Greer, and Thorbecke (1984) among others. It should be 

noted that a property properly depends on both the identification and aggregation steps. In unidimensional measurement, 
identification usually has a standard format, so we often say that the poverty measure satisfies a given property without 
explicitly specifying the identification method.  

4
 A bistochastic matrix is a weighted average of different permutation matrices (each of which switches achievements 

around). When applied to an income distribution it ensures that each person’s transformed income is a weighted average 
of all the original incomes. See Foster and Sen (1997) or Alkire et al. (2015). 
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fall, or at least not to rise, when such a smoothing is applied among the poor. The second form of 

multidimensional inequality is linked to the work of Atkinson and Bourguignon (1982) and relies on 

patterns of achievements across dimensions. Imagine a case where one person initially has more of 

everything than another person and the two persons switch achievements in a single dimension. This 

can be interpreted as a progressive transfer that preserves the marginal distribution of each dimensional 

variable and lowers inequality by relaxing the positive association across variables. The resulting 

transfer principle specifies conditions under which this form of progressive transfer among the poor 

should lower poverty, or at least not raise it. 

Many multidimensional poverty methodologies satisfy one or both of these transfer principles.5 In 

particular, it was shown in Alkire and Foster (2011a) that the adjusted Foster-Greer-Thorbecke (FGT) 

measures Mα, when used with a dual-cutoff method of identification, satisfy the first type of transfer 

principle for α ≥ 1 and the second type for α ≥ 0. Note, though, that the transfer properties in the 

multidimensional poverty literature are “weak” in that they allow poverty to remain unchanged in the 

face of a progressive transfer.6 In particular, the adjusted poverty gap measure M1, which is thoroughly 

insensitive to either form of transfer, satisfies both. It is possible to define associated strict versions of 

the properties that require poverty to fall as a result of a suitably strict progressive transfer, and to show 

that for α > 1 the measure Mα satisfies a strict version of the first transfer principle, while for α > 0 it 

is easily transformed into a new measure satisfying a strict version of the second (as outlined in the 

paper).7 However, each of these distribution-sensitive measures violates Ordinality, thus severely 

limiting its applicability. This leads to the following natural questions: Is it possible to formulate a 

strict version of distribution sensitivity – by which greater inequality among the poor strictly raises 

poverty – that is applicable to multidimensional poverty methodologies satisfying Ordinality? And can 

we find measures satisfying this requirement and also Subgroup Decomposability and Dimensional 

Breakdown, which have proved to be so useful in practice? 

This paper considers the possibility of constructing multidimensional poverty measures satisfying 

these three properties and a strict form of distribution sensitivity called Dimensional Transfer. This 

                                                
5
 See for example Chakravarty, Mukherjee, and Renade (1998), Tsui (2002), Bourguignon and Chakravarty (2003), 

Chakravarty and D’Ambrosio (2006), Maasoumi and Lugo (2008), and Bossert, Chakravarty, and D’Ambrosio (2013).  
6
 See, for example, the related axioms of Tsui (2002), Chakravarty (2009), Bourguignon and Chakravarty (2003), and 

Alkire and Foster (2011a). For a clarifying discussion of this issue, see Alkire et al. (2015). Rippin (2013) has 
unfortunately falsely claimed that M0 violates a property she calls “Sensitivity to Inequality Increasing Switch” which 
also has only weak inequalities. This and other inaccuracies in Table 1.01 of Rippin (2013) continue to be repeated; see 
for example Rippin (2015).  

7
 See Alkire and Foster (2011a, p. 485), where it is noted that one could replace the individual poverty function Mα(yi; z) 

with [Mα(yi; z)]γ for some γ > 0 and average across persons. 
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property is based on an Atkinson-Bourguignon form of multidimensional transfer, but with the 

additional proviso that the participants are both poor and that the poorer person is deprived in the 

switched dimensions while the other poor person is not – so that it is also a transfer of a deprivation 

from a worse off poor person to a better off poor person. Following Alkire and Foster (2011a) we 

expand the adjusted headcount ratio M0 to a parametric class !"
# – called here the M-gamma class – 

having a subclass that satisfies Dimensional Transfer. We then present an intuitive procedure for 

transforming any unidimensional poverty measure into a multidimensional poverty measure by 

constructing the attainment count distribution and applying the unidimensional poverty measure.8 

Examples produced by the transformation include the global Multidimensional Poverty Index (or MPI), 

the official Columbian MPI, Mexico’s multidimensional methodology, and the M-gamma class.9 The 

transformation also effectively converts properties for unidimensional poverty measures into the 

corresponding properties for multidimensional measures. For instance, Monotonicity of the income 

poverty measure ensures that the resulting multidimensional poverty measure satisfies Dimensional 

Monotonicity as defined in Alkire and Foster (2011a). Subgroup Decomposability for 

multidimensional measures is likewise obtained from the associated property for unidimensional 

measures. To construct multidimensional measures satisfying Dimensional Transfer, it turns out that 

any unidimensional measure satisfying the standard Transfer principle will do. Hence it is 

straightforward to construct any number of multidimensional poverty measures that satisfy the usual 

properties: Ordinality, Subgroup Decomposability, and Dimensional Transfer. Any standard 

decomposable, unidimensional poverty measure satisfying the Transfer principle will do. 

Unfortunately, it is also true that every one of these examples violates Dimensional Breakdown, a 

property that has proved especially crucial for conducting policy analysis. We identify the reasons for 

the violation and prove an impossibility result that essentially demonstrates the mutual incompatibility 

of Dimensional Breakdown and Dimensional Transfer. Consequently, Dimensional Transfer carries 

with it an opportunity cost: it is not freely available for measures satisfying Subgroup 

Decomposability, Dimensional Breakdown, and Ordinality. Given the key role of these properties for 

multidimensional poverty measurement, we recommend using methods satisfying the three, 

augmented by measures or information that separately accounts for inequality among the poor. In 

particular, the adjusted headcount ratio, which itself is neutral with respect to the transfers in the 

                                                
8
 A person’s deprivation score is the sum of the values of deprivations experienced by the person; the attainment count is 

the sum of the values associated with the remaining dimensions – those in which the person is not deprived. See section 
4. 

9
 See Alkire and Santos (2010, 2014), CONPES (2012), and CONEVAL (2009), respectively. The M-gamma class is 

generated by versions of the FGT or P-alpha measures. 



Alkire and Foster  Dimensional and Distributional Contributions 

OPHI Working Paper 100  www.ophi.org 4 

Dimensional Transfer property, can be used with other M-gamma measures in a manner reminiscent 

to the traditional P-alpha or FGT measures. The methods are illustrated with an example from 

Cameroon. 

The basic definitions and notation used in this paper are given in Section 2, while Section 3 describes 

the key properties for multidimensional poverty measures. Section 4 presents the M-gamma class and 

describes the method of constructing multidimensional measures from unidimensional measures. 

General propositions linking unidimensional and multidimensional properties are provided, which, 

among other things, shows how to construct multidimensional measures satisfying the Dimensional 

Transfer property. Section 5 presents the impossibility result and outlines some potential ways forward 

with the help of an example, while Section 6 concludes. 

2. Notation and Defintitions 

We begin with notation and definitions that will be needed in the subsequent analysis. Let |v| denote 

the sum of all elements in any given vector or matrix v of real numbers, and let µ(v) signify the mean 

of v, or |v| divided by the total number of elements in v. Where v and v' are vectors having the same 

number of entries, let v > v' denote the case where v vector dominates v' (so that each coordinate of v 

is as large as the respective coordinate of v', while v ≠ v'). 

In what follows, we consider allocations of dimensional achievements across populations. The number 

of dimensions is assumed to be a fixed integer d ≥ 2, where the typical dimension is j = 1,2,…,d. The 

population size is any integer n ≥ 1, where n is permitted to range across the positive integers, and i = 

1,2,…,n denotes the typical person. Let y = [yij] be an n ⋅ d matrix of achievements belonging to the 

domain Y = {y ∈ R+
nd : n ≥ 1} of nonnegative real matrices.10 The typical entry in y is yij ≥ 0. We use yi 

to signify the row vector of individual i’s achievements, while y.j is the column vector that provides 

the distribution of dimension j’s achievements across people. A deprivation cutoff zj > 0 for dimension 

j is compared to achievement level yij to determine when person i is deprived in j, namely, when yij < 

zj. The row vector of dimension-specific deprivation cutoffs is denoted by z. 

Poverty measurement has an identification step and an aggregation step. An identification function ρ: 

$%& ⋅ $%%&  → {0,1} is used to identify whether person i is poor, where ρ(yi; z) takes the value of one if 

person i is poor, and the value of zero otherwise, and is weakly decreasing in each yij (lowering 

                                                
10

 We follow Alkire and Foster (2011a) in assuming that achievements are represented as nonnegative real numbers, while 
deprivation cutoffs are strictly positive. Other assumptions are clearly possible but are not explicitly covered here. 
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achievements does not bring a poor person out of poverty).11 The identification vector associated with 

y is the column vector r whose ith entry is ρ(yi; z), while the set of persons who are identified by ρ as 

being poor is denoted by Z ⊆ {1,…, n}. An index or measure of multidimensional poverty M: Y ⋅ $%%&  

→ $% aggregates the data into an overall level M(y; z) of poverty in y given z and the identification 

function ρ. The resulting methodology for measuring multidimensional poverty is given by M = (ρ, 

M). For any given dimension j, let Y.j be the set of all column vectors y.j of jth dimensional 

achievements. It will sometimes be useful to focus on y and y.j that are consistent with a given poverty 

status vector r. Let Yr denote the set of y having r as their poverty status vector, and let Yrj denote the 

set of all y.j that are derived from an achievement matrix y found in Yrj. 

Alkire and Foster (2011a,b) identify and measure poverty using a vector of deprivation values and an 

overall poverty cutoff. Let wj > 0 denote the weight or deprivation value of j and let w be the row 

vector satisfying |w| = d. The poverty cutoff is denoted by k, where 0 < k ≤ d. For any person i, the 

deprivation score (or count) ci is the sum of the deprivation values wj across all dimensions in which i 

is deprived. The dual-cutoff identification function ρk is defined by ρk(yi; z) = 1 whenever ci ≥ k, and 

ρk(yi; z) = 0 whenever ci < k. In other words, ρk identifies person i as poor when the deprivation count 

ci is at least k and i is not poor otherwise.12 Let Z(k) be the set of persons who are identified by ρk as 

being poor. At one extreme, when k = d, the function ρk becomes intersection identification, in which 

a person must be deprived in all dimensions to be poor. When 0 < k ≤ minj wj, it becomes union 

identification, in which a person need be deprived in only one dimension to be identified as poor. Thus, 

while our emphasis is on the intermediate cases, ρk includes the two limiting identification methods. 

Using deprivation cutoffs and values, we convert the matrix of achievements into a matrix focusing on 

deprivations. Let g0 = [

€ 

gij
0] denote the deprivation matrix whose typical element is given by 

€ 

gij
0  = wj 

when yij < zj, and 

€ 

gij
0  = 0 otherwise. In words, when person i is deprived in the jth dimension, the 

associated entry 

€ 

gij
0  is the deprivation value wj; otherwise it is 0. Column vector g⋅ j

0  clearly indicates 

those who are deprived in dimension j, while the ith row vector of g0 is person i’s deprivation vector, 

denoted

€ 

gi
0 . Summing the values in 

€ 

gi
0  yields the deprivation count ci = |

€ 

gi
0 | as defined above, while 

further dividing by the maximal value d yields the deprivation share or score si = ci/d, from which the 

                                                
11

 While not included in Alkire and Foster (2011a), this requirement would seem to be a reasonable restriction on ρ and the 
orientation of achievements. 

12
 As noted below it is also possible to use ci  > k in the definition of the poor. 
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column vector s of deprivation scores is constructed. It lists the intensity (or breadth) of deprivation 

experienced by each person. 

The poverty cutoff k can be used to create a matrix focused on the deprivations of the poor. Let g0(k) 

denote the censored deprivation matrix whose typical element is given by 

€ 

gij
0(k) = 

€ 

gij
0  ρk(yi; z), which 

leaves the entries of the poor unchanged, while changing those of the nonpoor to zero.13 The column 

vector g⋅ j
0 (k) contains wj for every person who is both poor and deprived in dimension j, and 0 

otherwise. Person i’s censored deprivation vector

€ 

gi
0(k) is the ith row of g0(k). The censored vector of 

deprivation scores s(k), given by si(k) = |

€ 

gi
0(k)|/d  = ρk(yi; z)si for i = 1,…,n, differs from s in that the 

entries of the nonpoor are set to zero. 

The first poverty measure defined in Alkire and Foster (2011a) is the adjusted headcount ratio M0 = 

M0(y; z) = µ(g0(k)), or the mean of the censored deprivation matrix. It is the total value of all 

deprivations experienced by the poor as a share of the maximum total value of deprivations that would 

be obtained if everyone were fully deprived. Equivalently, M0 = µ(s(k)), or the mean of the censored 

vector of deprivation scores.  M0 can be expressed as the product of two intuitive partial indices, the 

headcount ratio H and the average intensity of poverty, denoted A. The headcount ratio arising from 

dual-cutoff identification is defined as H = q/n, where q = Σi=1
n ρk(yi; z) is total number of poor persons 

identified by ρk. The average intensity is given by A = |s(k)|/q = (| g1
0 (k)|+…+| gn

0 (k)|)/(qd). It is easy to 

show that  

   M0 = (| g1
0 (k)|+…+| gn

0 (k)|)/(nd) = HA      (1) 

which offers a decomposition of the measure by population. This expression sums up terms in g0(k) 

horizontally across dimensions and then vertically across persons. In addition, M0 can be broken down 

by dimension as  

   M0 = (| g⋅1
0 (k)|+…+| g⋅d

0 (k)|)/(nd)             (2) 

which instead sums up terms in g0(k) vertically across persons and then horizontally across dimensions. 

We will return to these two expressions below. 

Alkire and Foster (2011a) also define other measures that require more from the data – namely that 

each variable is cardinal – which ensures that the normalized gaps gij = (zj-yij)/zj of the poor are 

                                                
13

 Note that in the case of union identification, the censored and original deprivation matrices are identical. 
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meaningful. In this case, the censored deprivation matrix g0(k) can be replaced by the matrix gα (k) , 

having as its typical entry gij
α (k) = gij

0 (k)((zj-yij)/zj) α for a given α > 0. A class of multidimensional 

poverty measures can then be defined by Mα(y; z) = µ(gα (k))  for α ≥ 0. In particular, the adjusted 

poverty gap M1 is sensitive to the depth of deprivation in each dimension, while the adjusted FGT (or 

squared gap) M2 emphasizes the largest normalized gaps and is sensitive to the Kolm type of 

multidimensional inequality in the distribution of achievements. Since our present concern is with 

measures that satisfy Ordinality, we focus on M0 in what follows. 

3. Properties 

The properties of a poverty measure specify the patterns in the underlying data the measure should 

ignore, the aspects it should highlight, and the kinds of policy questions it can be used to answer. This 

section presents properties for multidimensional poverty measures, focusing first on the traditional 

properties satisfied by M0 or, more precisely, by the methodology Mk0 = (ρk,M0) since properties are, in 

fact, joint restrictions on identification and aggregation. Only general descriptions of these properties 

are provided here; precise definitions and verifications can be found in Alkire and Foster (2011a). Two 

additional properties of Mk0 that were previously discussed, but have not yet received a rigorous 

treatment, are defined: Ordinality, which ensures that the measure can be meaningfully applied to 

ordinal data, and Dimensional Breakdown, which allows poverty to be broken down by dimension 

after identification. We conclude with a new property – Dimensional Transfer – that ensures that 

poverty is sensitive to a form of Atkinson-Bourguignon inequality among the poor. 

The properties of multidimensional poverty methodologies can be divided into the categories of 

invariance, subgroup, and dominance properties. Invariance properties isolate aspects of the data that 

should not be measured. They include Symmetry (invariance to permutations of achievement vectors 

across people), Replication Invariance (invariance to replications of achievement vectors across 

people), Deprivation Focus (invariance to an increment in a nondeprived achievement), and Poverty 

Focus (invariance to an increment in an achievement of a nonpoor person). 

Next are the subgroup properties that connect poverty levels overall to levels obtained from data 

broken down by population subgroup or by dimension. Two of the key properties here are Subgroup 

Consistency (if poverty rises in a population subgroup and stays constant in the remaining population, 

while subgroup population sizes are unchanged, then overall poverty must rise) and Subgroup 
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Decomposability (overall poverty is a population-weighted sum of the poverty levels in population 

subgroups). 

Finally, are the dominance properties that concern the aspects of the data that should be measured and 

ensure that the poverty level responds appropriately to certain changes in achievements. They include 

Weak Monotonicity (an increment in a single achievement cannot increase poverty) and Weak 

Rearrangement (a progressive transfer among the poor arising from an association-decreasing 

rearrangement cannot increase poverty).14 

For the purposes of this paper, we will take the above set of four invariance properties, two subgroup 

properties, and two dominance properties as the eight basic multidimensional properties. Below we 

discuss another dominance property from Alkire and Foster (2011a), namely, Dimensional 

Monotonicity, which requires poverty to fall as a result of an increment that removes at least one 

deprivation from among the poor. We now present three additional properties of multidimensional 

measures – respectively, an invariance property, a subgroup property, and a dominance property – that 

are the special concern of this paper. 

3.1 Ordinality 

The basic data used to construct the achievement matrix are typically derived from circumstances and 

conditions that are easy to describe and understand but have no natural metric in which to be measured. 

The numbers assigned to the various achievement levels (and deprivation cutoffs) in this domain are 

in a real sense simply placeholders to convey information about underlying conditions and, in 

particular, whether they are conditions of deprivation.15 Note that this general line of argument may be 

true even for the cases where the variable has an “in-built” representation such as income or years of 

schooling, since the cardinalization that comes with the variable may not be the right one for reckoning 

gains and losses in the present context.16 

                                                
14

 See Alkire and Foster (2011a) for more precise definitions of these properties. A third dominance property of Weak 
Transfer, which requires the application of the same bistochastic matrix to each dimension, is not well suited for ordinal 
variables and will not be considered here. 

15
 In fact, categorical information is all that is necessary in the present context. Even if the deprived achievements cannot 
be ranked one against the other, and the same is true for the achievements in the non-deprived category, one could use 
any numerical assignment that would correctly separate achievements into the deprived or non-deprived categories, with 
the deprivation cutoff being set at an appropriate value in between. The functions used below in the definition of 
equivalent representation need only preserve the categorical allocations. 

16
 For a fuller treatment of scales and measurement see Stevens (1946), Sen (1973, 1997), Alkire et al. (2015), and the 
references therein. 
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We say that ((′; +′) is obtained from ((; +) as an equivalent representation if there exist increasing 

functions -.: $% → $% for j = 1,…,d such that (1.2 = -.((1.) and +.2 = -.(+.) for all i = 1,…, n and every 

j = 1,..., d. In other words, an equivalent representation assigns a different set of numbers to the same 

underlying basic data while preserving the original order. The methodology Mk0 satisfies the following 

invariance property, which embodies the concern that the measure should be independent of the way 

the underlying data are represented.17 

Ordinality: Suppose that (y'; z') is obtained from (y; z) as an equivalent representation. Then the 

methodology M = (ρ, M) satisfies ρ(y'i; z') = ρ(yi; z), for all i, and M(y'; z') = M(y; z). 

To see that Mk0 satisfies this property, note that the dimensions in which person i is deprived are 

unchanged between (y'; z') and (y; z), since the monotonic transformation ensures that    y'ij < z'j 

whenever yij < zj. Consequently, the deprivation count is unchanged, which ensures that ρk(y'i; z') = 

ρk(yi; z) for all i. It follows that the associated censored deprivation matrices are identical, so that their 

means are the same, and hence M0(y'; z') = M0(y; z). Note that the since the gap and squared gap 

matrices are typically very different for equivalent representations, the methodology Mkα = (ρk, Mα) 

violates Ordinality for α = 1, α = 2, and indeed any α > 0. Each of these makes use of cardinal 

information on the depth of deprivations. 

3.2 Dimensional Breakdown 

Multidimensional poverty by definition has multiple origins, and it is useful for policy purposes to 

have a method of gauging how each dimension contributes to overall poverty. For example, 

information on contributions of dimensional deprivations could help in the allocation of resources 

across sectors and the design of specific or multisectoral policies to address poverty; monitoring 

progress dimension by dimension can help clarify the underlying sources of progress.18 A 

thoroughgoing decomposition of poverty by dimension would require overall poverty to be a weighted 

average of dimensional components, each of which is a function of that dimension’s distribution of 

                                                
17

 We might imagine a weaker ordinality requirement that would only require the ordering, and not necessarily the measured 
level of poverty, to be preserved by equivalent representations. 

18
 Each of these examples has been used in practice: for example, in Colombia (CONPES 2012, Angulo et al. 2013) and 
in Costa Rica (Govt. of Costa Rica INEC 2015). Naturally the translation from measure to policy response requires 
additional analysis, as deprivations are often interconnected. 
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achievements only, without reference to achievements in the other dimensions. For example, 

Chakravarty, Mukherjee, and Ranade (1998) propose the following property:19 

Factor Decomposability: There exist vj > 0 summing to one, and component functions 4.: 5.×$%% →

$% such that  

   M(y; z) = v1 m.1(y.1; z1) +… + vd m.d(y.d; zd) for y in Y.   (3) 

This property was originally constructed for methodologies using a union identification approach, so 

that by definition every deprivation is a poor person’s deprivation. With a different identification, such 

as the general dual-cutoff approach, being deprived in a dimension does not automatically mean that 

a person is poor. Instead, this depends on the person’s achievements in other dimensions through the 

identification function. And since a deprivation only contributes to poverty when the deprived person 

is poor, we must consider a form of breakdown by dimension that explicitly permits the component 

function to depend on information on who is poor. In our breakdown property, overall poverty is 

expressed as a weighted sum of dimensional components, but only after identification has taken place 

and the domain has been limited to the fixed set Yr of achievement matrices with the same poverty 

status vector.20 

While Factor Decomposability placed no constraints on the component functions, one could argue that 

in order for a breakdown to be policy relevant, the component functions should reflect certain basic 

descriptive facts. For example, the contribution of a dimension to overall poverty would intuitively be 

zero if no poor persons were deprived in that dimension; while if one or more persons were both poor 

and deprived in the dimension, then the contribution would be positive. We say that 4. (∙.; +.  is 

normalized if 4. (∙.; +.  = 0 when yij ≥ zj for all poor persons i and 4. (∙.; +.  > 0 when yij < zj for 

some poor person i. This requirement will be incorporated into our breakdown property. As before, for 

any given dimension j, let Yrj denote the set of all achievement distribution vectors y.j from some y in 

Yr. 

Dimensional Breakdown: For any given poverty status vector r, there exist vj > 0 summing to one and 

normalized component functions 4.: 58.×$%% → $% for j = 1,..., d, such that 

                                                
19

 Chakravarty, Mukherjee, and Ranade (1998) also require the component functions to be identical, which seems a bit 
restrictive and is relaxed here. See also Chakravarty and Silber (2008) and Chakravarty (2009). 

20
 This property allows the functional form of the breakdown to vary for every set of distributions having a different set of 
the poor – a less stringent and more general assumption than a full dimensional decomposition that requires the same 
functional form across all the subsets. 
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   ! (; + = 9:4: (∙:; +: + ⋯+ 9&4&((∙&; +&)    for y in Yr.   (4) 

In words, after identification has taken place and the poverty status of each person has been fixed, 

multidimensional poverty can be expressed as a weighted sum of dimensional components. The 

contribution of the deprivations in the jth dimension to overall poverty can then be viewed as vj m.j(y.j; 

z)/M(y; z). 

In the case of the adjusted headcount ratio Mk0 = (ρk, M0), expression (2) can be stated equivalently as  

       M0  = [(w1/d) | g⋅1
0 (k) | /(nw1)+…+(wd/d) | g⋅d

0 (k) | /(nwd)] 

which reduces to  

       M0  = v1 H1 +…+ vd Hd       (5) 

its version of expression (4), where the weights are vj = wj/d, or the value of deprivation j over the sum 

of the deprivation values, and the component functions are the censored headcount ratios Hj, or the 

percentage of the population that is both deprived in dimension j and poor. In other words, M0 is a 

weighted average of the censored headcount ratios. Notice that Hj depends on the distribution of the 

other dimensional achievements, since all are needed to determine whether a person is poor. However, 

the entries in column g⋅ j
0 (k)  can be expressed as 

€ 

gij
0(k) = gij

0 ρk(yi; z) and hence depend on the other 

dimensional achievement levels only through the identification function. This ensures that when we 

restrict consideration to distributions having the same fixed poverty status vector r, the term reduces 

to 

€ 

gij
0(k) = gij

0 ri and hence depends only on the achievements in dimension j, as required by Dimensional 

Breakdown. 

It can likewise be shown that every adjusted FGT methodology Mkα = (ρk,Mα) for α > 0  presented in 

Alkire and Foster (2011a) satisfies Dimensional Breakdown. On the other hand, the multidimensional 

headcount ratio for any identification apart from the intersection approach must violate the property. 

For in this case there would be a dimension j in which a poor person need not be deprived. If everyone 

went from being deprived in all dimensions to being deprived in all but j, the normalized component 

function m.j(y.j; z) would have to fall, but H would remain unchanged, violating Dimensional 

Breakdown. In the special case of intersection identification, intensity A is 1 and so the 

multidimensional headcount ratio H becomes M0, which satisfies Dimensional Breakdown. 

3.3 Dimensional Transfer. 

Transfer properties are motivated by the idea that poverty should be sensitive to the level of inequality 

among the poor, with greater inequality being associated with a higher (or at least no lower) level of 
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poverty.21 But which notion of inequality should be used in the multidimensional context? As noted in 

the introduction, there are two concepts in common use, one due to Kolm (1977) and another from 

Atkinson and Bourguignon (1982). The first is based on a definition of a progressive transfer as a 

“common smoothing,” whereby each dimensional distribution is transformed using the same 

bistochastic matrix. However, for this form of inequality to be meaningful, each dimensional variable 

would need to exhibit properties that are at odds with Ordinality.22 

The second inequality concept is based on a specialized transfer called a rearrangement, in which two 

persons switch achievements in certain dimensions. The role of a progressive transfer in this context 

is played by an association-decreasing rearrangement, in which the achievement vectors of the two 

persons are initially ranked by vector dominance (so that one person has no less in each dimension 

than the other person and more in one) and then after the rearrangement their achievement vectors 

cannot be ranked (so that one person has more in one dimension and the other has more in a second 

dimension). In symbols, we say that y' is obtained from y by an association-decreasing rearrangement 

if (a) both y' and y have the same population size; (b) there exist persons h and i such that for each j = 

1,..., d we have (=.2 , (1.2 = {(=., (1.}, while the achievements for all other persons are unchanged; and 

(c) (1 > (=, while neither (12 > (=
2  nor (=2 > (1

2. This transformation can be interpreted as a progressive 

transfer in that it transforms an initial “spread” between two persons – a spread represented by the 

dominance between achievement vectors – into a moderated situation where neither person has 

unambiguously more than the other. The overall achievement levels in society are unchanged, but the 

correlation between them (and hence inequality) has been reduced. 

Since this form of transfer involves a permutation and not an algebraic averaging of two persons’ 

dimensional achievements, it can be applied to ordinal data and is in principle consistent with the 

Ordinality property. The resulting transfer axiom for multidimensional poverty measures typically 

specifies that the persons involved in the rearrangement are poor. For example, the weak 

rearrangement axiom, as defined in Alkire and Foster (2011a), requires poverty not to rise as a result 

of an association-decreasing rearrangement among the poor. Note that this axiom – like all related 

axioms in the literature – is weak in that it does not ensure that poverty must strictly fall. It rejects the 

most problematic measures for which poverty can be “alleviated” by increasing inequality among the 

                                                
21

 See Sen (1976), Foster and Sen (1997), and Alkire et al. (2015). 
22

 The transformed achievement levels in a dimension are weighted averages of initial levels and hence depend on the 
cardinal representation of variables, which goes against Ordinality. In particular, after such a transformation, a person 
might be seen as poor under one cardinalization and nonpoor under a second. Measures applicable to ordinal variables 
cannot depend on the inequality level arising from a given cardinalization and, like M0, are independent of this form of 
inequality among the poor. 



Alkire and Foster  Dimensional and Distributional Contributions 

OPHI Working Paper 100  www.ophi.org 13 

poor but at the same time allows measures to be entirely insensitive to progressive rearrangements 

among the poor.23 

A natural question to ask is whether a new version of this transfer axiom can be formulated that would, 

in certain circumstances, require poverty to strictly fall in response to a decline in inequality among 

the poor. One minimalist approach is to restrict consideration to cases where the association-decreasing 

rearrangement among the poor involves achievement levels that are on either side of deprivation 

cutoffs – thus affecting the distribution of deprivations as well. A dimensional rearrangement among 

the poor is an association-decreasing rearrangement among the poor (in achievements) that is 

simultaneously an association-decreasing rearrangement in deprivations. Recalling the definition of 

an association-decreasing rearrangement, we say that y' is obtained from y by a dimensional 

rearrangement among the poor if it satisfies (a)–(c) plus (d) B=" > B1
" while neither B1"′ > B=

"′ nor B="′ >

B1
"′. In other words, the initial deprivation vectors (and achievement vectors) are ranked by vector 

dominance, while the final deprivation vectors (and achievement vectors) are not.24 The extra condition 

ensures that the person with lower achievement levels is actually deprived in two or more dimensions 

for which the other person is not and that, through the rearrangement, one or more of these deprivations 

(but not all) are traded for non-deprived levels. The following transfer property for multidimensional 

poverty measures requires poverty to decrease when there is a dimensional rearrangement among the 

poor. 

Dimensional Transfer:  If y' is obtained from y by a dimensional rearrangement among the poor, then 

M(y'; z) < M(y; z). 

This axiom does not apply to cases where the association-decreasing rearrangement leaves 

deprivations unaffected; instead it requires the two persons to switch deprivations as well as 

achievements. 

Note that this axiom is analogous to the axiom of Dimensional Monotonicity found in Alkire and 

Foster (2011a), which provides conditions under which a decrement in a dimensional achievement of 

a poor person must strictly raise the poverty level, namely, whenever the deprivation cutoff is crossed 

                                                
23

 Such is the case of the headcount ratio H (since the number of poor persons is unchanged) and the adjusted headcount 
ratio M0 (since the number of deprivations among the poor is also unchanged). Note that in order for an association-
decreasing rearrangement among the poor to exist, there must be at least three dimensions; otherwise, it would be 
impossible to have vector dominance initially and the absence of vector dominance subsequently. 

24
 The vector dominance in deprivations is converse to the vector dominance in achievements so that the person with lower 
achievements has more deprivations. In order to construct such a rearrangement, it must be possible to remove (or add) 
a deprivation from some poor person without altering his or her poverty status; this rules out intersection identification, 
for example, since a person must be deprived in all dimensions to be poor. 
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and the person becomes deprived in that dimension. Poverty must strictly rise as a result of such a 

dimensional decrement among the poor – which alters the achievement vector of a poor person so that 

there is vector dominance (upwards) in deprivations as well as vector dominance (downwards) in 

achievements.25 

A dimensional rearrangement among the poor does not affect the number of poor persons, and neither 

does a dimensional decrement among the poor. Consequently the headcount ratio Hk = (ρk,H) violates 

both Dimensional Transfer and Dimensional Monotonicity. In contrast, a dimensional increment 

among the poor decreases the average intensity of poverty A and hence M0 = HA, which ensures that 

the adjusted headcount ratio Mk0 = (ρk,M0)  satisfies Dimensional Monotonicity. But since a 

dimensional rearrangement among the poor leaves both H and A unchanged, Mk0 just fails to satisfy 

Dimensional Transfer.26 The adjusted headcount ratio is always insensitive to this form of inequality 

among the poor. The next section explores the possibility of constructing measures that satisfy 

Dimensional Transfer. 

4. New Measures from Old 

The task at hand is to construct new methodologies that follow Mk0 in being able to be applied to 

ordinal data but, unlike Mk0, are sensitive to inequality among the poor. In this section we maintain a 

dual-cutoff approach to identification, which is reasonably flexible and consistent with Ordinality, and 

search for a methodology satisfying Ordinality and Dimensional Transfer. We begin by altering the 

adjusted headcount measure M0 to obtain such a measure and then expand the range of possibilities 

considerably using a novel way of constructing multidimensional poverty measures from 

unidimensional poverty measures – a process that is of interest in its own right. 

Alkire and Foster (2011a) applied a simple power transformation to the individual poverty function 

from their cardinal measures, !C for α > 0, to obtain altered measures that would be sensitive to 

inequality across dimensions.27 When the same transformation is applied to !", it yields a methodology 

that satisfies Ordinality and Dimensional Transfer. For any power γ ≥ 0, let D#(E) be the vector 

                                                
25

 Note that in order for a dimensional decrement among the poor to exist, there must be at least two dimensions as well as 
a way for a deprivation to be added to a poor person. With one dimension, a decrement in a poor person’s level of 
achievement cannot alter the person’s deprivations; likewise, intersection identification rules out adding a deprivation 
to a poor person – every poor person is already deprived in all dimensions. 

26
 Because A is the average share of deprivations poor people experience, a rearrangement of the same set of deprivations 
among the same set of poor persons does not change A. 

27
 See Alkire and Foster (2011a, p. 485). 



Alkire and Foster  Dimensional and Distributional Contributions 

OPHI Working Paper 100  www.ophi.org 15 

obtained from D E  by raising each positive entry to the power γ, so that D1
# E = 	 (D1)# when person 

i is poor, and D1
# E = 0 when i is not. For example, D" E  is the identification vector r (which has 

value 1 if i is poor and 0 if i is not), D: E  is the censored vector of deprivation scores D E , while 

DH E  is the censored vector of squared deprivation scores. We define the M-gamma measure by	!"
# =

I(D# E )	for γ ≥ 0. Note that !"
" = J is the multidimensional headcount ratio, !"

: = !" is the usual 

adjusted headcount ratio, while the measure !"
H obtained from DH E 	will be called the squared count 

measure.28 The M-gamma measures !"
# for γ > 1 place greater emphasis on persons with higher 

deprivation scores, which leads to the following result. 

Proposition 1.  The methodology ℳ"
# = (LM,!"

#) satisfies Ordinality and Dimensional Transfer for γ 

> 1. 

Proof.  To verify Ordinality, suppose that ((′; +′) is obtained from ((; +) as an equivalent 

representation. Then ((′; +′) and ((; +) have the same deprivation matrix and hence the same 

deprivation counts for all i, from which it follows that LM((′1; +′) = LM((1; +). This implies that each 

person’s censored deprivation score is also the same, which means that !"
#((′; +′) = !"

#((; +) for 

every γ > 1. Thus, ℳ"
#satisfies Ordinality. 

Now turning to Dimensional Transfer, suppose that y' is obtained from y by a dimensional 

rearrangement among the poor, so that (a) - (d) hold for persons h and i. We want to show that 

!"
# (; + > !"

#((′; +) or, equivalently, that D# E > |D# E 2|. By definition D(E)′ and D(E) differ 

only in coordinates h and i, and hence this condition reduces to D=
# E + D1

# E > D=
# E ′ + D1

# E ′ or 

  (D=)# + D1 # > (D=
2 )# + (D1

2)#      (6) 

since h and i are poor. But notice that D= + D1 = D=
2 + D1

2 since a rearrangement does not alter the total 

deprivations in the population. Moreover, the vector dominance of initial deprivation vectors given in 

(d) ensures that D= > D1, while the subsequent absence of vector dominance ensures that both D=2  and 

D1
2 lie strictly between D= and D1. In other words, the final pair of deprivation scores D=2 , D12  can be 

obtained from the initial pair of scores D=, D1  by a progressive transfer. Condition (6) follows 

immediately from standard convexity results and the fact that γ > 1. Thus, ℳ"
# satisfies Dimensional 

Transfer for γ > 1. ∎ 

                                                
28

 In the case of union identification, !"
# corresponds to the measure of social exclusion proposed in Chakravarty and 

D’Ambrosio (2006) and used in Jayaraj and Subramanian (2009). As we note below, it also has obvious links to the 
FGT class of unidimensional measures. 
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The above proof shows how a dimensional rearrangement among the poor across two achievement 

matrices becomes a progressive transfer among the poor for the associated deprivation score vectors, 

which has the effect of lowering poverty when it is measured as the average of the deprivation scores 

to the power γ > 1. Note that a person’s deprivation score resembles the normalized poverty gap in the 

unidimensional world, so that the M-gamma measure !"
# has a form analogous to an FGT index, where 

γ is the power on the normalized gaps. We can build upon this insight to show how other 

multidimensional poverty measures satisfying Ordinality and Dimensional Transfer might be derived 

from unidimensional poverty measures. But before doing this, we pause to review the basic structure 

of unidimensional methods. 

Unidimensional methods 

Unidimensional poverty measurement has both an identification step and an aggregation step, with a 

simple method of identifying the poor based on a poverty cutoff separating the poor and nonpoor 

populations. An identification function P: R+ → {0,1} will be used here to indicate when a person is 

poor:  a value of P Q1  = 1 signals that person i is poor, while a value of P(Q1) = 0 means that i is 

nonpoor. As stressed by Donaldson and Weymark (1986), identification methods can differ both in the 

poverty cutoff π ≥ 0 and in whether a person at π is considered to be nonpoor or poor.29 One approach 

views the cutoff as the minimum acceptable level and regards all persons having incomes below π as 

poor. It yields the identification function PR defined by PR(xi) = 1 for xi < π, and PR(xi) = 0 for xi ≥ π. 

A second definition, following Sen (1976), views the poverty line as the maximum unacceptable level 

and regards those with incomes below or equal to the cutoff as being poor. It yields the identification 

function PS defined by PS(xi) = 1 for xi ≤ π, and PS(xi) = 0 for xi > π. The set of the poor associated 

with the identification function ϕ is denoted by Π ⊆{1,…, n}. 

Let X be the set of nonnegative income distributions of all population sizes. A unidimensional poverty 

measure P: X ⋅ R+ → R+ aggregates the data in x = (x1, x2,…, xn) from X into an overall level P(x; π) of 

poverty given the identification function P and its poverty line π ≥ 0. Common examples include the 

FGT class, the Watts (1968) measure, and the Sen (1976) measures. With the help of this notation, the 

standard subgroup decomposable measures can be written as 

  P(x; π) =  T
U

P(Q1)V(Q1; W)
X
1Y:       (7) 

                                                
29

 This distinction between PR and PS is relevant when the poverty measure has a discontinuity at the poverty line, such as 
exhibited by the headcount ratio. 
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where the individual poverty function p: R+ ⋅ R+ → R gauges a person’s poverty level but is effectively 

censored by P at all nonpoor income levels.30 For example, the headcount ratio can be written using 

the constant individual poverty function p(xi; π) = 1, while the remaining FGT measures can be defined 

using p(xi; π) = ((π-xi)/π )α for α > 0. Notice that the choice of ϕ< or ϕ≤ has an impact on the measured 

level of poverty whenever p(π ; π) > 0 (as with the headcount ratio), while the choice has no impact 

whatsoever when p(π ; π) = 0 (as with the remaining FGT indices). Combining both the identification 

and aggregation steps, we obtain the unidimensional poverty methodology P = (ϕ, P), where ϕ(xi) is 

the identification function and P(x; π) is the poverty measure. 

Properties for unidimensional poverty measures (or more precisely, methodologies) include invariance 

properties such as Symmetry (invariance to permutations of incomes), Replication Invariance 

(invariance to replications of incomes), and Focus (invariance to an increment in an income of a 

nonpoor person); subgroup properties like Subgroup Consistency (if poverty rises in a population 

subgroup and stays constant in the remaining population, while subgroup population sizes are 

unchanged, then overall poverty must rise) and Subgroup Decomposability (overall poverty is a 

population-weighted sum of the poverty levels in population subgroups); and the dominance properties 

of Weak Monotonicity (an increment in a single income cannot increase poverty) and Weak Transfer 

(a progressive transfer of income among the poor cannot increase poverty).31 

For the purposes of this paper, we will take the above set of three invariance properties, two subgroup 

properties, and two dominance properties as the seven basic unidimensional properties. Two 

additional dominance properties can be defined that make use of the following forms of distributional 

changes. We say that x' is obtained from x by a decrement among the poor if there is a person i with 

ϕ(xi) = 1 such that xi' < xi, while for all h ≠ i we have xh' = xh. In words, such a decrement involves a 

poor person losing income while all other incomes are unchanged. We say that x' is obtained from x 

by a progressive transfer among the poor if there are two persons h and i with ϕ(xh) = ϕ(xi) = 1 such 

that xh' – xh = xi – xi' = Δ > 0 where xi – xh > Δ, while for all other i' we have xi'' < xi'. In words, such a 

                                                
30

 See expression (22) in Foster and Shorrocks (1991) or the continuous version (2) in Atkinson (1987). Since (7) separates 
out terms for aggregation and identification, it allows either form of identification to be used. Note that the value of p is 
irrelevant for nonpoor persons and that P = 0 when no one is poor. 

31
 For definitions, see Foster et al. (2013). Notice that the weak transfer property is “weak” by virtue of allowing a weak 
inequality; in Foster and Sen (1997) the weak transfer axiom refers to a limitation on which transfers are allowed and is 
equivalent to the Transfer property below. Another property commonly assumed is Scale Invariance, which implies that 
a doubling of all incomes and the poverty line will leave poverty unchanged. In our analysis, the poverty line will be 
fixed and hence the property is less relevant here. 
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transfer involves a richer poor person giving income to an even poorer person, but not so much that 

they switch incomes. The remaining properties are as follows. 

Monotonicity:  If x' is obtained from x by a decrement among the poor, then  

          P(x'; π) > P(x; π) 

Transfer:  If x' is obtained from x by a progressive transfer among the poor, then 

          P(x'; π) < P(x; π) 

The properties specify that the poverty methodology must register an increase in poverty when there 

is a decrement among the poor and a decrease in poverty when there is a progressive transfer among 

the poor. 

From unidimensional to multidimensional 

Having reviewed the structure of unidimensional poverty measurement, we return to the 

multidimensional environment where a useful transformation from unidimensional poverty 

methodologies can be described. The process begins with an n Q d achievement matrix y and its 

deprivation matrix B". We define an attainment matrix, denoted by Z", that is complementary to the 

deprivation matrix in that it indicates when persons are not deprived. The attainment matrix Z" has the 

typical element Z1." = [. − B1.
"  for i = 1,…, n and j = 1,…, d. In other words, Z1." = [. whenever i is 

not deprived in j, and Z1." = 0 whenever i is deprived in j. The attainment count vector, denoted by Z, 

is the vector defined by Z1 = Z1:
" + ⋯+ Z1&

"  for each i = 1,…, n. In other words, it gives an aggregate 

value of attainment for each person. Attainment counts can range between 0 and d, and when added to 

deprivation counts they always sum to d (so that Z1 + ]1 = ^ for all i). 

Now let P = (ϕ, P) be any unidimensional poverty methodology for which 0 ≤ π ≤ d. Define the 

associated multidimensional poverty methodology M
P
 = (L_, MP) by L_(yi; z) = ϕ(ai) and MP(y; z) = 

P(a; π), where a is the attainment count vector associated with y given z and w. In other words, M
P
 

applies the unidimensional methodology P to the attainment count distribution. In particular, M
P
 

identifies person i as being poor in y if ϕ(ai) = 1, and it measures poverty in y as the unidimensional 

poverty level P(a; π) in a, given the identification function and its poverty standard π. The resulting 

multidimensional poverty methodology M
P
 will be called an attainment count methodology while the 

associated process of obtaining M
P
 from P to will be called the attainment count transformation. 
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It is easy to see that the attainment count methodology uses a dual-cutoff identification from Alkire 

and Foster (2011a), where the poverty cutoff is given by k = d - π. For example if ϕ = ϕ≤ is being used 

in P, then since L_(yi; z) = ϕ(ai), it follows that person i is poor whenever ai ≤ π, hence d - ci ≤ d - k or 

ci ≥ k as required by the standard dual-cutoff identification function ρk. On the other hand, if P uses ϕ 

= ϕ<, then the identification function L_ yields the strict dual-cutoff identification function LM∘  where 

once again k = d - π, but a person is considered poor only if ci > k.32 In either case, it is easy to show 

that the measure MP is unaffected by an increase in the achievement of any person who is not deprived 

in that dimension (hence the methodology satisfies Deprivation Focus) and, since an equivalent 

representation preserves the attainment count matrix and distribution, both the set of poor and the 

measure of poverty will be unaffected (hence the methodology satisfies Ordinality). These two 

properties hold for M
P
 no matter which methodology P is used. Other multidimensional invariance 

properties are inherited from the associated unidimensional properties. For example it is easy to see 

that Symmetry and Replication Invariance immediately follow from their counterparts while Poverty 

Focus follows from the unidimensional Focus axiom. It is likewise immediate that the two 

multidimensional subgroup properties follow from their unidimensional versions. These results can be 

summarized as follows: 

Proposition 2. The attainment count methodology M
P
 employs a dual-cutoff identification function 

ρk (or LM∘ ) and satisfies Deprivation Focus and Ordinality. Moreover, if P satisfies (i) Symmetry, (ii) 

Replication Invariance, (iii) Focus, (iv) Subgroup Consistency, or (v) Subgroup Decomposability, then 

M
P
 satisfies the associated multidimensional property of (I) Symmetry, (II) Replication Invariance, 

(III) Poverty Focus, (IV) Subgroup Consistency, or (V) Subgroup Decomposability. 

In words, any methodology produced by the attainment count transformation has a dual-cutoff 

identification function and is applicable to ordinal data. In addition, it transforms the basic invariance 

and subgroup properties of unidimensional measurement into the analogous properties of 

multidimensional measurement. Hence any standard unidimensional measure, such as the headcount 

ratio, the poverty gap ratio, or others, will produce a multidimensional poverty measure with these 

desirable properties. We shall see below that dominance properties, too, are reproduced through the 

                                                
32

 Both versions of the dual-cutoff approach are considered by Alkire and Foster (2011a) although they focus on the version 
based on the inequality ci ≥ k. Note that the value π = d in the presence of ϕ≤ yields the trivial case where all person are 
always identified as being poor, and hence we typically restrict consideration to 0 ≤ π < d in this case. Likewise the 
value π = 0 in the presence of ϕ< yields the trivial case where no one is ever identified as being poor, and hence we 
typically assume 0 < π ≤ d in this case. 
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transformation. But first we consider several examples of attainment count methodologies to see how 

the transformation works in practice. 

Example 1: Headcount Ratio Consider P = (ϕ, P) where P = P0 is the unidimensional headcount ratio 

given ϕ. Then for any z and w, the resulting attainment count methodology M
P
 = (L_, MP) is made up 

of a dual-cutoff identification function and a multidimensional headcount measure. In particular, if ϕ 

= ϕ≤ then L_ is ρk, or the standard dual-cutoff identification function with poverty cutoff k = d - π, 

while MP is H(y; z) = (1/n) Σi ρk(y; z), or the usual multidimensional headcount ratio of Alkire and 

Foster (2011a). On the other hand, if ϕ = ϕ< then L_ is LM∘ , the strict dual-cutoff identification function, 

while MP is H(y; z) = (1/n) Σi LM∘ (y; z), or an alternative multidimensional headcount ratio used, for 

example, by Mexico.33 When π is close enough to 0 (and hence k is close to d) the methodology has 

intersection identification, where poor persons are deprived in all dimensions at once and hence have 

no attainments at all. Likewise, when π is close enough to d (and hence k is close to 0) then it has union 

identification, in which all poor persons have at least a single deprivation.34 

Example 2: Adjusted Headcount Ratio Suppose that P takes the form of the decomposable index λP0 

+ (1-λ)P1 as given in Foster and Shorrocks (1991), where P0 is the unidimensional headcount ratio, P1 

is the poverty gap ratio, and λ = k/d. It is an easy matter to show that P is the augmented poverty gap 

ratio defined as a:&(x; π) = T
U

PX
1Y: (xi)pd(xi; π), which uses the poverty value function pd(xi; π) = (d-

xi)/d instead of (π-xi)/π used by the standard poverty gap ratio.35 Given the identification function ϕ = 

ϕ≤ and applying a:& to the attainment distribution a, we obtain the multidimensional methodology Mk0 

= (ρk, M0) or the adjusted headcount ratio methodology of Alkire and Foster (2011a). To see this, note 

that when the poor are identified using ϕ≤ (ai; π) and measured using a:&(a; π), the overall poverty level 

is found by averaging the terms ϕ≤ (ai; π)(d – ai)/d across all i = 1,…,n. But for every poor person i 

(with ai ≤ π, and hence ci ≥ k) this term reduces to ci/d = ci(k)/d, while for all nonpoor i (with ai > π, 

and hence ci < k) it is 0 = ci(k)/d. The average of ci(k)/d across all i is the same as the average of the 

                                                
33

 The Mexican technology has seven dimensions with effective deprivation values of w1 = 7/2 on income deprivation, wj 
= 7/12 for j = 2,…,7 or the social deprivations, and a strict poverty cutoff of k = 7/2  See CONEVAL (2009). 

34
 More precisely, intersection identification is obtained when π is below wmin, so that k is above d - wmin, where wmin is the 
smallest deprivation value, while union identification is obtained when π is above d - wmin, so that k is below wmin. 

35
 This form of poverty measure is useful for measuring ultra-poverty, where a poverty cutoff is used to identify the ultra-
poor, while a higher poverty standard is used in the aggregation function. See Foster and Smith (2016). 
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entries in the censored deprivation matrix g0(k), and hence the poverty measure is just the adjusted 

headcount ratio M0 = µ(g0(k)).36  

Example 3: An Alternative Adjusted Headcount Ratio Suppose that P = P1 is the traditional poverty 

gap ratio, which evaluates the net shortfalls from the poverty cutoff. Applying the identification 

function ϕ = ϕ< and measure P1 to the attainment distribution a, we obtain the multidimensional 

methodology M
P
 = (LM∘ , !"

2 ) in which person i is identified as poor if ci > k and the poverty measure 

is !"
2 (y; z) = (1/n)Σi (ci'/d')LM∘ (yi; z), where ci' = ci - k is the net deprivation count above the poverty 

cutoff for person i and d' = d - k is the maximum possible net deprivation count above the poverty 

cutoff. In words, !"
2 (y; z) is the alternative adjusted headcount ratio that measures a poor person’s 

intensity of deprivation using the net deprivation share ci'/d'. To see this, note that P1(a; π) = (1/n) Σi 

ϕ<(ai)(π – ai)/π where (π – ai)/π = (d-k-ai)/(d-k) = (ci-k)/(d-k) = ci'/d' and ϕ<(ai) = LM∘ (yi; z), so that 

clearly P1(a; π) = !"
2 (y; z). The associated measure of intensity of poverty A' = !"

2 /H can be expressed 

as the income gap ratio I = P1/P0 applied to the attainment distribution a. In the Mexican example, for 

instance, the deprivation value for income is w1 = 7/2 and the poverty cutoff is k = 7/2, so the 

identification condition ci > k ensures that all poor persons are deprived in income and at least one 

additional non-income dimension. The intensity of a poor person’s deprivation is measured by the 

share of all possible non-income deprivations a person has, while a nonpoor person has zero intensity. 

Averaging across all persons yields the alternative adjusted headcount ratio !"
2 . 

The above examples show that several key multidimensional methodologies used in practice are in 

fact attainment count methodologies, including the headcount and adjusted headcount methodology 

from Alkire and Foster (2011a) (which alone of the three satisfies the Dimensional Breakdown 

property), employed in the global MPI and other country measures, and the headcount and adjusted 

headcount methodologies that underlie Mexico’s official measure. Proposition 2 further shows that 

each satisfies Ordinality and the other basic invariance and subgroup properties for multidimensional 

poverty measures. However, it can also be shown that each measure is unaffected by a dimensional 

rearrangement among the poor and, hence, just violates Dimensional Transfer. We must go beyond 

headcount ratios and adjusted headcount ratios to satisfy this dominance property. The next result 

                                                
36

 This is the form used in the UNDP’s Multidimensional Poverty Index (MPI) and in Colombia’s official multidimensional 
poverty measure. See also Alkire and Santos (2010, 2014). In addition, the associated measure of intensity (or breadth) 
of poverty A = M0/H can be derived by applying the augmented income gap ratio Id = a1

^/P0 to the distribution of 
attainments a. 
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shows how the attainment count transformation converts dominance properties for unidimensional 

measures into dominance properties for multidimensional measures, including Dimensional Transfer. 

Proposition 3. Let M
P
 be the attainment count methodology generated by a unidimensional 

methodology P. If P satisfies the unidimensional property of (a) Weak Monotonicity, (b) Weak 

Transfer, (c) Monotonicity, or (d) Transfer, then M
P
 satisfies the associated multidimensional property 

of (A) Weak Monotonicity, (B) Weak Rearrangement, (C) Dimensional Monotonicity, or (D) 

Dimensional Transfer. 

Proof.  See Appendix. 

The main ideas behind this result are as follows. Weak Monotonicity (A) and Dimensional 

Monotonicity (C) consider the effects of changing a single achievement level for a person i. If the 

person begins and stays deprived (or nondeprived) in that dimension, then ai is unchanged and so is 

measured poverty. If an increment crosses the deprivation cutoff, then ai rises and Weak Monotonicity 

(a) ensures that poverty does not rise. If a decrement crosses the deprivation cutoff and the person is 

already poor, then ai falls and Monotonicity (c) ensures that poverty increases and hence that 

Dimensional Monotonicity (C) is satisfied. In contrast, Weak Transfer (B) and Dimensional Transfer 

(D) consider the impact of an association-decreasing rearrangement among two poor persons, say i 

and i'. This is a situation where one of the two (say i) has an achievement vector that is initially larger 

than that of the second (say i'), but after the rearrangement neither has more of every achievement. If 

both persons are deprived (or nondeprived) in the dimensions that have been rearranged, then ai and 

ai' will be unchanged and hence poverty is unaffected. If the persons switch deprivations, as with a 

dimensional rearrangement among the poor, then ai falls by the same amount that ai' rises, and hence 

the new attainment vector is obtained from the old by a progressive transfer. Weak Transfer (b) ensures 

that poverty does not rise with a progressive transfer, and hence we obtain Weak Transfer (B). 

Likewise, Transfer (d) ensures that this progressive transfer among the poor decreases poverty, and 

hence we obtain Dimensional Transfer (D). It is this link between association-decreasing 

rearrangements in achievements and progressive transfers in attainments that underlies these last 

results. 

A main lesson to be drawn from this section is that since many existing unidimensional measures 

satisfy Transfer, it is easy to construct multidimensional measures that satisfy Dimensional Transfer 

and are thus sensitive to inequality among the poor. For example, the Watts measure W which takes 

the form of expression (7) with p0(xi; π) = ln(π/xi), the Clark-Hemming-Ulph class cd	given by Vd(xi; 

π) = 1 - (Q1/W)d for β < 1 and β ≠ 0, or the FGT class aC with    VC(xi; π) = ((W − Q1)/W)C for the 
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range α > 1, all satisfy Transfer and thus generate multidimensional measures satisfying Dimensional 

Transfer (and other properties including Ordinality and Subgroup Decomposability).37 Each of these 

measures builds upon the alternative “net shortfall” version !"
2 	of the adjusted headcount ratio. The 

standard adjusted headcount ratio M0, which measures intensity using the full range of deprivations a 

poor person experiences, is the basis for a second group of measures applying augmented versions of 

the unidimensional measures, which replace π with d in the individual poverty functions. For example, 

consider the augmented FGT indices aC& generated by VC&(xi; π) = ((^ − Q1)/^)C for α > 0 and 

VC& Q1; W = 1 for α = 0. Since a"& = a", the multidimensional measure obtained using a"& is the same 

multidimensional headcount ratio H as before, while the standard adjusted headcount ratio M0 is 

obtained using the augmented poverty gap ratio a:&. For α > 1 the augmented FGT measure aC& satisfies 

Transfer, Monotonicity, and the seven basic unidimensional properties; consequently the 

multidimensional poverty measure it generates satisfies Dimensional Transfer, Dimensional 

Monotonicity, and the eight basic multidimensional properties. Indeed, the attainment count 

transformation of the unidimensional methodology (ϕ≤, aC&) for α ≥ 0 generates the M-gamma 

methodology ℳ"
# = LM,!"

#  for γ ≥ 0 where γ = α. The M-gamma class of multidimensional 

measures inherits its properties, including its sensitivity to inequality, from the class of FGT measures 

used to generate it. It is a natural generalization of the FGT measures to multidimensional poverty 

measures using ordinal data. 

5. Possibilities 

The attainment count transformation illustrates how easy it is to extend the traditional adjusted 

headcount ratio to obtain measures satisfying Dimensional Transfer and the basic properties of 

Ordinality and Subgroup Decomposability. But what has happened to the key property of Dimensional 

Breakdown, which allows dimensional contributions to overall poverty to be assessed in order to direct 

policy more effectively?  Let us return to the class ℳ"
# = (ρk, !"

#) for γ ≥ 0, containing the headcount 

ratio H for γ  = 0, the adjusted headcount ratio M0 for γ = 1, and the squared breadth measures !"
H for 

γ  = 2. While all of the M-gamma measures !"
# in the range γ > 1 satisfy Dimensional Transfer, it is 

easy to see that none of them satisfies Dimensional Breakdown. Take the measure !"
H for example. 

                                                
37

 The Sen measure, both in its original discontinuous version from Sen (1976) and its updated continuous version from 
Foster and Sen (1997), yields a multidimensional poverty measure satisfying Dimensional Transfer and the remaining 
properties apart from Subgroup Decomposability and Subgroup Consistency. 
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The marginal value of an additional deprivation among the poor clearly depends on the breadth of 

deprivation experienced by the affected poor person. In contrast, Dimensional Breakdown requires the 

contribution of the dimension to overall poverty to be independent of the other dimensions (after 

identification). This conflict between Dimensional Transfer and Dimensional Breakdown is actually 

quite fundamental, as shown in the following result. 

Proposition 4. Let methodology M = (ρ, M) satisfy Symmetry, and suppose that M has a dimensional 

rearrangement among the poor. Then M cannot simultaneously satisfy Dimensional Breakdown and 

Dimensional Transfer. 

Proof.  Suppose that M satisfies Symmetry. Let y' be obtained from y by a dimensional rearrangement 

among the poor. By symmetry, without loss of generality we can assume that 1 and 2 are the poor 

persons involved in the rearrangement and that y1 > y2. Now let J be the set of all dimensions j that are 

unchanged in the rearrangement, so that both y'1j = y1j and y'2j = y2j hold. Let x be the achievement 

matrix obtained from y by lowering person 1’s achievement level in each f ∈ J to person 2’s 

achievement level, leaving all remaining entries unchanged. Similarly construct x' from y' by lowering 

person 1’s achievement level in each f ∈ J to that of person 2. Person 1 remains poor in both x and x', 

and so all four achievement matrices have the same poverty status vector r. By dimensional 

breakdown, then, there exist functions mj : Yrj ⋅
dR ++ → R+ for j = 1,…, d, such that expression (3) holds 

for all matrices in Yr. Applying (3) to y and y' yields  

M(y'; z) – M(y; z) = [4.
	
.∉j (..

2 ; +. − 4. (..; +. ]  

since y' and y are the same in all dimensions of J. Applying (3) to x' and x yields  

M(x'; z) – M(x; z) = [4.(
	
.∉j Q..

2 ; +.) − 4.(Q..; +.)]  

for the analogous reason. By construction, it follows that y'.j = x'.j and y.j = x.j for all f ∈ J and hence 

that M(y'; z) – M(y; z) = M(x'; z) – M(x; z). However, x' is simply a permutation of x (between persons 

1 and 2) and so by Symmetry we have M(x'; z) – M(x; z) = 0. This implies that M(y'; z) = M(y; z) and 

thus dimensional transfer is violated. ∎ 

Proposition 4 shows how Dimensional Transfer directly conflicts with Dimensional Breakdown. The 

underlying idea is that the curvature required to obtain a lower level of multidimensional poverty from 

a rearrangement among the poor leads to a violation of the limited form of separability embodied in 

Dimensional Breakdown. Of course, if no such rearrangement were to exist – which could be the case 

for certain methodologies – Dimensional Transfer would technically hold but would be empty in 
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practice. We thus presume that there is at least one situation to which Dimensional Transfer applies 

and the contradiction follows. The conflict pertains to all multidimensional poverty methodologies, 

including those satisfying Ordinality as well as others that are meaningful only for cardinal variables. 

Note that the separability requirement implicit in Dimensional Breakdown is less restrictive than the 

full factor decomposability requirement invoked by Chakravarty et al. (1998). Dimensional 

Breakdown restricts the measure on the domain associated with a fixed vector of the poor, whereas 

factor decomposability requires a dimensional decomposition to hold over the entire domain. 

Similarly, the separability assumption of Pattanaik, Reddy, and Xu (2012) is the ordinal version of 

factor decomposability and has no domain restrictions over the distributions being considered. Their 

main result, which they characterize as a “disturbing consequence,” shows how separability by 

dimension ensures that all rearrangements have no effect. While the context is different – 

multidimensional deprivation orderings rather than measures – and their assumption of separability is 

substantially broader in scope than Dimensional Breakdown, the intuition behind their result and 

Proposition 4 is the same. In contrast, Rippin (2013) makes the false claim that a multidimensional 

poverty measure can satisfy factor decomposability while remaining sensitive to dimensional 

rearrangements among the poor, and offers !"
# with union identification and γ > 1 as an example. Of 

course, as noted above, these measures violate factor decomposability as well as Dimensional 

Breakdown, and any claim to the contrary would contradict Pattanaik, Reddy, and Xu (2012).38 

Given the necessity of choosing between Dimensional Breakdown and Dimensional Transfer, how are 

empirical and operational studies of multidimensional poverty to proceed? There is by now a rich 

literature that shows how Dimensional Breakdown, as implemented through expression (2) for the 

adjusted headcount ratio, can enrich the informational content of multidimensional poverty. It can 

enhance monitoring by dimension across time and space and allow policies to be tailored to the 

composition of poverty. With the help of this property, M0 becomes a tool for good governance through 

positive feedback loops that reward effective policies, and it becomes a tool for coordination among 

ministries who work together toward the common goal of reducing poverty, as noted in Angulo (2016). 

These and other benefits suggest that M0 should remain in place as a key measure of multidimensional 

poverty. 

                                                
38

 Rippin (2013) offers a confused explanation of how this impossible task is to be accomplished: The individual poverty 
function (which depends on all dimensions) is simply re-designated as an “identification function”. However, the 
aggregate measure and its properties are unaffected by this artifice. Factor decomposability does not hold. The result of 
Pattanaik, Reddy, and Xu (2012) applies. Unfortunately, the false claim that !"

# satisfies factor decomposition for γ > 
1 has not yet been corrected. See for example Rippin (2015). 
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Dimensional Transfer is intended to ensure that a multidimensional poverty measure conveys 

information on the inequality of attainments among the poor. Our attainment count transformation 

provides several routes to depicting this information by drawing upon analogous approaches from 

unidimensional measures; the particular methodology used depends upon the purpose of the exercise 

and the pertinent questions for analysis. In traditional comparisons of international poverty, the three 

most common P-alpha measures P0, P1, and P2 are often reported to convey information on income 

poverty’s incidence, depth, and severity, respectively. The attainment count transformation suggests 

the analogous use of the three main M-gamma measures – namely the headcount ratio !"
", the adjusted 

headcount ratio !"
:, and the squared count measure !"

H – to evaluate the incidence, breadth, and 

severity of multidimensional poverty, with !"
: containing information on intensity and !"

Hcontaining 

information on inequality among the poor. 

To directly monitor the inequality in the distribution of attainments among the poor, one could use 

relative measures like the squared coefficient of variation (underlying P2) or the Gini coefficient 

(underlying the Sen measure) or absolute inequality measures like the variance. The size and 

distribution of attainments among the poor could also be evaluated using an “income standard” such 

as an Atkinson equally distributed equivalent income function or the Sen welfare index applied to the 

distribution of attainments among the poor. Given the theoretical link between unidimensional poverty, 

inequality, and income standards among the poor as emphasized in Foster et al. (2013), these 

multidimensional methods are closely related. They offer a window into a type of multidimensional 

inequality based on the breadth of attainments people experience, which becomes especially relevant 

when data are ordinal. 

The distribution of attainments or deprivations among the poor can also be examined directly to reveal 

information on inequality. For example, we might plot the associated Lorenz curves or examine the 

various orders of stochastic dominance to see how a distribution is changing. One basic option is to 

partition the distribution of deprivations (or achievements) among the poor into intensity bands of 

observations and monitor the percentages in each. For example, using the global MPI, we might depict 

the percentages of the poor having deprivation scores in the range of 33–39% of deprivations, 40–

49%, and so on to 100%, where the percentages of the poor across the ranges can be compared to see 

whether inequality is diminishing or advancing.39 The comparisons can be further enriched by applying 

                                                
39

 For empirical examples see Alkire and Seth (2013), who show transitions across population subgroups of subgroup 
members experiencing different intensity bands of poverty and Alkire Roche and Vaz (2015) who study results across 
34 countries and their subnational regions for multiple poverty and deprivation cutoffs. 
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dimensional breakdown to the population in each intensity band and contrasting the dimensional 

composition of poverty experienced by those having different ranges of deprivation scores. 

Consider the following example that uses the 2011 Demographic and Health Survey to compute the 

global MPI for Cameroon and its 12 subnational regions.40 As compared to other developing countries, 

Cameroon has a medium level of multidimensional poverty with 46% of the population living in 

poverty and an MPI of 0.248. To emphasize the relationships among the three M-gamma measures, 

we multiply their decimal values by 100 to express poverty levels in hundredths so that the headcount 

ratio for Cameroon is 46 and the MPI is 24.8. The disparity in the incidence of poverty across regions 

is striking, with the headcount ratio ranging from 6.5 to 86.7 and the MPI ranging from 2.4 to 54. 

Table 1 presents the dimensional breakdowns of the MPI for the regions and for the country as a whole. 

The censored headcount ratios reveal a great variety in the composition of poverty across the regions. 

Consider, for example, Adamaoua and Est, two regions close in population size and with similar levels 

of MPI (26.9 and 27.4, respectively). From the breakdown, we see that they have marked differences 

in the composition of poverty, with education deprivations of the poor in Adamaoua being far more 

widespread than in Est, health deprivations of the poor being somewhat more common, and living 

standard deprivations of the poor being a good deal less common. For example, the censored headcount 

ratio for school attendance is 20.5 in Adamaoua, which indicates that 20.5% of Adamaoua’s population 

are MPI poor and live in households in which a child is not attending school up to the age at which 

they should complete class eight; the comparable figure in Est is 13. Likewise, poverty in Est shows 

higher living standard deprivations, with a censored headcount ratio for sanitation and water at 51 and 

44, respectively, as compared with 25 and 24 for Adamaoua. The policies needed for responding to 

poverty in regions with similar MPI levels can vary in terms of allocation and sectoral emphases. 

Table 2 lists poverty levels for Cameroon and its regions using the three main M-gamma measures, 

namely, the headcount ratio !"
" = H, the adjusted headcount ratio !"

: = M0 discussed above, and the 

squared count measure !"
H. Column 1 gives the headcount ratio for Cameroon (namely !"

" =	46) along 

with its regional levels. The adjusted headcount ratio for Cameroon and its regions reappears in column 

2, beginning with Cameroon’s value of !"
: = HA = 24.8 for the country. It adjusts the headcount ratio 

by the breadth of poverty in the form of intensity A = |D E |. The squared count measure !"
H = HA2 in 

column 3 instead adjusts the headcount ratio by the term A2 = |DH E |, which is sensitive to the 

                                                
40

 The parameters of the global MPI used in this example are presented in Alkire and Robles (2015). Note that the MPI 
Table 1 includes the variance measures of inequality among the poor for every country, and all MPI country briefings 
include the analysis by intensity bands. 
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inequality of deprivations (and attainments) among the poor, yielding a level of !"
H = 14.7 for 

Cameroon. In Table 2, regions are ordered according to !"
:, and the rankings according to the three 

measures are quite similar. There is one reversal between Douala and Yaoundé when the headcount 

ratio !"
" is used instead of the adjusted headcount measure. This is due to the higher intensity of 

poverty in Yaoundé. There are two reversals (Sud-Ouest vs. Sud and Adamaoua vs. Est) when we 

move from the adjusted headcount ratio to the squared count measure !"
H. This is reflected in the 

higher inequality-sensitive intensity of poverty in Sud-Ouest and Adamaoua. Inequality-sensitive 

results like those found in Table 2 could be generated using any other unidimensional poverty measure 

satisfying the transfer property. However, Table 1 requires a measure like M0 that satisfies dimensional 

breakdown. 

Table 3 presents various measures of inequality among the poor using the truncated vector of 

deprivation scores s, simply for illustrative purposes. The absolute inequality measure of variance can 

also provide interesting comparisons across countries. See for example Seth and Alkire (2013). 

Descriptive methods of depicting inequality among the poor are readily available and can supplement 

a single inequality measure. For example, Table 4 divides the population of poor people into categories 

according to the deprivation score. Column 1 shows the percentage of poor persons who are deprived 

in 33.3% to 39.9% of the dimensions only – a low intensity band. Yet we can see that in Douala, 82% 

of poor people are in this category, and none have 50% or more deprivations. The example of 

Adamaoua and Est is, again, striking. A total of 48% of poor persons are deprived in 33.33 to 50% of 

the dimensions, but in Adamaoua, only 26% are in the lowest band and 22% are deprived in 40–49.9%, 

whereas in Est, 39% of poor people are in the lowest intensity band. At the high intensity end, 

Adamaoua again is visibly worse than Est. Such descriptive information might provide the intuition 

behind the observed shift in ranking using the inequality-adjusted measure !"
H. While information on 

inequality can help identify high inequality situations where most deprivation scores are at the 

extremes, it should be remembered that reducing inequality among the poor is not the main objective: 

reducing poverty is.  
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Table 1: Dimensional Breakdown for Cameroon and Its Regions: MPI and Censored Headcount Ratios 

 

MPI (M0) 

Education Health Living standards 
 

Schooling 
School 
Attendance 

Child 
Mortality Nutrition Electricity 

Improved 
Sanitation 

Safe 
Water Floor 

Cooking 
Fuel Assets  

Cameroon 24.8 16.7 18.4 27.4 18.3 37.3 34.7 28.9 34.5 45.5 23.0 
Douala 2.4 0.3 0.8 5.6 3.0 1.1 3.9 0.6 1.8 5.6 1.8 
Yaoundé 2.6 0.7 1.0 5.8 3.7 0.5 4.2 1.5 1.5 4.7 1.1 
Littoral (sans Douala) 9.1 2.2 2.1 14.2 5.7 13.7 17.2 13.1 15.2 19.3 11.9 
Sud-Ouest 12.9 3.1 4.6 19.4 6.8 22.8 27.7 17.3 19.0 28.2 15.8 
Sud 13.1 2.5 2.1 17.1 11.7 16.7 29.5 19.7 23.0 30.7 15.4 
Ouest 14.6 4.9 5.7 20.9 6.1 25.8 30.5 26.4 21.2 34.8 12.3 
Nord-Ouest 16.7 4.1 6.3 19.6 8.6 32.7 32.6 25.1 31.4 38.8 24.4 
Centre (sans Yaoundé) 17.9 2.4 6.1 28.1 11.5 29.7 36.4 22.4 29.6 41.6 17.8 
Adamaoua 26.9 24.1 20.5 27.9 26.8 37.1 25.1 24.4 26.6 50.1 23.1 
Est 27.4 13.6 13.0 26.9 22.1 39.6 50.8 43.9 40.5 56.0 35.6 
Nord 45.8 28.8 38.4 51.3 33.4 66.8 66.0 52.1 65.1 77.0 42.1 
Extrême-Nord 54.0 51.9 52.1 48.3 42.5 79.2 53.8 54.1 70.8 86.4 43.1 
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Table 2: M-gamma Measures for Cameroon and Its Regions 

 !"
" !"

# !"
$ A A2 

Cameroon  46.0 24.8 14.7 53.8 32.0 

Douala 6.7 2.4 0.9 36.4 13.4 

Yaoundé 6.5 2.6 1.1 40.3 16.6 

Littoral (sans Douala) 19.9 9.1 4.4 45.5 22.3 

Sud-Ouest 29.3 12.9 6.0 44.0 20.4 

Sud 30.8 13.1 5.8 42.4 18.9 

Ouest 35.1 14.6 6.4 41.8 18.2 

Nord-Ouest 38.8 16.7 7.5 43.1 19.4 

Centre (sans Yaoundé) 41.8 17.9 8.1 42.7 19.3 

Adamaoua 51.1 26.9 15.4 52.7 30.1 

Est 56.1 27.4 14.7 48.9 26.1 

Nord 77.3 45.8 29.5 59.3 38.2 

Extrême-Nord 86.7 54.0 36.2 62.3 41.8 

Table 3: Inequality among the Multidimensionally Poor 

Inequality measure Cameroon 
Gini 0.1780 
Variance 0.2681 
Atkinson geometric 0.0475 
Atkinson harmonic 0.0903 
Theil 0 0.0487 
Theil 1 0.0492 
Generalized Entropy 2 0.0514 

Table 4: Percentage of Poor Experiencing Different Intensity Bands 

 
33–

39% 40–49% 50–59% 60–69% 70–79% 80–89% 
90–

100% 
Yaoundé 69% 12% 19% 0% 0% 0% 0% 
Douala 82% 18% 0% 0% 0% 0% 0% 
Littoral 44% 18% 22% 11% 0% 4% 0% 
Sud-Ouest 49% 21% 18% 12% 0% 0% 0% 
Sud 57% 20% 17% 4% 3% 0% 0% 
Ouest 62% 14% 17% 7% 0% 0% 0% 
Nord-Ouest 47% 23% 23% 7% 0% 0% 0% 
Centre 55% 20% 16% 7% 0% 2% 0% 
Adamaoua 26% 22% 21% 16% 6% 7% 1% 
Est 39% 9% 28% 16% 4% 2% 1% 
Nord 16% 15% 20% 25% 11% 9% 3% 
Extrême-Nord 14% 12% 15% 24% 19% 9% 5% 
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7. Conclusions 

In a recent paper, Alkire and Foster (2011a) presented a dual-cutoff approach to identifying the poor 

that prioritizes the most multiply deprived and an adjusted headcount ratio poverty measure that gauges 

the average the breadth of poverty across society. The methodology is now commonly being employed 

in national and international evaluations of multidimensional poverty. There are three properties of 

this methodology that have helped make it useful in practice: Subgroup Decomposability, which 

relates subgroup to overall poverty levels; Dimensional Breakdown, which relates multidimensional 

poverty levels to dimensional components; and Ordinality, which allows meaningful evaluations of 

poverty when variables are ordinal. The method also satisfies an array of invariance, subgroup, and 

dominance axioms, including two weak distribution-sensitivity properties that require 

multidimensional poverty not to fall in response to an increase in inequality among the poor. 

This paper proposed a new Dimensional Transfer property that requires poverty to rise in response to 

a certain type of inequality-increasing transfer among the poor. Neither the headcount ratio nor the 

adjusted headcount ratio satisfies this property. However, following a suggestion in Alkire and Foster 

(2011a), we constructed an M-gamma class of poverty measures that builds upon the adjusted 

headcount ratio and has a subclass that satisfies the Dimensional Transfer axiom. We then devised an 

intuitive transformation from unidimensional to multidimensional poverty measures by converting the 

multidimensional achievement matrix into an attainment count distribution and applied a 

unidimensional poverty measure. We emphasized that the transformation provides a link between 

unidimensional and multidimensional properties as well; in particular, if the unidimensional poverty 

measure satisfies the traditional Monotonicity and Transfer properties then the multidimensional 

poverty measure satisfies Dimensional Monotonicity and Dimensional Transfer. The M-gamma 

measures can be constructed using a version of the FGT measures and inherit favorable properties 

from them. We concluded that it is a straightforward exercise to construct examples of 

multidimensional measures that conform to the strict distributional requirements of the Dimensional 

Transfer axiom. 

We then observed that none of the measures found to satisfy Dimensional Transfer also satisfy 

Dimensional Breakdown, and this in turn led us to prove an impossibility result identifying a 

fundamental conflict between the two properties. Given this conclusion, and the importance of 

Dimensional Breakdown for poverty analysis, we recommended the use of M0 as the base measure, 

augmented as necessary by additional measures, such as the squared count measure from the M-gamma 

class, to provide information about inequality among the poor. We illustrated our approach using 2011 
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data on the global MPI from Cameroon, a country where dimensional components of poverty vary 

considerably across regions and so Dimensional Breakdown is especially important. To gain additional 

information on inequality, we reported the three main M-gamma measures – the headcount ratio, the 

adjusted headcount ratio, and the squared count measure – and noted the similarity to standard 

presentations of the FGT measures. We observed where variations in intensity A cause re-ranking 

between H and M0, and where differences in the inequality-sensitive intensity A2 cause re-rankings 

between M0 and the squared count index !"
$. With the help of the attainment count distribution and 

the transformation, measuring multidimensional poverty can be as easy as using a unidimensional 

poverty measure. 

Several of the insights described in this paper might be relevant for future research. The fact that 

multidimensional poverty can be reinterpreted as unidimensional poverty applied to an attainment 

count distribution immediately suggests a number of theoretical questions that might be explored. For 

example, the optimal budgeting exercises of Kanbur (1987a,b) and Bourguignon and Fields (1990) for 

the FGT measure might be reconsidered in the multidimensional context with, say, an M-gamma 

measure as the objective to minimize and separate pools of dimensional resources. How might the 

conclusions of Bourguignon and Fields (1990) – which assume perfect information and policy levers 

– be altered in the multidimensional context? The headcount ratio would likely still emphasize those 

whose poverty can most inexpensively be alleviated; the adjusted headcount ratio may well need to 

balance the benefits from reducing the breadth of poverty and the number of the poor; the squared 

count measure could shift the balance towards reducing the breadth of the poorest. In any case, the 

underlying multidimensionality clearly adds an additional layer of choices – the specific dimensions 

targeted for each person – that would require careful analysis in order to construct optimal policies. In 

contrast, what happens when information and policy levers are limited to subgroups of the population? 

The unidimensional results of Kanbur (1987a,b) suggest that when the squared count measure !"
$ is 

the objective, it could be appropriate to target first the subgroup with the highest adjusted headcount 

ratio !"
#. Once again, multidimensionality would likely alter the optimal policy, with Dimensional 

Breakdown playing a pivotal role in its derivation. We should also note the potential benefit from 

applying other distributional measures to the entire attainment count distribution, thereby obtaining 

insight on, say, multidimensional inequality or mobility, when data are not cardinal. It would be 

interesting to explore these and other related questions. 

We have emphasized the importance of Distributional Breakdown and have shown how the specific 

breakdown formula for the adjusted headcount ratio is used in practice. The space in between the 

general property and the specific formula for M0 is a potential area for research. In particular, how the 
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weights and component functions might vary for different poverty status vectors is especially relevant. 

Note that since the weights are assumed to be positive, it is easy to adjust component functions to have 

the same weights for all domains and, indeed, to make them consistent with the identification step. As 

for the component functions, the main question is their salience. The censored headcount ratios from 

the adjusted headcount ratio are independently meaningful as the percentage of the population both 

poor and deprived in the given dimensions – a meaning that is preserved across domains. It would be 

interesting to understand what kinds of component functions are desirable and to find additional 

properties that might select the censored headcounts ratios. 
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Appendix 

Proof of Proposition 3: Let M
P
 be the attainment count methodology generated by a unidimensional 

methodology P. 

(i) Suppose that P satisfies Weak Monotonicity, and let y' be obtained from y by an increment in a 

single achievement. Then either a' = a if the increment does not remove a deprivation, or else a' is 

obtained from a by an increment in single attainment level, and hence P(a'; π) ≤ P(a; π) by Weak 

Monotonicity of P. Consequently MP(y'; z) ≤ MP(y; z), establishing Weak Monotonicity for MP. 

(ii) Suppose that P satisfies Monotonicity, and let y' be obtained from y by a decrement in a single 

achievement. Then either a' = a if the decrement does not create a deprivation, or else a' is obtained 

from a by a decrement in single attainment level, and hence P(a'; π) > P(a; π) by Monotonicity of P. 

Consequently MP(y'; z) > MP(y; z), establishing Dimensional Monotonicity for MP. 

(iii) Suppose that P satisfies Weak Transfer, and let y' be obtained from y by an association-decreasing 

rearrangement among the poor involving persons h and i, for which %& > %( while neither %&) > %()  nor 

%() > %&). Then either a' = a if the rearrangement does not switch a deprivation, or else a' is obtained 

from a by a progressive transfer from i to h, and hence P(a'; π) ≤ P(a; π) by Weak Transfer for P. 

Consequently MP(y'; z) ≥ MP(y; z), establishing Weak Transfer for MP. 

(iv) Suppose that P satisfies Transfer, and let y' be obtained from y by a dimensional rearrangement 

among the poor involving persons h and i, for which %& > %( while neither %&) > %()  nor %() > %&), and 

also *(" > *&" while neither *&"′ > *("′ nor *("′ > *&"′. Then the rearrangement involves a deprivation 

being “transferred” from h to i and, hence, a' is obtained from a by a progressive transfer from i to h. 

Consequently, P(a'; π) < P(a; π) by Transfer for P and so MP(y'; z) > MP(y; z), establishing Dimensional 

Transfer for MP. ∎ 
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