
Oxford Poverty & Human Development Initiative (OPHI) 
Oxford Department of International Development 
Queen Elizabeth House (QEH), University of Oxford 

* Sabina Alkire: Oxford Poverty & Human Development Initiative, Oxford Department of International 
Development, University of Oxford, 3 Mansfield Road, Oxford OX1 3TB, UK, +44-1865-271915, 
sabina.alkire@qeh.ox.ac.uk 
** James E. Foster: Professor of Economics and International Affairs, Elliott School of International 
Affairs, 1957 E Street, NW, fosterje@gwu.edu. 
*** Suman Seth: Oxford Poverty & Human Development Initiative (OPHI), Queen Elizabeth House 
(QEH), Department of International Development, University of Oxford, UK, +44 1865 618643, 
suman.seth@qeh.ox.ac.uk. 
**** Maria Emma Santos: Instituto de Investigaciones Económicas y Sociales del Sur (IIES,), 
Departamento de Economía, Universidad Nacional del Sur (UNS) - Consejo Nacional de Investigaciones 
Científicas y Técnicas (CONICET), 12 de Octubre 1198, 7 Piso, 8000 Bahía Blanca, Argentina. Oxford 
Poverty and Human Development Initiative, University of Oxford. msantos@uns.edu.ar; 
maria.santos@qeh.ox.ac.uk. 
***** Jose Manuel Roche: Save the Children UK, 1 St John's Lane, London EC1M 4AR, 
j.roche@savethechildren.org.uk. 
****** Paola Ballon: Assistant Professor of Econometrics, Department of Economics, Universidad del 
Pacifico, Lima, Peru; Research Associate, OPHI, Department of International Development, Oxford 
University, Oxford, U.K, pm.ballonf@up.edu.pe. 

This study has been prepared within the OPHI theme on multidimensional measurement. 

OPHI gratefully acknowledges support from the German Federal Ministry for Economic Cooperation and 
Development (BMZ), Praus, national offices of the United Nations Development Programme (UNDP), 
national governments, the International Food Policy Research Institute (IFPRI), and private benefactors. 
For their past support OPHI acknowledges the UK Economic and Social Research Council 
(ESRC)/(DFID) Joint Scheme, the Robertson Foundation, the John Fell Oxford University Press (OUP) 
Research Fund, the Human Development Report Office (HDRO/UNDP), the International Development 
Research Council (IDRC) of Canada, the Canadian International Development Agency (CIDA), the UK 
Department of International Development (DFID), and AusAID. 

ISSN 2040-8188 ISBN 978-19-0719-477-1 

 

OPHI WORKING PAPER NO. 90 

Multidimensional Poverty Measurement and 
Analysis: Chapter 9 – Distribution and Dynamics 

Sabina Alkire*, James E. Foster**, Suman Seth***, 
Maria Emma Santos***, Jose M. Roche**** and Paola 
Ballon***** 

February 2015 

Abstract 
For meaningful policy analysis, it is important not only to look at overall poverty, and 
compare countries or regions at a single point in time, but also to understand the 
distribution among the poor, the disparity across subgroups, and the dynamics of 
poverty. This extends the methodological toolkit presented in Chapter 5. First we present 
a new measure of inequality among the poor and its axiomatic justification. The same 
measure, a form of variance, can be extended to analyse horizontal inequalities, which are 
disparities across different population subgroups. The next two sections provide 
methodological extensions that are required for inter-temporal analysis of poverty using 
repeated cross-sectional data, and for the analysis of dynamic subgroups. The last section 
elaborates a measure chronic multidimensional poverty, which uses a counting approach 
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both across dimensions and across periods, and provide its consistent partial indices, 
including a new statistic on the duration of poverty. 
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9 Distribution and Dynamics 

This chapter provides techniques required to measure and analyse inequality among the 

poor (section 9.1), to describe changes over time using repeated cross-sectional data 

(section 9.2), to understand changes across dynamic subgroups (section 9.3) and to 

measure chronic multidimensional poverty (section 9.4). Each of these sections extends 

the 𝑀0 methodological toolkit beyond the partial indices presented in Chapter 5, to 

address common empirical problems such as poverty comparisons, and illustrate these 

with examples. We build upon and do not repeat material presented in earlier chapters, 

and as in other chapters, confine attention to issues that are distinctive in 

multidimensional poverty measures. 

9.1 Inequality among the Poor 

Given the long-standing interest in inequality among the poor, we first enquire whether 

𝑀0  can be extended to reflect inequality among the poor. To make a long story short, it 

can easily do so. But the problem is that the resulting measure loses the property of 

dimensional breakdown that provides critical information for policy. So, taking a step 

back, we consider key properties a measure should have in order to reflect inequality 

among the poor and be analysed in tandem with 𝑀0. Our chosen measure uses the 

distribution of censored deprivation scores to compute a form of variance across the 

multidimensionally poor. We also illustrate interesting related applications of this 

measure: for example to assess horizontal disparities across groups. 

Chapter 5 showed that the Adjusted Headcount Ratio (𝑀0)  can be expressed as a 

product of the incidence of poverty (𝐻) and the intensity of poverty (𝐴) among the poor. 

Thus, 𝑀0 captures two very important components of poverty—incidence and intensity. 

But it remains silent on a third important component: inequality across the poor. Now, 

the ultimate objective is to eradicate poverty—not merely reduce inequality among the 

poor. However, the consideration of inequality is important because the same average 

intensity can hide widely varying levels of inequality among the poor. For this reason, 
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following the seminal article by Sen (1976), numerous efforts were made to incorporate 

inequality into unidimensional and latterly multidimensional poverty measures.1 

This section explores how inequality among the poor can be examined when poverty 

analyses are conducted using the 𝑀0 measure (Alkire and Foster 2013, Seth and Alkire 

2014a, b).2  

9.1.1 Integrating Inequality into Poverty Measures 

Section 5.7.2 already presented one way of bringing inequality into multidimensional 

poverty measures. This was achieved by using 𝑀2 or some other gap measure applied to 

cardinal data, where the exponent on the normalized gap is strictly greater than one. Such 

an approach is linked to Kolm (1977) and generalizes the notion of a progressive transfer 

(or more broadly a Lorenz comparison) to the multidimensional setting by applying the 

same bistochastic matrix to every variable to smooth out the distribution of each variable 

(the powered normalized gap) while preserving its mean.3 Poverty measures that are 

sensitive to inequality fall (or at least do not rise) in this case. 

A second form of multidimensional inequality is linked to the work of Atkinson and 

Bourguignon (1982) and relies on patterns of achievements across dimensions. Imagine a 

case where one poor person initially has more of everything than another poor person 

and the two persons switch achievements for a single dimension in which both are 

deprived. This can be interpreted as a progressive transfer that preserves the marginal 

distribution of each variable and lowers inequality by relaxing the positive association 

across variables under the assumption that the dimensions are substitutes. The resulting 

transfer principle specifies conditions under which this alternative form of progressive 

transfer among the poor should lower poverty, or at least not raise it. The transfer 

properties are motivated by the idea that poverty should be sensitive to the level of 

inequality among the poor, with greater inequality being associated with a higher (or at 

least not lower) level of poverty.4 Alkire and Foster (2011a) observe that the AF class of 

measures can be easily adjusted to respect the strict version of the second kind of 
                                                 

1  For inequality-adjusted poverty measures in the unidimensional context, see Thon (1979), Clark, 
Hemming, and Ulph (1981), Chakravarty (1983b), Foster, Greer, and Thorbecke (1984), and Shorrocks 
(1995). For inequality-adjusted multidimensional poverty measures, i.e., those that satisfy transfer and/or 
strict rearrangement properties, see section section 3.6. 
2 This section summarizes these two papers. 
3  In order to say that one multidimensional distribution is more equal than another, each must be 
smoothed using the same bistochastic matrix. 
4 See Sen (1976) and Foster and Sen (1997). 
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transfer (the strong deprivation rearrangement property as discussed in section 5.2.5) 

involving a change in association between dimensions by replacing the deprivation count 

or score 𝑀𝛼(𝑥𝑖⋅; 𝑧) with a related individual poverty function  𝑀𝛼 𝑥𝑖⋅; 𝑧  𝛽  for some 

𝛽 > 0, and averaging across persons.5 

Many multidimensional poverty measures that employ cardinal data, including 𝑀𝛼  satisfy 

one or both of these transfer principles.6 Alkire and Foster (2013) formulate a strict 

version of distribution sensitivity — ‗dimensional transfer‘ (defined in 5.2.5)—which is 

applicable to poverty measures such as 𝑀0 that use ordinal data. This property follows 

the Atkinson–Bourguignon type of distribution sensitivity, in which greater inequality 

among the poor strictly raises poverty. Alkire and Foster (2013) also prove a general 

result establishing that ‗the highly desirable and practical properties of subgroup 

decomposability, dimensional breakdown, and symmetry prevent a poverty measure 

from satisfying the dimensional transfer property‘. In other words, 𝑀0 does not reflect 

inequality among the poor, and, furthermore, no measure that satisfies dimensional 

breakdown and symmetry will be found that does satisfy dimensional transfer. 

Given that it is necessary to choose between measures that satisfy dimensional transfer 

and those that can be broken down by dimension, and given that both properties are 

arguably important, how should empirical studies proceed? The first option is to employ 

the class of measures that respect dimensional breakdown and to supplement these with 

associated inequality measures. The second is to employ poverty measures that are 

inequality-sensitive but cannot be broken down by dimension, and to supplement them 

with separate dimensional analyses. 

9.1.2 Analyzing Inequality Separately: A Descriptive Tool 

While both should be explored, this book favours the first route in applied work for 

several reasons. Dimensional breakdown enriches the informational content of poverty 

measures for policy, enabling them to be used to tailor policies to the composition of 

poverty, to monitor changes by dimension, and to make comparisons across time and 

                                                 

5 Bourguignon and Chakravarty (2003) and Datt (2013) also propose a similar class of indices but using a 
union identification criterion. 
6 We have already shown that our multidimensional measure 𝑀𝛼  satisfies weak transfer, the first type of 
transfer property, for 𝛼 ≥ 1, and the second type of transfer property, weak rearrangement, for 𝛼 ≥ 0.  
Chakravarty, Mukherjee, and Ranade (1998), Tsui (2002), Bourguignon and Chakravarty (2003), 
Chakravarty and D‘Ambrosio (2006), Maasoumi and Lugo (2008), Aaberge and Peluso (2012), Bossert, 
Chakravarty, and D‘Ambrosio (2013), and Silber and Yalonetzky (2014). 
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space. Poverty reduction in measures respecting dimensional breakdown can be 

accounted for in terms of changes in deprivations among the poor and analysed by 

region and dimension. This creates positive feedback loops that reward effective policies. 

Also, the inequality-adjusted poverty measures may lack the intuitive appeal of the 𝑀0 

measure. Some of the inequality-adjusted measures (Chakravarty and D‘Ambrosio, 2006, 

Rippin, 2012) are broken down into different components separately capturing incidence, 

intensity, and inequality, but without clarifying the relative weights attached to these 

components. 

Whether or not an inequality measure is not computed, 𝑀0  measures can be 

supplemented by direct descriptions of inequality among the poor. A first descriptive but 

powerfully informative tool is to report subsets of poor people which have mutually 

exclusive and collectively exhaustive graded bands of deprivation scores. This is possible 

by effectively ordering all 𝑞 poor persons according to the value of their deprivation 

score 𝑐𝑖 𝑘  and dividing them into groups. If the poverty cutoff is 30%, the analysis 

might then report the percentage of poor people whose deprivation scores fall in the 

band of 30–39.9% of deprivations, 40–49.9%, and so on to 100%. The percentage of 

people who experience different intensity gradients of poverty across regions and time 

can be compared to see how inequality among the poor is evolving.7 Figure 9.1 presents 

an example of two countries—Madagascar and Rwanda—which have similar 

multidimensional headcount ratios ( 𝐻 ) and MPIs. However, the distributions of 

intensities across the poor are quite different. Also, data permitting, these intensity 

groups can be decomposed by population subgroups such as region or ethnicity. The 

comparisons can be enriched by applying a dimensional breakdown to examine the 

dimensional composition of poverty experienced by those having different ranges of 

deprivation scores. 

                                                 

7 For empirical examples, see Alkire, Roche, and Seth (2013), who compare countries across four gradients 
of poverty. 
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Figure 9.1 Distribution of Intensities among the Poor in Madagascar and Rwanda 

  
Madagascar (2009) 

MPI = 0.357, 𝐻 = 67%, A = 53% 
Rwanda (2010) 

MPI = 0.350, 𝐻 = 69% A = 50.8% 
Source: Country briefings, MPI 2013, http://www.ophi.org.uk/multidimensional-poverty-index/mpi-data-bank/mpi-
country-briefings. 

 

9.1.3 Using a Separate Inequality Measure 

Another tool is to supplement 𝑀0 with a measure of inequality among the poor. Using 

the distribution of (censored) deprivation scores across the poor or some transformation 

of these, it is actually elementary to create an inequality measure, much in the same way 

that traditional inequality measures such as Atkinson, Theil, or Gini are constructed.  

Such measures will offer a window onto one type of multidimensional inequality—one 

that is oriented to the breadth of deprivations people experience. This approach is quite 

different from other constructions of multidimensional inequality, but it is useful, 

particularly when data are ordinal. Building on Chakravarty (2001), Seth and Alkire 

(2014a,b) propose such an inequality measure that is founded on certain properties. Note 

that these are properties of inequality measures, and are defined differently from those 

presented in Chapter 2 (despite similar names), but introduced intuitively below. Let us 

briefly discuss these properties before introducing the measure. 

9.1.3.1 Properties 

The first property, translation invariance, requires inequality not to change if the 

deprivation score of every poor person increases by the same amount. Implicitly, we 

assume that the measure reflects absolute inequality. Seth and Alkire (2014) argue that 

measures reflecting absolute inequality are more appropriate when each deprivation is 

judged to be of intrinsic importance. In addition, the use of the absolute inequality 
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measure ensures that inequality remains the same whether poverty is measured by 

counting the number of deprivations or by counting the number of attainments. The use 

of the relative inequality measure is more common in the case of income inequality, 

where it is often assumed that as long as people‘s relative incomes remain unchanged, 

inequality should not change. However, it is difficult to argue that inequality between two 

poor persons who are deprived in one and two dimensions respectively is the same as the 

inequality between two poor persons who are deprived in five and ten dimensions, 

respectively, if these deprivations referred to, for example, serious human rights 

violations. Any relative inequality measure, such as the Generalized Entropy measures 

(which include the Squared Coefficient of Variation associated with the FGT2 index) or 

Gini Coefficient, would evaluate these two situations as having identical inequality across 

the poor. Moreover, a relative inequality measure may provide counterintuitive 

conclusion while assessing inequality within a counting approach framework. In fact, no 

non-constant inequality measure exists that is simultaneously invariant to absolute as well 

as relative changes in a distribution. 

The second property requires that the inequality measure should be additively 

decomposable so that overall inequality in any society can be broken down into within-

group and between-group components. This can be quite useful for policy (Stewart 

2010). We have shown in Chapter 5 that the additive structure of the indices in the AF 

class allows the overall poverty figure to be decomposed across various population 

subgroups. A country or a region with same level of overall poverty may have very 

different poverty levels across different subgroups, or a country may have the same level 

of poverty across two time periods, but the distribution of poverty across different 

subgroups may change over time. Furthermore, within each population subgroup, there 

may be different distributions of deprivation scores across poor persons living within 

that subgroup, thus reflecting various levels of within-group inequality. 

The third property, within-group mean independence, requires that overall within-

group inequality should be expressed as a weighted average of the subgroup inequalities, 

where the weight attached to a subgroup is equal to the population share of that 

subgroup. This assumption makes the interpretation and analysis of the inequality 

measure more intuitive. 

Four additional properties are commonly satisfied when constructing any inequality 

measure. The anonymity property requires that a permutation of deprivation scores 
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should not alter inequality. According to the replication invariance property, a mere 

replication of population leaves the inequality measure unaltered. The normalization 

property requires that the inequality measure should be equal to zero when the 

deprivation scores are equal for all. The transfer property requires that a progressive 

dimensional rearrangement among the poor should decrease inequality. 

9.1.3.2 A Decomposable Measure 

The proposed inequality measure, which is the only one to satisfy those properties, takes 

the general form 

 
𝐼 𝑦; 𝓉, 𝛽  = 𝛽 

𝓉  [𝑦𝑖 − 𝜇 𝑦 ]2
𝓉

𝑖=1
, (9.1) 

where 𝑦 = (𝑦1, … , 𝑦𝓉)  is a vector with 𝓉  elements. Relevant applications using our 

familiar notation will be provided in equations (9.6) and (9.7) below, but we first present 

the general form and notation. As we will show, in relevant applications an element 𝑦𝑖  

may be the deprivation score of a person ic  or � �ic k  or the average poverty level of a 

region. The size of the vector 𝑦 for an entire population would be 𝓉 = 𝑛 and for the 

poor it would be 𝓉 = 𝑞. 8 The functional form in equation (9.1) is a positive multiple (𝛽 ) 

of the variance. The measure reflects the average squared difference between person 𝑖‘s 
deprivation score and the mean of the deprivation scores in 𝑦. The value of parameter 𝛽  

can be chosen in such a way that it normalizes the inequality measure to lie between 0 

and 1. 

The overall inequality in 𝑦 may be decomposed into two components: total within-group 

inequality and between-group inequality. Following the notation in Chapter 2, suppose 

there are 𝑚 ≥ 2 population subgroups. The deprivation score vector of subgroup ℓ is 

denoted by 𝑦ℓ with 𝓉ℓ elements. The decomposition expression is given as follows: 

 
𝐼 𝑦 =  𝓉ℓ

𝓉 𝐼 𝑦ℓ; 𝓉ℓ,𝛽  
𝓉

ℓ=1
+ 𝐼  𝜇 𝑦1 , … , 𝜇 𝑦𝑚 ;𝓉

1

𝓉 , … , 𝓉
𝑚

𝓉 , 𝛽  , (9.2) 

                                                 

8 There are many variations. For example, if data are relatively accurate one might consider inequality using 
the uncensored deprivation score vector c , and alternatively if one only wishes to capture inequality 

within some subgroup , then y c  and n . 
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      Total within-group      Total between-group 

where 𝓉
ℓ

𝓉  is the population share of subgroup ℓ in the overall population and 𝜇 𝑦ℓ  is 

the mean of all elements in 𝑦ℓ for all ℓ = 1, … , 𝑚. 

The between-group inequality component 𝐼(𝜇 𝑦1 ,… , 𝜇 𝑦𝑚 ; 𝓉1

𝓉 , … , 𝓉
𝑚

𝓉 , 𝛽 ) in (9.2) 

can be computed as 

 
𝐼  𝜇 𝑦1 , … , 𝜇 𝑦𝑚 ;𝓉

1

𝓉 , … , 𝓉
𝑚

𝓉 , 𝛽  = 𝛽  𝓉ℓ

𝓉  𝜇 𝑦ℓ − 𝜇 𝑦  
2𝑚

ℓ=1
, (9.3) 

where 𝜇 𝑦  is the mean of all elements in 𝑦. 

The within-group inequality component of subgroup ℓ can be computed using (9.1) as  

 
𝐼 𝑦ℓ;𝓉ℓ,𝛽  = 𝛽 

𝓉ℓ   𝑦𝑖
ℓ − 𝜇 𝑦ℓ  2

𝓉ℓ

𝑖=1
; (9.4) 

and thus the total within-group inequality component in (9.2) can be computed as 

 
 𝓉ℓ

𝓉 𝐼 𝑦ℓ;𝓉ℓ,𝛽  
𝓉

ℓ=1
= 𝛽 

𝓉    𝑦𝑖
ℓ − 𝜇 𝑦ℓ  2

𝓉ℓ

𝑖=1

𝓉

ℓ=1
. (9.5) 

9.1.3.3 Two Important Applications 

There are different relevant applications of this inequality framework to 

multidimensional poverty analyses based on 𝑀0 . The first central case is to assess 

inequality among the poor. To do so we suppose that the deprivation scores are ordered 

in a descending order and the first 𝑞 persons are identified as poor. The elements are 

taken from the censored deprivation score vector, 𝑦 =  𝑐1 𝑘 , … , 𝑐𝑞 𝑘  . We choose 

vector 𝑦  such that it contains only the deprivation scores of the poor (𝓉 = 𝑞 ). The 

average of all elements in 𝑦  then is the intensity of poverty which for 𝑞  persons is 

𝜇 𝑦 = 𝐴. We can then denote the inequality measure that reflects inequality in multiple 

deprivations only among the poor by 𝐼𝑞 , which can be expressed as 
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𝐼𝑞 = 𝛽 

𝑞  [𝑐𝑖(𝑘) − 𝐴]2
𝑞

𝑖=1
. 9 (9.6) 

The 𝐼𝑞  measure effectively summarizes the information underlying Figure 9.1. It goes 

well beyond that figure because each individual deprivation score is used, which 

effectively creates a much finer gradation of intensity than that figure portrays. 

Furthermore, it can be decomposed by subgroup, to permit comparisons of within-

subgroup inequalities among the poor. It can also be used over time to show how 

inequality among the poor changed. 

Our second central case considers inequalities in poverty levels across population 

subgroups. It is motivated by studies of horizontal inequalities that find group-based 

inequalities to predict tension and in some cases conflict (Stewart 2010). Essentially, the 

measure reflects population-weighted disparities in poverty levels across population 

subgroups. 

Suppose the censored deprivation score vector of subgroup ℓ is denoted by 𝑐ℓ(𝑘) with 

𝑛ℓ elements. If instead of only considering the deprivation scores of the poor, we now 

sum across the whole population so (𝓉 = 𝑛 ), then we realize that 𝜇(𝑐ℓ(𝑘))  or the 

average of all elements in 𝑐ℓ(𝑘) is actually the 𝑀0 of subgroup ℓ, which for simplicity we 

denote by 𝑀0
ℓ. The between-group component of 𝐼𝑛(𝑐(𝑘)) shows the disparity in the 

national Adjusted Headcount Ratio (𝑀0) across subgroups and is written using (9.3) as 

 
𝐼𝑛  𝑀01, … , 𝑀0𝑚 ; 𝑛

1

𝑛 , … , 𝑛
𝑚

𝑛 , 𝛽  = 𝛽  𝑛ℓ

𝑛  𝑀0ℓ − 𝑀0 
2

𝑚

ℓ=1
 (9.7) 

Thus, equation (9.7) captures the disparity in 𝑀0s across 𝑚 population subgroups, which 

can be used to detect patterns in horizontal disparities over time. Naturally, the number 

and population share of the subgroups must be considered in such comparisons. 

While studying disparity in MPIs across sub-national regions, Alkire, Roche, and Seth 

(2011) found that the national MPIs masked a large amount of sub-national disparity 

within countries, and Alkire and Seth (2013) and Alkire, Roche, and Vaz (2014) found 

                                                 

9 If one is interested in decomposing (9.6) into within and between group components, then the total 

within-group inequality term can be computed as 𝛽
 
𝑞    𝑐𝑖ℓ(𝑘) − 𝐴ℓ 2𝑞ℓ

𝑖=1
𝑚
ℓ=1  and the total between-group 

inequality term can be computed as 𝛽  𝑞ℓ

𝑞  𝐴ℓ − 𝐴 2𝑚
ℓ=1 , where 𝐴ℓ the intensity of each subgroup ℓ such 

that 𝐴ℓ = 𝜇 𝑦ℓ  and 𝑞ℓ/𝑞 is the share of all poor in subgroup ℓ. 
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considerable disparity in poverty trends across subnational groups. In some countries, 

the overall situation of the poor improved, but not all subgroups shared the equal fruit of 

success in poverty reduction and indeed poverty levels may have stagnated or risen in 

some groups. Therefore, it is also important to look at inequality or disparity in poverty 

across population subgroups. This separate inequality measure, elaborated in Seth and 

Alkire (2014), provides such framework. 

9.1.3.4 An Illustration 

Table 9.1 presents two pair-wise comparisons. For the inequality measure, we choose 

𝛽 = 4 because the deprivation scores are bounded between 0 and 1; hence the maximum 

possible variance is 0.25. 𝛽 = 4 ensures that the inequality measure lies between 0 and 1. 

The first pair of countries, India and Yemen, have exactly the same levels of MPI. The 

multidimensional headcount ratios and the intensities of poverty are also similar. 

However, the inequality among the poor (computed using equation (9.1)) is much higher 

in Yemen than in India. We also measure disparity across sub-national regions. Yemen 

has twenty-one sub-national regions whereas, India has twenty-nine sub-national regions. 

We find that, like the national MPIs, the disparities across subnational MPIs—computed 

using equation 9.7)—are similar. This means that the inequality in Yemen is not primarily 

due to regional disparities in poverty levels, but may be affected by non-geographic 

divides such as cultural or rural–urban. 

A contrasting finding for regional disparity is obtained across Togo and Bangladesh. As 

before, the MPIs, headcount ratios, and intensities are quite similar across two 

countries—but with two differences. The inequality among the poor is very similar, but 

the regional disparities are stark. Even though both countries have similar number of 

sub-national regions, the level of sub-national disparity is much higher in Togo than that 

in Bangladesh. 

Table 9.1: Countries with Similar Levels of MPI but Different Levels of Inequality among the Poor and 
Different Levels of Disparity across Regional MPIs 

Country Year M0 A H 

Inequality 
Among 

The Poor 

Disparity 
Between 

MPIs 

Number 
of 

Regions 
Yemen 2006 0.283 53.9% 52.5% 0.122 0.052 21 
India 2005 0.283 52.7% 53.7% 0.104 0.050 29 
Togo 2010 0.250 50.3% 49.8% 0.086 0.042 6 
Bangladesh 2011 0.253 49.5% 51.2% 0.084 0.005 7 
Source: Seth and Alkire (2014). 
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9.2 Descriptive Analysis of Changes over Time 

A strong motivation for computing multidimensional poverty is to track and analyse 

changes over time. Most data available to study changes over time are repeated cross-

sectional data, which compare the characteristics of representative samples drawn at 

different periods with sampling errors, but do not track specific individuals across time. 

This section describes how to compare 𝑀0 and its associated partial indices over time 

with repeated cross-sectional data. It offers a standard methodology of computing such 

changes, and an array of small examples. This section does not treat the data issues 

underlying poverty comparisons, and readers are expected to know standard techniques 

that are required for such rigorous empirical comparisons. For example, the definition of 

indicators, cutoffs, weights, etc. must be strictly harmonized for meaningful comparisons 

across time, which always requires close verification of survey questions and response 

structures, and may require amending or dropping indicators. The sample designs of the 

surveys must be such that they can be meaningfully compared, and basic issues like the 

representativeness and structure of the data must be thoroughly understood and 

respected. We presume this background in what follows. This section focuses on changes 

across two time periods; naturally the comparisons can be easily extended across more 

than two time periods. 

9.2.1 Changes in M0, H and A across Two Time Periods 

The basic component of poverty comparisons is the absolute pace of change across 

periods.10 The absolute rate of change is the difference in levels between two periods. 

Changes (increases or decreases) in poverty across two time periods can also be reported 

as a relative rate. The relative rate of change is the difference in levels across two periods 

as a percentage of the initial period.  

For example, if the 𝑀0 has gone down from 0.5 to 0.4 between two consecutive years, 

then the absolute rate of change is (0.5 – 0.4) = 0.1. It tells us how much level of poverty 

(𝑀0) has changed: 10% of the total possible set of deprivations that poor people in that 

society could have experienced has been eradicated; 40% remains. The relative rate of 

change is (0.5 – 0.4)/0.5 = 20%, which tells us that 𝑀0 has gone down by 20% with 

respect to the initial level. While absolute changes are in some sense prior, because they 

are easy to understand and compare, both absolute and relative rates may be important 
                                                 

10 This section draws on Alkire, Roche, and Vaz (2014). 
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to report and analyse. The value-added of the relative changes is evident in relatively low-

poverty regions.  A region or country with a high initial level of poverty may be able to 

reduce poverty in absolute terms much more than one having a low initial level of 

poverty. It is however possible that although a region or country with low initial poverty 

levels did not show a large absolute reduction, the reduction was large relative to its initial 

level and thus it should not be discounted for its slower absolute reduction. 11  The 

analysis of both absolute and relative changes gives a clear sense of overall progress.  

In expressing changes across two periods, we denote the initial period by 𝑡1 and the final 

period by 𝑡2 . This section mostly presents the expressions for 𝑀0, but they are equally 

applicable to its partial indices: incidence (𝐻), intensity (𝐴), censored headcount ratios 

(ℎ𝑗 (𝑘)), and uncensored headcount ratios (ℎ𝑗 ). The achievement matrices for period 𝑡1 

and 𝑡2 are denoted by 𝑋𝑡1  and 𝑋𝑡2 , respectively. As presented in Chapter 5, 𝑀0 and its 

partial indices depend on a set of parameters: deprivation cutoff vector 𝑧, weight vector 

𝑤 and poverty cutoff 𝑘. For simplicity of notation though, we present 𝑀0 and its partial 

indices only as a function of the achievement matrix. For strict intertemporal 

comparability, it is important that the same set of parameters be used across two periods. 

The absolute rate of change (Δ) is simply the difference in Adjusted Headcount Ratios 

between two periods and is computed as 

 ∆𝑀0 = 𝑀0(𝑋𝑡2 ) − 𝑀0(𝑋𝑡1 ). (9.8) 

Similarly, for 𝐻 and 𝐴:  

 ∆𝐻 = 𝐻(𝑋𝑡2 ) − 𝐻(𝑋𝑡1 ).                (9.9) 

 

 ∆𝐴 = 𝐴(𝑋𝑡2 ) − 𝐴(𝑋𝑡1 ).                     (9.10) 

The relative rate of change (𝛿) is the difference in Adjusted Headcount Ratios as a 

percentage of the initial poverty level and is computed for 𝑀0, 𝐻, and 𝐴 (only 𝑀0 shown) 

as 

 𝛿𝑀0 = 𝑀0(𝑋𝑡2 ) − 𝑀0(𝑋𝑡1 )
𝑀0(𝑋𝑡1 ) × 100.                  (9.11) 

If one is interested in comparing changes over time for the same reference period, the 

expressions (5.7) and (9.11) are appropriate. However, in cross-country exercises, one 

                                                 

11 Tables of the absolute levels and absolute rates of change make this feature visible; reporting the relative 
rate of change underscores this more precisely. 
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may often be interested in comparing the rates of poverty reduction across countries that 

have different periods of references. For example the reference period of one country 

may be five years; whereas the reference period for another country is three years. It is 

evident in Table 9.2 that the reference period of Nepal is five years (2006–2011); whereas 

that of Peru is only three years (2005-–2008). In such cases, it is essential to annualize the 

change in order to preserve strict comparison. 

The annualized absolute rate of change (Δ ) is the difference in Adjusted Headcount 

Ratios between two periods divided by the difference in the two time periods (𝑡2 − 𝑡1) 

and is computed for 𝑀0 as 

 ∆ 𝑀0 = 𝑀0(𝑋𝑡2 ) − 𝑀0(𝑋𝑡1 ) 
𝑡2 − 𝑡1 .                        (9.12) 

The annualized relative rate of change (δ ) is the compound rate of reduction in 𝑀0 

per year between the initial and the final periods, and is computed for 𝑀0 as 

 
δ 𝑀0 =   𝑀0(𝑋𝑡2 )

𝑀0(𝑋𝑡1 ) 
1

𝑡2−𝑡1
− 1 × 100. (9.13) 

 

As formula (9.8) has been used to compute the changes in 𝐻 and 𝐴 using formulae (9.9) 

and (9.10), formulae (9.11) to (9.13) can be used to compute and report annualized 

changes in the other partial indices, namely 𝐻, 𝐴,  ℎ𝑗 (𝑘) or ℎ𝑗 . 

9.2.2 An Example: Analyzing Changes in Global MPI for Four Countries 

Table 9.2 presents both the annualized absolute and annualized relative rates of change 

in Global MPI, as outlined in Chapter 5, and its two partial indices—𝐻 and 𝐴—for four 

countries: Nepal, Peru, Rwanda, and Senegal, drawing from Alkire, Roche and Vaz 

(2014). Taking the survey design into account, we also present the standard errors (in 

parentheses) and the levels of statistical significance of the rates of reduction, as 

described in the Appendix of Chapter 8. The figures in the first four columns present the 

values and standard errors for 𝑀0, 𝐻, and 𝐴 in both time periods. The results show that 

Peru had the lowest MPI with 0.085 in the initial year, while Rwanda had the highest 

with 0.460. 

Under the heading ‗annualized change‘, Table 9.2 provides the annualized absolute and 

annualized relative reduction for 𝑀0 , 𝐻  and 𝐴 , which are computed using equations 
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(9.12) and (9.13). It shows, for example, that Nepal with a much lower initial poverty 

level than Rwanda, has experienced a greater absolute annualized poverty reduction of 

‒0.027. In relative terms Nepal outperformed Rwanda. Peru had a low initial poverty 

level, and reduced it in absolute terms by only ‒0.006 per year, which means that the 

share of all possible deprivations among poor people that were removed was only less 

than one-fourth that of Nepal or Rwanda. But relative to its initial level of poverty, its 

progress was second only to Nepal. It is thus important to report both absolute and 

relative changes and to understand their interpretation. The same results for 𝐻 and 𝐴 are 

provided in the Panel II and III of the table. We see that Nepal reduced the percentage 

of people who were poor by 4.1 percentage points per year—for example, if the first year 

64.7% of people were poor, the next year it would be 60.6%. Peru cut the poverty 

incidence by 1.3 percentage points per year. Relative to their starting levels, they had 

similar relative rates of reduction of the headcount ratio. Note that when estimates are 

reported in percentages, the absolute changes are reported in ‗percentage points‘ and not 

in ‗percentages‘. Thus, Nepal‘s reduction in 𝐻 from 64.7% to 44.2% is equivalent to an 

annualized absolute reduction of 4.1 percentage points and an annualized relative 

reduction of 6.3%. 

Table 9.2: Reduction in Multidimensional Poverty Index, Headcount Ratio and Intensity of 
Poverty in Nepal, Peru, Rwanda and Senegal 

  

Year 1 Year 2 

Statistical 
Significance  of 

the Change 

  Annualized Change 

    Absolute Relative 
Panel I: Multidimensional Poverty Index (MPI)         
Nepal 2006-2011 0.35 -(0.013) 0.217 -(0.012) *** 

 
-0.027 -9.1% 

Peru 2005-2008 0.085 -(0.007) 0.066 -(0.004) * 
 

-0.006 -8.0% 
Rwanda 2005-2010 0.46 -(0.005) 0.33 -(0.006) *** 

 
-0.026 -6.4% 

Senegal 2005-2010/11 0.44 -(0.019) 0.423 -(0.010)     -0.003 -0.7% 
Panel II: Multidimensional Headcount Ratio (𝑯)         
Nepal 2006-2011 64.70% -(2.0) 44.20% -(2.0) *** 

 
-4.1 -7.4% 

Peru 2005-2008 19.50% -(1.5) 15.70% -(0.8) * 
 

-1.3 -6.9% 
Rwanda 2005-2010 82.90% -(0.8) 66.10% -(1.0) *** 

 
-3.4 -4.4% 

Senegal 2005-2010/11 71.30% -(2.4) 70.80% -(1.5) 
  

-0.1 -0.1% 
Panel III: Intensity of Poverty (𝑨)             
Nepal 2006-2011 54.00% -(0.6) 49.00% -(0.7) *** 

 
-1 -1.9% 

Peru 2005-2008 43.60% -(0.5) 42.20% -(0.4) ** 
 

-0.5 -1.1% 
Rwanda 2005-2010 55.50% -(0.3) 49.90% -(0.3) *** 

 
-1.1 -2.1% 

Senegal 2005-2010/11 61.70% -(1.0) 59.70% -(0.7) * 
 

-0.4 -0.6% 
Note:   *** statistically significant at 𝜔=0.01, ** statistically significant at 𝜔=0.05, * statistically significant at 𝜔=0.10. 
These figures have been computed so as to be strictly comparable with harmonized indicator definitions, and 
therefore do not match the ‗MPI‘ values released in UNDP reports. 
Source: Alkire Roche and Vaz (2014). 

 



Alkire, Foster, Seth, Santos, Roche and Ballon  9: Distribution and Dynamics 

OPHI Working Paper 90 www.ophi.org 15 

The third column provides the results for the hypothesis tests which assess if the 

reduction between both years is statistically significant.12 The reductions in 𝑀0 in Nepal 

and Rwanda are significant at 𝜔=0.01, but the same in Peru is only significant at 𝜔=0.10. 

Interestingly, the reduction in intensity of poverty in Peru is significant at 𝜔=0.05. The 

case of Senegal is different in that the small reduction in 𝑀0  is not even significantly 

different at 𝜔=0.10, preventing the null hypothesis that poverty level in both years 

remained unchanged from being rejected. 

9.2.3 Population Growth and Change in the Number of Multidimensionally Poor 

Besides comparing the rate of reduction in 𝑀0, 𝐻 and 𝐴 as in Table 9.2, one should also 

examine whether the number of poor people is decreasing over time. It may be possible 

that the population growth is large enough to offset the rate of poverty reduction. Table 

9.3 uses the same four countries as Table 9.2 but adds demographic information. Nepal 

had an annual population growth of 1.2% between 2006 and 2011, moving from 25.6 to 

27.2 million people, and reduced the headcount ratio from 64.7% to 44.2%. This means 

that Nepal reduced the absolute number of poor by 4.6 million between 2006 and 2011. 

Table 9.3 Changes in the Number of Poor Accounting for Population Growth 

  Population   Total MPI Poor 

 
Year 1 Year 2 

Annual 
Growth in 
Population  

Year1  Year2 
Absolute 

Reduction  
  (in Thousands)   (in Thousands) 

Nepal 2006-2011 25,634 27,156 1.20% 
 

16,585 12,003 -4,582 
Peru 2005-2008 27,723 28,626 0.60% 

 
5,406 4,494 -912 

Rwanda 2005-2010 9,429 10,837 2.80% 
 

7,817 7,163 -654 
Senegal 2005-2010/11 11,271 13,141 3.10%   8,036 9,304 1,267 
Note: Population figures correspond to United Nations, Department of Economic and Social Affairs, Population 
Division (2013), World Population Prospects: The 2012 Revision, DVD Edition. Figures for Senegal 2010/11 
correspond to the average between both years. 
Source: Authors‘ presentation, based on Alkire, Roche andVaz (2014). 

 
In order to reduce the absolute number of poor people, the rate of reduction in the 

headcount ratio needs to be faster than the population growth. The largest reduction in 

the number of multidimensionally poor has taken place in Nepal. A moderate reduction 

in the number of poor has taken place in Peru and Rwanda. In contrast, there has been 

an increase in the total number of multidimensional poor in Senegal, from 8 million to 

over 9 million between 2005 and 2011. 

                                                 

12 For small samples, one needs to conduct hypothesis tests using the Student-t distribution which are very 
similar to the hypothesis tests described in Chapter 8 that use the Standard Normal distribution. 
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9.2.4 Dimensional Changes (Uncensored and Censored Headcount Ratios) 

The reductions in 𝑀0 , 𝐻, or 𝐴 can be broken down to reveal which dimensions have 

been responsible for the change in poverty. This can be seen by looking at changes in the 

uncensored headcount ratios (ℎ𝑗 ) and censored headcount ratios (ℎ𝑗 (𝑘)) described in 

section 5.5.3. We present the uncensored and censored headcount ratios of MPI 

indicators for Nepal in Table 9.4 for years 2006 and 2011 and analyse their changes over 

time. For definitions of indicators and their deprivation cutoffs, see section 5.6. Panel I 

gives levels and changes in uncensored headcount ratios, i.e. the percentage of people 

that are deprived in each indicator irrespective of deprivations in other indicators. Panel 

II provides levels and changes in the censored headcount ratios, i.e. the percentage of 

people that are multidimensionally poor and simultaneously deprived in each indicator. 

By definition, the uncensored headcount ratio of an indicator is equal to or higher than 

the censored headcount of that indicator. The standard errors are reported in the 

parenthesis. 

Table 9.4: Uncensored and Censored Headcount Ratios of the Global MPI, Nepal 2006–2011 

  
2006 2011 

Statistical 
Significance 

of the Change 

  
Annualized Reduction 

    Absolute Relative 
Panel I: Uncensored Headcount Ratio          
Schooling 30.30% (3.3) 22.20% -(2.6) *** 

 
-1.6 -6.0% 

Attendance 16.10% (3.1) 8.40% -(1.9) *** 
 

-1.5 -12.1% 
Mortality  32.60% (3.5) 22.60% -(1.9) *** 

 
-2 -7.1% 

Nutrition 44.00% (3.5) 32.10% -(2.9) *** 
 

-2.4 -6.1% 
Electricity 50.70% (5.6) 24.40% -(4.5) *** 

 
-5.3 -13.6% 

Sanitation 75.60% (3.0) 60.30% -(4.0) *** 
 

-3.1 -4.4% 
Water 17.10% (3.3) 12.90% -(2.9) * 

 
-0.8 -5.5% 

Flooring 76.70% (4.1) 70.00% -(4.0) ** 
 

-1.3 -1.8% 
Cooking fuel 86.80% (2.8) 79.30% -(3.2) *** 

 
-1.5 -1.8% 

Assets 59.20% (.0) 28.50% -(2.7) ***   -6.2 -13.6% 
Panel II: Censored Headcount Ratio           
Schooling 29.20% (3.3) 20.30% -(2.7) *** 

 
-1.8 -7.0% 

Attendance 15.60% (3.2) 8.10% -(1.9) *** 
 

-1.5 -12.3% 
Mortality  30.00% (3.8) 18.60% -(2.0) *** 

 
-2.3 -9.2% 

Nutrition 40.30% (3.9) 25.30% -(2.9) *** 
 

-3 -8.9% 
Electricity 43.40% (5.0) 20.10% -(4.0) *** 

 
-4.7 -14.3% 

Sanitation 56.30% (4.2) 38.00% -(4.3) *** 
 

-3.7 -7.6% 
Water 14.40% (3.0) 8.80% -(2.4) *** 

 
-1.1 -9.5% 

Flooring 60.10% (4.5) 41.80% -(4.1) *** 
 

-3.7 -7.0% 
Cooking fuel 63.40% (3.9) 43.00% -(4.1) *** 

 
-4.1 -7.5% 

Assets 46.70% (.0) 21.70% -(2.7) ***   -5 -14.2% 
Panel III: Dimensional Contribution to MPI       
  2006 2011 

 
          

Schooling 13.90% 15.60% 
   



Alkire, Foster, Seth, Santos, Roche and Ballon  9: Distribution and Dynamics 

OPHI Working Paper 90 www.ophi.org 17 

Attendance 7.40% 6.20% 
   Mortality  14.30% 14.30% 
   Nutrition 19.20% 19.40% 
     Electricity 6.90% 5.20% 
     Sanitation 8.90% 9.70% 
     Water 2.30% 2.20% 
     Flooring 9.50% 10.70% 
     Cooking fuel 10.10% 11.00% 
     Assets 7.40% 5.60% 
     Note: *** statistically significant at 𝜔=0.01, ** statistically significant at 𝜔=0.05, * statistically significant at 𝜔=0.10 

Source: Alkire, Roche and Vaz (2014). 
 

As we can see in the table, Nepal made statistically significant reductions in all indicators 

in terms of both uncensored and censored headcount ratios. The larger reductions in 

censored headcount are observed in electricity, assets, cooking fuel, flooring, and 

sanitation; all censored headcount ratios have decreased by more than 3 percentage 

points. Nutrition, mortality, schooling and attendance follow with annual reductions of 3, 

2.3, 1.8, and 1.5 percentage points, respectively. 

The changes in censored headcount ratios depict changes in deprivations among the 

poor. Recall that the overall 𝑀0 is the weighted sum of censored headcount ratios of the 

indicators as presented in equation (5.13) and the contribution of each indicator to the 

𝑀0 can be computed by equation (5.14). Because of this relationship, the absolute rate 

of reduction in 𝑀0 in equation (9.8) and the annualized absolute rate of reduction in 

𝑀0  in equation (9.12) can be expressed as weighted averages of absolute rate of 

reductions in censored headcount ratios and annualized absolute rate of reductions 

in censored headcount ratios, respectively. When different indicators are assigned 

different weights, the effects of their changes on the change in 𝑀0 reflect these weights.13 

For example, in the MPI, the nutrition indicator is assigned a three times more weight 

than electricity. This implies that a one percentage point reduction in nutrition ceteris 

paribus would lead to an absolute reduction in 𝑀0 that is three times larger than a one 

percentage point reduction in the electricity indicator. 

Recall that it is straightforward to compute the contribution of each indicator to 𝑀0 

using its weighted censored headcount ratio as given in equation (5.14). Note that 

interpreting the real on-the-ground contribution of each indicator to the change in 𝑀0 is 

not so mechanical. Why? A reduction in the censored headcount ratio of an indicator is 

not independent of the changes in other indicators. It is possible that the reduction in the 
                                                 

13 Normative issues in assigning weights were discussed in details in Chapter 6. 
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censored headcount ratio of a certain indicator 𝑗 occurred because a poor person became 

non-deprived in indicator 𝑗. But it is also possible that the reduction occurred because a 

person who had been deprived in 𝑗  became non-poor due to reductions in other 

indicators, even though they remain deprived in 𝑗. In the second period, their deprivation 

in 𝑗 is now censored because they are non-poor (their deprivation score does not exceed 

𝑘). The comparison between the uncensored and censored headcount distinguishes these 

situations. For example, we can see from Panel I of Table 9.4 that the reductions in the 

uncensored headcount ratios of flooring and cooking fuel are lower than the annualized 

reductions of the censored headcount ratios of the these two indicators. Thus some non-

poor people are deprived in these indicators. In intertemporal analysis it is useful to 

compare the corresponding censored and uncensored headcount ratios to analyse the 

relation between the dimensional changes among the poor and the society-wide changes 

in deprivations. Of course in repeated cross-sectional data, this comparison will also be 

affected by migration and demographic shifts as well as changes in the deprivation 

profiles of the non-poor.  

Panel III of Table 9.5 presents the contribution of the indicators to the 𝑀0 for Nepal in 

2006 and in 2011. The contributions of assets, electricity, and attendance have gone 

down; whereas the contributions of flooring, cooking fuel, sanitation, and schooling have 

gone up. The contributions of water, nutrition and mortality have not shown large 

changes. Dimensional analyses is vital and motivating because any real reduction in a 

dimensional deprivation will certainly reduce 𝑀0 . Real reductions are normally those 

which are visible both in raw and censored headcounts.14 

9.2.5 Subgroup Decomposition of Change in Poverty 

One important property that the adjusted-FGT measures satisfy is population subgroup 

decomposability, so that the overall 𝑀0  can be expressed as: 𝑀0 =  𝜈ℓ𝑀0(𝑋ℓ)𝑚
ℓ=1 , 

where 𝑀0(𝑋ℓ) denotes the Adjusted Headcount Ratio and 𝜈ℓ = 𝑛ℓ/𝑛  the population 

share of subgroup ℓ  as in equation (5.14). It is extremely useful to analyse poverty 

changes by population subgroups, to see if the poorest subgroups reduced poverty faster 

than less poor subgroups, and to see the dimensional composition of reduction across 

subgroups (Alkire and Seth 2013b; Alkire and Roche 2013; Alkire, Roche and Vaz 2014). 
                                                 

14 Comparisons of reductions in both raw and censored headcounts may be supplemented by information 
on migration, demographic shifts, or exogenous shocks, for example. 
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Population shares for each time period must be analysed alongside subgroup trends. For 

example, let us decompose the Indian population into four caste categories: Scheduled 

Castes (SC), Scheduled Tribes (ST), Other Backward Classes (OBC), and the General 

category. As Table 9.5 shows, 𝑀0 as well as 𝐻 have gone down statistically significantly 

at the national level and across all four subgroups, which is good news. However, the 

reduction was slowest among STs who were the poorest as a group in 1999, and their 

intensity showed no significant decrease. Thus, the poorest subgroup registered slowest 

progress in terms of reducing poverty. 

Table 9.5 Decomposition of 𝑴𝟎, 𝑯 and 𝑨 across Castes in India 

  1999 2006 Change   

 

Pop. 
Share 𝑴𝟎 𝑯 𝑨 Pop. 

Share 𝑴𝟎 𝑯 𝑨 𝑴𝟎  𝑯  𝑨 
 

SC 18.3% 0.378 68.8% 55.0% 19.1% 0.307 58.3% 52.6% -0.071 *** -10.5% *** -2.3% *** 
ST 8.9% 0.458 80.3% 57.0% 8.5% 0.417 74.0% 56.3% -0.041 *** -6.3% *** -0.7%  
OBC 32.6% 0.301 57.9% 52.1% 40.2% 0.258 50.8% 50.8% -0.043 *** -7.1% *** -1.3% *** 
General 40.1% 0.229 45.2% 50.6% 32.2% 0.164 33.0% 49.7% -0.065 *** -12.2% *** -0.9% ** 
India 100% 0.300 56.8% 52.9% 100% 0.251 48.5% 51.7% -0.050 *** -8.3% *** -1.2% *** 

Note: *** statistically significant at 𝜔=0.01, ** statistically significant at 𝜔=0.05, * statistically significant at 𝜔=0.10 
Source: Alkire and Seth (2013). 

 
To supplement the above analysis it is useful to explore the contribution of population 

subgroups to the overall reduction in poverty, which not only depends on the changes in 

subgroups‘ poverty but also on changes in the population composition. This can be seen 

by presenting the overall change in 𝑀0 between two periods (𝑡1, 𝑡2) as 

 ∆𝑀0 =   𝜈ℓ,𝑡2𝑀0(𝑋𝑡2
ℓ ) − 𝜈ℓ,𝑡1𝑀0(𝑋𝑡1

ℓ ) .
𝑚

ℓ=1
 (9.14) 

Note that the overall change depends both on the changes in subgroup 𝑀0 ‘s and the 

changes in population shares of the subgroups. 

9.3 Changes Over Time by Dynamic Subgroups 

The overall changes in 𝑀0,𝐻, and 𝐴 discussed thus far could have been generated in 

many ways. It might be desirable for policy purposes to monitor how poverty changed. 

In particular, one may wish to pinpoint the extent to which poverty reduction occurred 

due to people leaving poverty vs. a reduction of intensity among those who remained 

poor, and also to know the precise dimensional changes which drove each. 

For example, a decrease in the headcount ratio by 10% could have been generated by an 

exit of 10% of the population who had been poor in the first period. Alternatively, it 

could have been generated by a 20% decrease in the population who had been poor, 
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accompanied by an influx of 10% of the population who became newly poor. 

Furthermore, the people who exited poverty could have had high deprivation scores in 

the first period – that is, been among the poorest – or they could have been only barely 

poor. The deprivation scores of those entering and leaving poverty will affect the overall 

change in intensity ∆𝐴 as will changes among those who stay poor.  In addition these 

entries into and exits from poverty could have been precipitated by diferent possible 

increases or decreases in the dimensional deprivations people experienced in the first 

period, which will then be reflected in the changes in uncensored and censored 

headcount ratios. 

This section introduces more precisely these dynamics of change. We first show what 

can be captured with panel data, then show empirical strategies to address this situation 

with repeated cross-sectional data. Finally we present two approaches related to Shapley 

decompositions which decompose changes precisely, but rely on some crucial 

assumptions so their empirical accuracy is questionable. 

9.3.1 Exits, Entries, and the Ongoing Poor: A Two-Period Panel 

Let us consider a fixed set of population of size 𝑛 across two periods, 𝑡1 and 𝑡2 . The 

achievement matrices of these periods are denoted by 𝑋𝑡1  and 𝑋𝑡2 . The population can 

be mutually exclusively and collectively exhaustively categorized into four groups that we 

refer to as dynamic subgroups as follows: 

Subgroup 𝑁 Contains 𝑛𝑁  people who are non-poor in both periods 𝑡1 and 𝑡2 

Subgroup 𝑂 Contains 𝑛𝑂  people who are poor in both periods 𝑡1 and 𝑡2 (ongoing poor) 

Subgroup 𝐸− Contains 𝑛𝐸−
 people who are poor in period 𝑡1 but exit poverty in period 𝑡2 

Subgroup 𝐸+ Contains 𝑛𝐸+ people who are not poor in period 𝑡1 but enter poverty in period 𝑡2 

We denote the achievement matrices of these four subgroups in period 𝑡 by 𝑋𝑡𝑁 , 𝑋𝑡𝑂 , 

𝑋𝑡𝐸
−  and 𝑋𝑡𝐸

+  for all 𝑡 = 𝑡1 , 𝑡2 . The proportion of multidimensionally poor populationin 

period 𝑡1  is 𝐻(𝑋𝑡1 ) = (𝑛𝑂 + 𝑛𝐸−)/𝑛 and that in period 𝑡2  is 𝐻(𝑋𝑡2 ) = (𝑛𝑂 + 𝑛𝐸+)/
𝑛. The change in the proportion of poor people between these two periods is Δ𝐻 =
𝐻(𝑋𝑡2 ) − 𝐻(𝑋𝑡1 ) = (𝑛𝐸+ − 𝑛𝐸−)/𝑛= 𝐻(𝑋𝑡2

𝐸+) − 𝐻(𝑋𝑡1
𝐸−). In other words, the change 

in the overall multidimensional headcount ratio is the difference between the proportion 

of poor entering and the proportion of poor exiting poverty. Note that, by construction, 

no person is poor in 𝑋𝑡1
𝑁 , 𝑋𝑡2

𝑁 , 𝑋𝑡2
𝐸−

, and 𝑋𝑡1
𝐸+

 and thus 𝐻 𝑋𝑡1
𝑁  = 𝐻 𝑋𝑡2

𝑁  = 𝐻 𝑋𝑡2
𝐸− =
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𝐻  𝑋𝑡1
𝐸+ = 0 . This also implies, 𝑀0 𝑋𝑡1

𝑁  = 𝑀0 𝑋𝑡2
𝑁  = 𝑀0 𝑋𝑡2

𝐸− = 𝑀0  𝑋𝑡1
𝐸+ = 0 . 

On the other hand, all persons in 𝑋𝑡1
𝐸−

, 𝑋𝑡2
𝐸+

, 𝑋𝑡1
𝑂 , and 𝑋𝑡2

𝑂  are poor and thus 𝐻 𝑋𝑡1
𝑂  =

𝐻 𝑋𝑡2
𝑂  = 𝐻 𝑋𝑡1

𝐸− = 𝐻  𝑋𝑡2
𝐸+ = 1. Therefore, the 𝑀0 of each of these four subgroups 

is equal to its intensity of poverty. 

In a fixed population, the overall population and the population share of each dynamic 

group remains unchanged across two time periods.15 The change in the overall 𝑀0 can be 

decomposed using equation (9.14) as 

 
∆𝑀0 = 𝑛𝑂

𝑛  𝑀0 𝑋𝑡2
𝑂  − 𝑀0 𝑋𝑡1

𝑂   − 𝑛𝐸−

𝑛 𝑀0 𝑋𝑡1𝐸
− + 𝑛𝐸+

𝑛 𝑀0  𝑋𝑡2𝐸
+ . (9.15) 

Thus, the right-hand side of equation (9.15) has three components. The first 

componentΔ𝑀0
𝑂 = 𝑛𝑂

𝑛  𝑀0 𝑋𝑡2
𝑂  − 𝑀0 𝑋𝑡1

𝑂    is due to the change in the intensity of 

those who remain poor in both periods—the ongoing poor—weighted by the size of this 

dynamic subgroup. The second component Δ𝑀0
𝐸− = 𝑛𝐸−

𝑛 𝑀0 𝑋𝑡1
𝐸−  is due to the change 

in the intensity of those who exit poverty (weighted by the size of this subgroup) and the 

third component Δ𝑀0
𝐸+ = 𝑛𝐸+

𝑛 𝑀0  𝑋𝑡2
𝐸+  is due to the population-weighted change in 

the intensity of those who enter poverty. Together ∆𝑀0 = Δ𝑀0
𝑂 − Δ𝑀0

𝐸− + Δ𝑀0
𝐸+

. 

From this point there are many interesting possible avenues for analyses. Each group can 

be studied separately or in different combinations. For policy, it could be interesting to 

know who exited poverty, and their intensity in the previous period, to see if the poorest 

of the poor moved out of poverty. The intensity of those who entered poverty shows 

whether they dipped into the barely poor group, or catapulted into high-intensity 

poverty, perhaps due to some shock or crisis or (if the population is not fixed) migration. 

Intensity changes among the ongoing poor show whether their deprivations are 

declining, even though they have not yet exited poverty. Dimensional analyses of 

changes for each dynamic subgroup, which are not covered in this book but are 

straightforward extensions of this material, are also both illuminating and policy relevant. 

In the case of panel data with a fixed population we are able to estimate these precisely. 

We can thus monitor the extent to which the change in 𝑀0 is due to movement into and 
                                                 

15 Suitable adjustments can be made for demographic shifts when the population is not fixed across two 
periods. 
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out of poverty, and the extent to which it is due to a change in intensity among the 

ongoing poor population. The example in Box 9.1 may clarify. 
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Box 9.1 Decomposing the Change in 𝑴𝟎 across Dynamic Subgroups: An Illustration 

Consider the following six-person, six-dimension 𝑔0  matrices, in which people enter and exit 
poverty, and intensity among the poor also increase and decreases. 

 

Let us use a poverty cutoff of 33% or two out of six dimensions. Increases and decreases are 
depicted in bold. Below we summarize  𝑀0, 𝐻, and 𝐴 in two periods and their changes across two 
periods. 

 𝑡1 𝑡2 ∆ (Change) 
𝑀0 5/9 11/36 −𝟏/𝟒 
𝐻 5/6 2/3 −𝟏/𝟔 
𝐴 2/3 11/24 −𝟓/𝟐𝟒 

So in period two there are four kinds of changes affecting the dynamic subgroups as follows: 

1) 𝐸−:  persons 1 and 2 become non-poor (move out of or exit poverty) 
2) 𝐸+:  person 6 enters poverty.  
3) 𝑂 ∶   two kinds of changes occur 

a. deprivations of ongoing poor persons 3 and 4 reduce by one deprivation each 
b. deprivations of ongoing poor person 5 increases by one deprivation. 

The descriptions and the decompositions of 𝑀0 for the changes are in the following table. 

Subgroup 
Decompositions 

𝐸− 𝐸+ 𝑂 ∆ 

𝑛𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 /𝑛 2/6 1/6 3/6 ∆𝐻 =  − 2
6 + 1

6 = −𝟏
𝟔 

∆𝐴 −11/12 3/6 −1/18  

∆𝑀0 − 11
36 

1
12 − 1

36 ∆𝑀0 = − 11
36 + 3

36 − 1
36 = −𝟏

𝟒 

 𝐸 𝑂  
 89% 11% 100% 
 𝐸− 𝐸+ 𝑂  

∆𝑀0(%) −122% +33% −11% −100% 

What is particularly interesting for policy is that we can notice that, in this example, 11% of the 
reduction in poverty was due to changes in intensity among the 50% of the population who stayed 
poor, that poverty was effectively increased 33% by the new entrant, but that this was more than 
compensated by those who exited poverty (–122%), because they initially had very high intensities. 
In this dramatic example, the poorest of the poor exited poverty, while the less poor experienced 
smaller reductions. 

9.3.2 Decomposition by Incidence and Intensity for Cross-Sectional Data 

The previous section explained the changes for a fixed population over time. To estimate 

that empirically requires panel data with data on the same persons in both periods which 

can be used to track their movement in and out of poverty. Yet analyses over time are 

 𝑔0 Period 1     𝑔0 Period 2  
 1 1 1 1 1 1    0 0 0 0 0 0  
 1 1 1 1 1 0    0 0 0 0 0 0  
 1 1 1 1 0 0    1 1 1 0 0 0  
 1 1 1 0 0 0    1 1 0 0 0 0  
 1 1 0 0 0 0    1 1 1 0 0 0  
 0 0 0 0 0 0    1 1 1 0 0 0  
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often based on repeated cross-sectional data having independent samples that are statistically 

representative of the population under study, but that do not to track each specific 

observation over time. This section examines the decomposition of changes in 𝑀0 for 

cross-sectional data. 

With cross-sectional data, we cannot distinguish between the three groups identified 

above, nor can we isolate the intensity of those who move into or out of poverty. 

Observed values are only available for: 

𝐻 𝑋𝑡1 , 𝐻 𝑋𝑡2 ,∆𝐻, 𝐴 𝑋𝑡1 ,𝐴 𝑋𝑡2 ,∆𝐴, 𝑀0 𝑋𝑡1 ,𝑀0 𝑋𝑡2 , and ∆𝑀0. Using these, it 

is categorically impossible to decompose ∆𝑀0 with the empirical precision that panel 

data permits.  

Nonetheless, if required one can move forward with some simplifications. Instead of 

three groups (𝐸−, 𝐸+, 𝑎𝑛𝑑 𝑂)  let us consider just two, which might be referred to 

(somewhat roughly) as movers and stayers.  We define movers as the ∆𝐻  people who 

reflect the net change in poverty levels across the two periods. Stayers are ongoing poor 

plus the proportion of previously poor people who were replaced by ‗new poor‘, and 

total those who are poor in period 2 𝐻(𝑋𝑡2 ).  In considering only the ‗net‘ change in 

headcount, one effectively permits the larger of 𝐸− 𝑜𝑟 𝐸+ to dominate: if poverty rose 

nationally, it is the group who entered poverty who dominate; if poverty fell nationally, 

the group who exited poverty. The subordinate third group is allocated among the 

ongoing poor and the dominant group. For the remainder of this section we presume 

that both 𝑀0 and 𝐻 decreased overall. In this case, 𝐸− >  𝐸+. So ∆𝐻 = (𝐻𝐸− − 𝐻𝐸+), 

and 𝐻(𝑋𝑡2 ) =  (𝐻𝑂 + 𝐻𝐸+) . As is evident, this simplification is performed because 

empirical data exist in repeated cross-sections for ∆𝐻 and 𝐻(𝑋𝑡2 ). 

Example: Suppose that 37% of people are ongoing poor, 3% enter poverty, 13% exit 

poverty, and 47% remain non-poor. Suppose the overall headcount ratio decreased by 10 

percentage points, and the headcount ratio in period 2 is 40%, whereas in period 1 it was 

50% (37%+13%). We now primarily consider two numbers: the headcount ratio in 

period 2 of 40% (interpreted broadly as ongoing poverty) and the change in headcount 

ratio of 10% (interpreted broadly as moving into/out of poverty). In doing so we are 

effectively permitting the ‗new poverty entrants‘ to be considered as among the group in 

ongoing poverty in period 2 (37% + 3% = 40%). To balance this, we effectively replace 

3% of those who exited poverty (13% – 3% = 10% = ∆𝐻), and consider this slightly 
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reduced group to be those who moved out of poverty. If poverty had increased overall, 

the swaps would be in the other direction. 

If poverty has reduced and there has not been a large influx of people into poverty, that 

is, if 𝐻𝐸+ = 𝑛𝐸+/𝑛  is presumed to be relatively small empirically, then this strategy 

would be likely to shed light on the relative intensity levels of those who moved out of 

poverty 𝐻𝐸− = 𝑛𝐸−/𝑛, and the changes in intensity among those who remained poor 

𝐻𝑂 = 𝑛𝑂/𝑛. If empirically 𝐻𝐸+ is expected (from other sources of information) to be 

large, or if their intensity is expected to differ greatly from the average, this strategy is not 

advised.16 

Consider the intensity of the net population who exited poverty – under these 

simplifying assumptions reflected by the net change in headcount, denoted 𝐴𝐸  – and the 

intensity change of the net ongoing poor, whom we will presume to be 𝐻(𝑋𝑡2 ), denoted 

∆𝐴𝑂 . The ∆𝑀0  can be decomposed according to these two groups. These 

decompositions can be interpreted as showing percentage of the change in 𝑀0 that can be 

attributed to those who moved out of poverty, versus the percentage of change which 

was mainly caused by a decrease in intensity among those who stayed poor. We use the 

terms movers and stayers to refer to these less precise dynamic subgroups in cross-

sectional data analysis. 

 ∆𝑀0 = ∆𝐻 × 𝐴𝐸 + 𝐻(𝑋𝑡2 ) × ∆𝐴𝑂 . (9.16) 

 
 

 

Cross sectional data does not provide the intensity of either of those who stayed poor or 

of those who moved out of poverty. One way forward is to estimate these using existing 

data. First, identify the ∆𝐻 × 𝑛  poor persons having the lowest intensity in the dataset 

(sampling weights applied), and use the average of these scores for 𝐴𝐸  then solve for 

𝐴𝑂 . 17 Subsequently, identify the ∆𝐻 × 𝑛  poor persons having the highest intensity in 

                                                 

16The corresponding considerations apply if poverty has increased and 𝐻𝐸−is expected to be small 

17 Naturally it is also possible to create estimates for 
ÔA where the upper bound was the overall change in 

intensity, and the lower bound was zero, and solve for 
ÊA . However this would not permit an increase in 

intensity (which would happen if the barely poor left poverty and the others stayed the same, for example), 
nor for an even stronger reduction in intensity. For example, in the example in Table 9.2, Nepal‘s A 

Movers 
 effect 

 

Stayers  
effect 
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that dataset, and repeat the procedure.  This will generate upper and lower estimates for 

𝐴𝐸  and 𝐴𝑂  in a given dataset, which will provide an idea of the degree of uncertainty that 

different assumptions introduce. To estimate stricter upper and lower bounds it could be 

assumed that those moved out of poverty had an intensity score of the value of 𝑘 (the 

theoretically minimum possible), and subsequently assume that their intensity was 100% 

(the theoretically maximum possible).18 

Table 9.6 provides the empirical estimations for the upper and lower bounds for the 

same four countries discussed above plus Ethiopia. At the upper bound those who 

moved out of poverty could have had average intensities ranging from 59% in Peru (the 

least poor country) to 99% in Ethiopia or 100% in Senegal, according to the datasets. 

This in itself is interesting, as it shows that Rwanda—which is the poorest country of the 

four—had ‗movers‘ with lower average deprivations than Ethiopa. Those who stayed 

poor would have had, in this case, small if any increases or decreases in intensity—less 

than four percentage points. At the lower bound, those who moved out of poverty could 

have had intensities from 33% in Peru and Senegal to 38% in Nepal, and intensity 

reductions among the ongoing poor could have ranged from 2% in Senegal to 13% in 

Nepal. At the upper bound (where we assume the poorest of the poor moved out of 

poverty), for Nepal, Rwanda and Peru, over 100% of the poverty reduction was due to 

the movers, because intensity among the ongoing poor would have had to increase (to 

create the observed ∆𝑀0). At the lower bound, where the least poor people moved out 

of poverty, movers contributed 47–67% to ∆𝑀0 . Senegal did not have a statistically 

significant reduction in poverty. Ethiopia provides a different example where the upper 

and lower bound are closer together and reductions in intensity among the ongoing poor 

would have contributed 31% to 73%. 

Table 9.6 Decomposing the Change in 𝑴𝟎 by Dynamic Subgroups 

Panel A 
            

Country 
𝑴𝟎 

 
𝑯 

 
𝑨 

 
∆𝑯   

 𝒕𝟏 𝒕𝟐 ∆𝑴𝟎  𝒕𝟏 𝒕𝟐  𝒕𝟏 𝒕𝟐 
 Ethiopia 2005-2011 0.605 0.523 -0.081 

 
89.7 84.1 

 
67.4 62.3 

 
5.66 

Nepal 2006-2011 0.350 0.217 -0.133 
 

64.7 44.2 
 

54.0 49.0 
 

20.55 
Peru 2005-2008 0.085 0.066 -0.019 

 
19.5 15.7 

 
43.6 42.2 

 
3.78 

Rwanda 2005-2010 0.460 0.330 -0.130 
 

82.9 66.1 
 

55.5 49.9 
 

16.75 

                                                                                                                                            

reduced by five percentage points, whereas in our upper bound, intensity among the ‗stayers‘ increased by 
4% and in the lower bound it decreased by 13%. 
18  These bounds are theoretically possible lower and upper bounds. Further research using panel datasets 
is required to investigate the likelihood of these bounds. 
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Senegal 2005-2010/11 0.440 0.423 -0.017 
 

71.3 70.8 
 

61.7 59.7 
 

0.46 
Panel B 

Country 

Upper Bound 
 

Lower Bound 
 

Shapley 
Decomposition  

𝑨 
Movers 

∆𝑨 
Stayers 

Movers 
Effect  

Stayers 
Effect  

 

𝑨 
Movers 

∆𝑨 
Stayers 

Movers 
Effect  

Stayers 
Effect 

 

Incidence 
Effect 𝑯 

Intensity 
Effect 𝑨 

Ethiopia 2005-2011 0.99 -0.03 68.7% 31.3% 
 

0.38 -0.07 26.6% 73.4% 
 

45% 55% 
Nepal 2006-2011 0.74 0.04 113.4% -13.4% 

 
0.38 -0.13 58.2% 41.8% 

 
79% 21% 

Peru 2005-2008 0.59 0.02 119.5% -19.5% 
 

0.33 -0.04 67.1% 32.9% 
 

86% 14% 
Rwanda 2005-2010 0.78 0 101.4% -1.4% 

 
0.36 -0.1 47.1% 52.9% 

 
68% 32% 

Senegal 2005-2010/11 1 -0.02 26.8% 73.2% 
 

0.33 -0.02 8.9% 91.1% 
 

16% 84% 
Source: Alkire, Roche and Vaz (2014) 

 
This empirical investigation shows that, when implemented with the mild assumptions 

that are required for cross-sectional data, the upper and lower bounds according to each 

country‘s dataset are very wide apart. In reality, the relative contribution, of the ‗movers‘ 

and ‗stayers‘ to overall poverty reduction could vary anywhere in this range. 

As the example shows, the empirical upper and lower bounds vary greatly across 

countries. In the case of Ethiopia, movers explain 27% to 69% of the changes in 

poverty, and stayers account for 31% to 73%. These boundaries do not permit us to 

assess whether the actual contribution from ‗movers‘ was greater than or less than that of 

‗stayers‘. In Nepal and Peru the ‗movers‘ probably contributed more than ‗stayers‘ to 

poverty reduction, as in all cases their lowest effect is above 50%. Given these wide-

ranging upper and lower bounds, empirically we are unable to answer questions such as 

whether the intensity of the ongoing poor decreased, or whether it was the barely poor 

or the deeply poor who moved out of poverty. While this can seem disappointing, for 

policy purposes, as Sen stresses, it may be better to be ‗vaguely right than precisely 

wrong‘, and repeated cross-sectional data simply do not permit us, at this time, to bound 

ahead with precision. 

9.3.3 Theoretical Incidence-Intensity Decompositions 

Whereas monitoring and policy inputs must be based on empirical analyses, some 

research topics utilize theoretical analyses. This section introduces two theory-based 

approaches to decomposing changes in repeated cross-sectional data according to what 

we call ‗incidence‘ and ‗intensity‘. In each approach assumptions are made regarding the 

intensity of those who exit or remain poor. As we have already noted, the task implies 

some challenges because the empirical accuracy of the underlying assumptions is 

completely unknown, and as Table 9.6 showed, the actual range may be quite large. 

These techniques are thus offered in the spirit of academic inquiry. 
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For simplicity of notation, in this subsection, we denote the 𝑀0, 𝐻, and 𝐴 for period 𝑡1 

by 𝑀0
𝑡1

, 𝐻𝑡1 ; and 𝐴𝑡1  and that for period 𝑡2  by 𝑀0
𝑡2

, 𝐻𝑡2 , and 𝐴𝑡2 . The first approach 

consists in the additive decomposition proposed by Apablaza and Yalonetzky (2013), 

which is illustrated in Panel A of Figure 9.2. Since 𝑀0 = 𝐻 × 𝐴 , they propose to 

decompose the change in 𝑀0 by changes in its partial indices as follows 

 ∆𝑀0 = 𝐴𝑡2 𝐻𝑡2 − 𝐻𝑡1 + 𝐻𝑡2 𝐴𝑡2 − 𝐴𝑡1 −   𝐻𝑡2 − 𝐻𝑡1  𝐴𝑡2 − 𝐴𝑡1   (9.17) 

 

 

Note that the illustration in Figure 9.2 assumes reductions in 𝑀0, 𝐻, and 𝐴 over time, 

but the graph can be adjusted to incorporate situations where they do not necessarily fall. 

This approach involves two assumptions. First, the intensity among those who left 

poverty is assumed to be the same as the average intensity in period 𝑡2 . Second, the 

intensity change among the ongoing poor is assumed to equal the simple difference in 

intensities of the poor across the two periods. The decomposition is completed using an 

interaction term, as depicted in Panel A of Figure 9.2, below. This is indeed an additive 

decomposition of changes in the Adjusted Headcount Ratio (𝑀0).  Apablaza and 

Yalonetzky interpret these changes as reflecting: (1) changes in the incidence of poverty 

(𝐻), (2) changes in the intensity of poverty  𝐴 , and (3) a joint effect that is due to 

interaction between incidence and intensity (∆𝐻 × ∆𝐴). 

Figure 9.2 Theoretical Decompositions 

Panel A – Apablaza and Yalonetzky Panel B  –  Roche 

  
 

A second theoretical approach corresponds to a Shapley decomposition proposed by 

Roche (2013). This builds on Apablaza and Yalonetzky (2013) and performs a Shapley 

𝑀0
𝑡1

 

𝑀0
𝑡2

 

 

Intensity effect 

 

Incidence 
Effect 

 

𝐻𝑡2  

𝐴𝑡1  

𝐴𝑡2  

𝐻𝑡1  𝐻𝑡2  
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value decomposition following Shorrocks (1999).19 It provides the marginal effect of 

changes in incidence and intensity as follows: 

 
∆𝑀0 = 𝐴𝑡2 + 𝐴𝑡1

2  𝐻𝑡2 − 𝐻𝑡1 + 𝐻𝑡2 + 𝐻𝑡1

2  𝐴𝑡2 − 𝐴𝑡1  (9.18) 

 

 

Panel B of Figure 9.2 illustrates Roche‘s application of Shapley decompositions, which 

focuses on the marginal effect without the interaction effect. Roche‘s proposal assumes 

that the intensity of those who exited poverty (our terms) is the average intensity of the 

two periods 𝐴
𝑡2 +𝐴𝑡1

2  𝐻𝑡2 − 𝐻𝑡1 , and calls this the ‗incidence effect‘. He takes the other 

group as comprising the average headcount ratio between the two periods, and their 

change in intensity as the simple difference in intensities across the periods  

𝐻𝑡2 +𝐻𝑡1

2  𝐴𝑡2 − 𝐴𝑡1 , and describes this as the ‗intensity effect‘. 

Roche‘s masterly presentation systematically applies Shapley decompositions to each step 

of dynamic analysis using the AF method. For example, if the underlying assumptions 

are transparently stated and accepted, the theoretically derived marginal contribution of 

changes in incidence and marginal contribution of changes in intensity can be expressed 

as a percentage of the overall change in 𝑀0 so they both add to 100% and can be written 

as follows 

 

Φ𝐻0 =
 𝐴

𝑡2 + 𝐴𝑡1

2  𝐻𝑡2 − 𝐻𝑡1  × 100

∆𝑀0
 

(9.19) 

 

Φ𝐴
0 =

 𝐻
𝑡2 + 𝐻𝑡1

2  𝐴𝑡2 − 𝐴𝑡1  × 100

∆𝑀0
 

(9.20) 

To address demographic shifts Roche follows a similar decomposition of change as that 

used in FGT unidimensional poverty measures (Ravallion and Huppi, 1991) and Shapely 

decompositions (Duclos and Araar 2006, Shorrocks 1999). This approach, presented in 

                                                 

19  The Shapley value decomposition was initially applied to decomposition of income inequality by 
Chantreuil and Trannoy (2011, 2013) and Morduch and Sinclair (1998). Shorrocks (1999) showed that it 
can be applied to any function under certain assumptions. 

Incidence of 
Poverty effect 

Intensity of 
Poverty effect 
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Equation (9.21), attribute demographic effects to the average population shares and 

subgroup 𝑀0 ‘s across time. Roche argues that, if the underlying assumptions are 

accepted, the overall change in poverty level can be broken down in two components: 1) 

changes due to intra-sectoral or within-group poverty effect, 2) changes due to 

demographic or inter-sectoral effect. So the overall change in the adjusted headcount 

between two periods respectively(𝑡2, 𝑡1), could be expressed as follows   

 
∆𝑀0 =   𝜈

ℓ,𝑡2 + 𝜈ℓ,𝑡1

2   𝑀0
ℓ,𝑡2 − 𝑀0

ℓ,𝑡1 
𝑚

ℓ=1
+   𝑀0

ℓ,𝑡2 + 𝑀0
ℓ,𝑡1

2   𝜈ℓ,𝑡2 − 𝜈ℓ,𝑡1 
𝑚

ℓ=1
 (9.21) 

 

 

It is common to express the contribution of each factor as a proportion of the overall 

change, in which case equation (9.21) is divided throughout by ∆𝑀0. 

The last columns of Table 9.6 Panel B provide Shapley decompositions for the same five 

countries. We see that in all cases the Shapley decompositions lie, as anticipated, between 

the upper and lower bounds. The Shapley decompositions have the broad appeal of 

presenting point estimates that pinpoint the exact contribution of each partial index to 

changes in poverty, according to their underlying assumptions, and thus may be used in 

analyses when empirical accuracy is not required or the assumptions are independently 

verified. A full illustration of the Shapley decomposition methods using data on 

multidimensional child poverty in Bangladesh is given in Roche (2013).20 

9.4 This Complementary Chronic Poverty with Multiple Time Periods 

Panel datasets provide information on precisely the same individual or household at 

different periods of time. Good quality panel datasets are particularly rich and useful for 

analysing multidimensional poverty because their analysis provides policy-relevant 

insights that extend what time series data provide. For example, using panel data we can 

distinguish the deprivations experienced by the chronically poor from those experienced 

by the transitory poor and thus identify the combination of deprivations that trap people 

in long-term multidimensional poverty. Also, we can analyse the duration over which a 

person was deprived in each indicator—and the sequences by which their deprivation 
                                                 

20 The multidimensional poverty index implemented in Roche (2013) focuses on children under 5. The 
choice of dimensions and indicators are similar to Gordon et al. (2003). 

Within-group poverty effect Demographic or sectoral effect 
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profile evolved. As section 9.3.1 showed, we can identify precisely the contributions to 

poverty reduction that were generated by changes entries and exits from poverty and by 

the ongoing poor. 

The following section very briefly presents a counting-based class of chronic 

multidimensional poverty measures that use a triple-cutoff method of identifying who is 

poor. We give prominence here to the measure that can be estimated using ordinal data. 

The partial indices associated with the chronic multidimensional poverty methodology 

include the headcount ratio and intensity, as well as new indices related to the duration of 

poverty and of dimensional deprivation. We also present a linked measure of transient 

poverty. As in other sections, we presume that interested readers will master standard 

empirical and statistical techniques that are appropriate for studies using panel data, and 

apply these in the analyses of poverty transitions and chronic poverty here described. 

The closing section on poverty transitions informally sketches revealing analyses that can 

be undertaken without generating a chronic poverty measure. Rather, people are 

identified as multidimensionally poor or non-poor in each period, then population 

subgroups are identified that have differing sequences of multidimensional poverty. For 

example, one group might include non-poor people who ‗fell‘ into multidimensional 

poverty, a second might include multidimensionally poor people who ‗rose‘ out of 

poverty, a third might contain those who were poor in all periods, and a fourth might 

contain those who ‗churned‘ in and out of poverty across periods. Naturally the number 

of ‗dynamic subgroups‘ depends upon the sample design, the number of waves of data 

and the precise definition of each group. 

9.4.1 Chronic Poverty Measurement Using Panel Data 

Multiple approaches to measuring chronic poverty in one dimension exist, many of 

which have implications for the measurement of chronic multidimensional poverty.21 

Alongside important qualitative work, multiple methodologies for measuring chronic 

multidimensional poverty have also been proposed. 22  This section combines the AF 

                                                 

21 This section draws upon Alkire, Apablaza, Chakravarty, and Yalonetzky (2014). See also McKay and 
Lawson (2003), Dercon and Shapiro (2007), Foster (2009), Foster and Santos (2013), Jalan and Ravallion 
(1998), Calvo and Dercon (2013), Hoy and Zheng (2011), Gradín, Del Rio, and Canto (2011), and  Bossert, 
Chakravarty, and D‘Ambrosio (2012). 
 22Hulme and Shepherd (2003), Chakravarty and D‘Ambrosio (2006), Calvo (2008), Addison, Hulme, and 
Kanbur (2009), Baluch and Masset (2003), Bossert, Ceriani, Chakravarty, and D‘Ambrosio (2012), 
Nicholas and Ray (2011), Nicholas, Ray and Sinha (2013), and Porter and Quinn (2013). 
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methodology with the counting-based approach to chronic poverty measurement 

proposed in Foster (2009), which has a dual-cutoff identification structure and 

aggregation method that are very similar to the AF method. Foster (2009) provides a 

methodology for measuring unidimensional chronic poverty in which each time period 

𝑡is equally weighted for all a𝑡 = 1, … , 𝑇. An 𝑛 × 𝑇 matrix is constructed in which each 

entry takes a value of one if person 𝑖 is identified as poor in period 𝑡and a value of 0 

otherwise. A 𝑛-dimensional ‗count‘ vector is constructed in which each entry shows the 

number of periods in which person 𝑖was poor. A second time cutoff𝜏 is applied such 

that each person is identified as chronically poor if he or she has been poor in 𝜏 or more 

periods. Associated FGT indices and partial indices are then constructed from the 

relevant censored matrices. 

9.4.1.1 Order of Aggregation 

This combined chronic multidimensional poverty measure applies three sets of cutoffs: 

deprivation cutoffs 𝑧𝑗 , a multidimensional poverty cutoff 𝑘, and a duration cutoff 𝜏. It is 

possible to analyse multidimensional poverty using panel data by combining the AF 

methodology and the Foster (2009) chronic poverty methods following two different 

orders of aggregation, which we call chronic deprivation or chronic poverty. These 

alternatives effectively interchange the order in which the poverty and duration cutoffs 

are applied.  In both cases, we first apply a fixed set of deprivation cutoffs to the 

achievement matrix in each period. 

In the chronic deprivation option (𝜏  before 𝑘 ), we first consider the duration of 

deprivation in each indicator for each person and then compute a multidimensional 

poverty measure which summarizes only those deprivations that have been experienced 

by the same person across 𝜏or more periods. This approach aggregates all ‗chronic‘ 

deprivations into a multidimensional poverty index, regardless of the period in which 

those deprivations were experienced. This approach would provide complementary 

information that could enrich analyses of multidimensional poverty, but cannot be 

broken down by time period, nor does it show whether the deprivations were 

experienced simultaneously (Alkire, Apablaza, Chakravarty, and Yalonetzky 2014). 

In the chronic multidimensional poverty option (𝑘 before 𝜏), we first identify each 

person as multidimensionally poor or non-poor in each period using the poverty cutoff𝑘. 

We then count the periods in which each person experienced multidimensional poverty. 
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We identify as chronically multidimensionally poor those persons who have experienced 

multidimensional poverty in 𝜏 or more periods. 

9.4.1.2 Deprivation matrices 

We observe achievements across 𝑑 dimensions for a set of 𝑛 individuals at 𝑇 different 

time points. Let 𝑥𝑖𝑗
𝑡  stand for the achievement in attribute 𝑗  of person 𝑖  in period 𝑡 , 

where 𝑥𝑖𝑗
𝑡 ≥ 0 ∀𝑖, 𝑗, 𝑡.  Let 𝑋𝑡  denote a 𝑛 × 𝑑  matrix whose elements reflect the 

dimensional achievements of the population in period 𝑡. The deprivation cutoff vector 𝑧𝑗  

is fixed across periods. As before, a person is deprived with respect to deprivation 𝑗 in 

periods 𝑡if 𝑥𝑖𝑗
𝑡 < 𝑧𝑗  and non-deprived otherwise. By applying the deprivation cutoffs to 

the achievement matrix for each period, we can construct the period-specific deprivation 

matrices 𝑔𝑖𝑗
0,𝑡 . For simplicity, this section uses the non-normalized or numbered weights 

notation across dimensions, such that  𝑤𝑗 = 𝑑.𝑑
𝑗=1  Time periods are equally weighted. 

When achievement data are cardinal we can also construct normalized gap matrices 𝑔𝑖𝑗
1,𝑡  

and squared gap matrices 𝑔𝑖𝑗
2,𝑡  or more generally, powered matrices of normalized 

deprivation gaps 𝑔𝑖𝑗
𝛼 ,𝑡  where 𝛼 ≥ 0. In a similar manner as previously, we generate the 𝑛-

dimensional 𝑐𝑖𝑡  column vector, which reflects the weighted sum of deprivations person 𝑖 
experiences in periods 𝑡. 

9.4.1.3 Identification 

To identify who is chronically multidimensionally poor we first construct an 

identification matrix. The same matrix can be used to identify the transient poor in each 

period and to create subgroups of those who exhibit distinct patterns of 

multidimensional poverty (for analysis of poverty transitions). 

Identification Matrix 

Let 𝑄 𝑘  be an 𝑛 × 𝑇 identification matrix whose typical element 𝑄𝑖𝑡(𝑘) is one if person 

𝑖 is identified as multidimensionally poor in period 𝑡 using the AF methodology, that is, 

using a poverty cutoff 𝑘, which is fixed across periods, and 0 otherwise.  

The typical column 𝑄⋅𝑡(𝑘) reflects the identification status 𝜌𝑖
𝑡 𝑘  for the 𝑖 th person in 

period 𝑡, whereas the typical row 𝑄𝑖⋅ 𝑘  displays the periods in which person 𝑖 has been 
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identified as multidimensionally poor (signified by an entry of 1) or non-poor (0). Thus 

we might equivalently consider each column of 𝑄(𝑘) to be an identification column 

vector for period 𝑡such that 𝜌𝑖
𝑡 𝑘 = 1, if and only if person 𝑖is multidimensionally poor 

in period 𝑡 according to the deprivation cutoffs 𝑧𝑗 , weights 𝑤𝑗 , and poverty cutoff 𝑘 ;  

and 𝜌𝑖
𝑡 𝑘 = 0 otherwise. 

Episodes of Poverty Count Vector 𝒆𝒊  
From the 𝑄(𝑘) matrix we construct the 𝑛-dimensional column vector 𝑒(𝑘)whose 𝑖 th 

element 𝑒𝑖(𝑘)=  𝑄𝑖𝑡 𝑘  𝑇
𝑡=1 sums the elements of the corresponding row vector of 

𝑄(𝑘) and provides the total number of periods in which person 𝑖 is poor, or the total 

episodes of poverty, as identified by poverty cutoff 𝑘. Naturally, 0 ≤ 𝑒𝑖 𝑘 ≤ 𝑇, that is, 

each person may have from 0 episodes of poverty to 𝑇 episodes, the latter indicating that 

a person was poor in each of the 𝑡 periods. 

Chronic Multidimensional Poverty: Identification and Censoring 

We apply the duration cutoff 𝜏 where 0 < 𝜏 ≤ 𝑇 to the 𝑒𝑖(𝑘) vector in order identify 

the status of each person as chronically multidimensionally poor or not. We identify a 

person to be chronically multidimensionally poor if 𝑒𝑖(𝑘) ≥ 𝜏 . That is, if they have 

experienced 𝜏 or more periods in multidimensional poverty. A person is considered non-

chronically poor if 0 ≤ 𝑒𝑖(𝑘) < 𝜏. We doubly censor the 𝑒𝑖(𝑘) vector such that it takes 

the value of 0 (non-chronically poor) if 0 ≤ 𝑒𝑖(𝑘) < 𝜏  and takes the value of 𝑒𝑖(𝑘) 

otherwise. The notation 𝑒𝑖(𝑘, 𝜏) indicates the censored vector of poverty episodes—just 

as the notation 𝑐𝑖(𝑘) indicated the censored deprivation count vector. Positive entries 

reflect the number of periods in which chronically poor people experienced poverty; 

entries of 0 mean that the person is not identified as chronically poor. 

Among the non-chronically poor, we could (as we will elaborate) identify two subgroups: 

the non-poor and the transient poor. A person is considered transiently poor if 0 <
𝑒𝑖(𝑘) < 𝜏. And naturally a person for whom 𝑒𝑖 = 0, that is, who is non-poor in all 

periods, is considered non-poor. 

An alternative but useful notation for the identification of chronic multidimensional 

poverty uses the identification function: we apply the identification function 𝜌(𝜏) to 

censor the 𝑄(𝑘)  matrix and the 𝑒𝑖(𝑘)vector. The doubly censored 𝑄 matrix reflects 
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solely those periods in poverty that are experienced by the chronically poor (censoring all 

periods of transient poverty) and is denoted by 𝑄(𝑘, 𝜏). After censoring, the typical 

element 𝑒𝑖(𝑘, 𝜏) is defined by 𝜌𝑖 𝜏 = 𝕀(𝑒𝑖(𝑘) ≥ 𝜏). The entry takes a value of 𝑒𝑖(𝑘) if 

person 𝑖 is chronically multidimensionally poor and 0 otherwise.  

Censored (𝒌, 𝝉) Deprivation Matrices and Count Vector 

To identify the censored headcounts, as well as the dimensional composition of poverty 

in each period, we censor the 𝑇 sets of 𝑛 × 𝑑 deprivation matrices by applying the twin 

identification functions 𝜌𝑡 𝑘  and 𝜌(𝜏). We denote the censored matrices by 𝑔0,𝑡(𝑘, 𝜏) 

and the censored deprivation count vectors for each period  𝑐𝑖𝑡(𝑘, 𝜏). 

Deprivation Duration Matrix 

Finally, to summarize the overall dimensional deprivations of the poor, as well as the 

duration of these deprivations, it will be useful to create a duration matrix based on the 

censored deprivation matrices 𝑔0(𝑘, 𝜏). Let 𝐿 be an 𝑛 × 𝑑 matrix whose typical element 

𝐿𝑖𝑗  provides the number of periods in which is chronically poor and is deprived in 

dimension 𝑗 . Note that 0 ≤ 𝐿𝑖𝑗 ≤ 𝑇.  We can use the duration matrix to obtain the 

deprivation-specific duration indices, which show the percentage of periods in which, on 

average, poor people were deprived in each indicator. 

9.4.1.4 Aggregation 

The measure of chronic multidimensional poverty when some data are ordinal may be 

written as follows: 

 
𝑀0𝐶 𝑋; 𝑧 = 𝐻𝐶 × 𝐴𝐶 × 𝐷𝐶 = 1

𝑛𝑑𝑇   𝑤𝑗𝑔𝑖𝑗
0,𝑡(𝑘, 𝜏)

𝑇

𝑡=1

𝑑

𝑗=1

𝑛

𝑖=1
. (9.22) 

Thus the Adjusted Headcount Ratio of chronic multidimensional poverty 𝑀0
𝐶 is the mean 

of the set of 𝑇  deprivation matrices (𝑔0,𝑡(𝑘, 𝜏)) that have been censored of all 

deprivations of persons who are not chronically multidimensionally poor.  Alternative 

notation for this measure can be found in Alkire, Apablaza, Chakravarty, and Yalonetzky 

(2014). 

When data are cardinal, the 𝑀𝛼𝐶  class of measures are, like the AF class, the means of the 

respective powered matrices of normalized gaps. 
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𝑀𝛼𝐶 𝑋; 𝑧 = 1

𝑛𝑑𝑇   𝑤𝑗𝑔𝑖𝑗
𝛼 (𝑘, 𝜏)

𝑇

𝑡=1

𝑑

𝑗=1

𝑛

𝑖=1
. (9.23) 

9.4.2 Properties 

For chronic multidimensional poverty, as for multidimensional poverty, the specification 

of axioms is, in some cases, a joint restriction on the (triple-cutoff) identification and 

aggregation strategies and, hence, on the overall poverty methodology. The properties 

are now defined with respect to the chronically multidimensionally poor population. The 

class of measures present respects the key properties that were highlighted as providing 

policy relevance and practicality to the AF measures, such as subgroup consistency and 

decomposability, dimensional monotonicity, dimensional breakdown, and ordinality. In 

addition, this class of measures satisfies a form of time monotonicity as highlighted in 

Foster (2009) in the unidimensional case. The intuition is that if a person who is 

chronically poor becomes poor in an additional period, poverty rises. 

A full definition of the properties that this chronic multidimensional poverty measure 

fulfils is provided in Alkire, Apablaza, Chakravarty, and Yalonetzky (2014). The 

methodology of multidimensional chronic poverty measurement fulfils the appropriately 

stated properties of anonymity, time anonymity, population replication invariance, 

chronic poverty focus, time focus, chronic normalization, chronic dimensional 

monotonicity, chronic weak monotonicity, time monotonicity, chronic monotonicity in 

thresholds, monotonicity in multidimensional poverty identifier, chronic duration 

monotonicity, chronic weak transfer, non-increasing chronic poverty under association-

decreasing switch, and additive subgroup decomposability for all 𝛼 ≥ 0 . The class of 

measures also satisfies chronic strong monotonicity for 𝛼 > 0  and chronic strong 

transfer when 𝛼 ≥ 1. 

9.4.3 Consistent Partial Indices 

Like 𝑀0 , the chronic multidimensional poverty measure 𝑀0
𝐶 is the product of intuitive 

partial indices that convey meaningful information on different features of a society‘s 

experience of chronic multidimensional poverty. In particular, 𝑀0
𝐶 𝑋; 𝑧 = 𝐻𝐶 × 𝐴𝐶 ×

𝐷𝐶  where: 
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x 𝐻𝐶 is the headcount ratio of chronic multidimensional poverty—the 
percentage of the population who are chronically multidimensionally 
poor according to 𝑘 and 𝜏. 

x 𝐴𝐶 is the average intensity of poverty among the chronically 
multidimensionally poor—the average share of weighted deprivations 
that chronically poor people experience in those periods in which they are 
multidimensionally poor. 

x 𝐷𝐶 reflects the average duration of poverty among the chronically poor 
— the average share of 𝑇  periods in which they experience 
multidimensional poverty. 

These partial indices can also be calculated directly. In particular, 

 
𝐻𝐶 = 1

𝑛 𝜌𝑖 𝑘; 𝜏 =  𝑞
𝐶

𝑛

𝑛

𝑖=1
. (9.24) 

That is, the headcount ratio of chronic multidimensional poverty is the number of 

people who have been identified as chronically multidimensionally poor divided by the 

total population. We denote the number of chronically multidimensionally poor people 

by 𝑞𝐶 . 

The intensity of chronic multidimensional poverty is the sum of the weighted deprivation 

scores of all poor people over all time periods, divided by the number of dimensions 

times the total number of people who are poor in each period summed across periods. 

Note that 𝑘𝑑 ≤ 𝐴𝐶 ≤ 1. 

 
𝐴𝐶 =   𝑐𝑖𝑡(𝑘, 𝜏)𝑇𝑡=1

𝑛
𝑖=1

𝑑 ×   Q(𝑘, 𝜏)𝑇
𝑡=1

𝑛
𝑖=1

. (9.25) 

The average duration of chronic multidimensional poverty—the percentage of periods 

on average in which the chronically person was poor—can be easily assessed using the 

𝑒𝑖(𝑘, 𝜏) vector. 

 𝐷𝐶 =  𝑒𝑖𝑛
𝑖=1 (𝑘, 𝜏)
𝑞𝐶 × 𝑇 . (9.26) 

The duration is the sum of the total number of periods in which the chronically poor 

experience multidimensional poverty, divided by the number of periods and the number 

of chronically poor. Note that 𝜏𝑇 ≤ 𝐷𝐶 ≤ 1.  Box 9.2 illustrates these with a simple 

example. 
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Box 9.2 Computing Incidence and Duration of Chronic Poverty 

Consider three people and four periods, with 𝜏= 2. 

Person 1 is multidimensionally poor in period 1 
Person 2 is multidimensionally poor in periods 2, 3, and 4 
Person 3 is multidimensionally poor in periods 1, 2, 3, and 4 
 

Two people are chronically poor because they experience multidimensional poverty in 𝜏= 2 or 
more periods. So the percentage of people identified as chronically poor 𝐻𝐶  is 67%. 

In this case, the vector 𝑒=(0,3,4); 𝑞𝐶 = 2 and our duration index is(3+4)
2×4 = 7

8 = 87.5%. That is, 
on average, chronically poor persons are poor during 87.5% of the time periods. 

9.4.3.1 Dimensional Indices 

For chronic multidimensional poverty, it is possible and useful to generate the standard 

dimensional indicators for each period: the censored headcount and percentage 

contribution. It is also possible and useful to generate the period-specific Adjusted 

Headcount Ratio (𝑀0), headcount ratio (𝐻), and intensity (𝐴) figures, which are different 

from, but can be consistently related to, the chronic poverty headcount and intensity 

values presented in 9.4.3. Finally, and of tremendous use, it is possible to present the 

average duration of deprivation in each dimension and to relate this directly to the 

overall duration of chronic poverty. Box 9.3 presents the intuition of this set of 

consistent indices; for their precise definition see Alkire, Apablaza, Chakravarty, and 

Yalonetzky (2014). 
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Box 9.3 Computing Incidence and Duration of Chronic Poverty 

Cross-period indices reflecting chronic poverty: 

𝑀0𝐶 : Adjusted Headcount Ratio of chronic multidimensional poverty 
𝐻𝐶 : Headcount ratio, showing the percentage of the population who are chronically poor 
𝐴𝐶 : Intensity, showing the average percentage of deprivations experienced by the chronically 

multidimensionally poor in those periods in which they are poor 
𝐷𝐶: Average duration of chronic poverty, expressed as a percentage of time periods 
ℎ𝑗𝐶(𝑘, 𝜏): Average censored headcount of dimension 𝑗 among the chronically poor in all 

periods in which they are poor and are deprived in dimension 𝑗 
𝐷𝑗 : Average duration of deprivation in dimension 𝑗 among the chronically poor, expressed as 

a percentage of time periods 
𝜙𝑗

𝐶 𝑘, 𝜏 : Percentage contribution of dimension 𝑗 to the deprivations of the chronically poor.  
 

Single-period indices reflecting the profiles of the chronic poor in that particular period of 
poverty: 

𝐻𝑡 : Headcount ratio, showing the percentage of the population who are chronically poor in 
period 𝑡 

𝐴𝑡 : Intensity, showing the average percentage of deprivations experienced by the chronically 
multidimensionally poor in period 𝑡 

ℎ𝑗𝑡(𝑘, 𝜏): Censored headcount of dimension 𝑗 among the chronically poor in period 𝑡 
𝜙𝑗

𝑡 𝑘, 𝜏 : Percentage contribution of dimension 𝑗 to the deprivations of the chronically poor 
in period 𝑡. 

Cross-period averages of the unidimensional indices can also be constructed, such as 𝐻 ,𝐴  and 
ℎ 𝑗𝑡(𝑘, 𝜏) and analysed in conjunction with the relevant duration measure. 

9.4.3.2 Censored Headcount Ratios 

The censored headcount ratios for each period 𝑡 are constructed as the mean of the 

dimensional column vector for each period and represent the proportion of people who 

are chronically poor in time period 𝑡 and are deprived in dimension 𝑗: 

 ℎ𝑗𝑡 𝑘, 𝜏 = 𝜇  𝑔𝑗
0,𝑡 𝑘, 𝜏  . (9.27) 

We can also describe the average censored headcount ratios of chronic multidimensional 

poverty across 𝑇  periods in each dimension as simply the mean of the censored 

headcounts in each period: 

 ℎ𝑗𝐶 𝑘, 𝜏 = 1
𝑇 ℎ𝑗𝑡 𝑘, 𝜏 

𝑇

𝑡=1
. (9.28) 

The Adjusted Headcount Ratio of chronic multidimensional poverty across all periods is 

simply the mean of the average weighted censored headcount ratios: 
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 𝑀0𝐶 = 1
𝑑 𝑤𝑗ℎ𝑗

𝐶(𝑘, 𝜏)
𝑑

𝑗=1
= 1

𝑇𝑑  𝑤𝑗ℎ𝑗
𝑡𝑇

𝑡=1

𝑑

𝑗=1
 𝑘, 𝜏 . (9.29) 

9.4.3.3 Percentage Contributions of Dimension 

The percentage contributions show the (weighted) composition of chronic 

multidimensional poverty in each period and across periods. 

We may seek an overview of the dimensional composition of poverty across all periods. 

The total percentage contribution of each dimension to chronic poverty across all 

periods is given by 

 
𝜙𝑗

𝐶 𝑘, 𝜏 =  ℎ𝑗
𝐶(𝑘, 𝜏)

𝑑 × 𝑀0
𝐶 . (9.30) 

We may also be interested in analysing the percentage contributions of each dimension 

across various periods and thus in comparing the percentage contributions of dimensions 

across periods. The total percentage contribution in period 𝑡 is 

 
𝜙𝑗

𝑡 𝑘, 𝜏 =  ℎ𝑗
𝑡(𝑘, 𝜏)

𝑑 × 𝑀0
𝑡 . (9.31) 

9.4.3.4 Censored Dimensional Duration 

We are also able to construct a new set of statistics that provide more detail regarding the 

duration of dimensional deprivations among the chronically poor. We use the  𝑛 ×
𝑑 deprivation duration matrix 𝐿, constructed in 9.4.1.3, in which each entry reflects the 

number of periods in which person 𝑖 was chronically poor (by 𝑘 and 𝜏) and was deprived 

in dimension 𝑗. Recall that for the chronically poor, 0 ≤ 𝐿𝑖𝑗 ≤ 𝑇 in each dimension. The 

value of 𝐿𝑖𝑗  is, naturally, 0 for non-poor persons in all dimensions. Thus the matrix will 

have a positive entry for 𝑞𝐶  persons and an entry of 0 for all persons who were never 

chronically poor. 

For each dimension we can then define a dimensional duration index for dimension 𝑗 as 

follows 

 𝐷𝑗 = 1
𝑞𝐶 × 𝑇 𝐿𝑖𝑗

𝑛

𝑖=1
. (9.32) 
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The value of 𝐷𝑗  provides the percentage of periods in which the chronically poor were 

deprived in dimension 𝑗 on average. 

The relationship between the mean across all 𝐷𝑗  and the chronic multidimensional 

poverty figure provided earlier is also elementary 

 𝑀0𝐶 = 𝐻𝐶  𝑤𝑗𝐷𝑗
𝑑

𝑗=1
, (9.33) 

and 

  𝑤𝑗𝐷𝑗
𝑑

𝑗=1
= 𝐴𝐶 × 𝐷𝐶 . (9.34) 

9.4.3.5 Period-Specific Partial Indices 

From the 𝑛 × 𝑇 censored identification matrix 𝑄 𝑘, 𝜏 , we can also compute the period-

specific headcounts of chronic multidimensional poverty. The headcount 𝐻𝑡  for period 𝑡 

is the mean of the column vector of 𝑄(𝑘, 𝜏) for period 𝑡. The average headcount across 

all periods is𝐻 = (1 𝑇 )  𝐻𝑡𝑇
𝑡=1 . The average headcount across all periods and the 

chronic multidimensional poverty headcount are related by the average duration of 

poverty thus: 

 
𝐻𝐶 = 𝐻 

𝐷𝐶 . (9.35) 

Similarly, 

 
𝐴𝐶 = 𝐴 

𝐷𝐶 , (9.36) 

and 

 
ℎ𝑗𝐶 𝑘, 𝜏 = ℎ 𝑗  𝑘, 𝜏 

𝐷𝑗
. (9.37) 

9.4.3.6 Illustration using Chilean CASEN 

We present an example in Table 9.7 using three variables: schooling, overcrowding, and 

income in Chile‘s CASEN (Encuesta de Caracterización Socioeconómica Nacional) 

dataset for three periods: 1996, 2001, and 2006. The table reports the Adjusted 

Headcount Ratio of chronic multidimensional poverty (𝑀0
𝐶) and its three partial indices: 
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the headcount ratio (𝐻𝐶), the average chronic intensity (𝐴𝐶) and the average duration 

(𝐷𝐶 ) for three poverty cutoffs 𝑘 = 1/3, 2/3, 1  and three different duration cutoffs 

𝑡 = 1/3, 2/3, 1. All dimensions and periods are equally weighted for both identification 

and aggregation. When 𝑘 = 1/3 and 𝜏 = 1/3, the identification follows a double union 

approach. In this case, 49% of people are identified as chronically multidimensionally 

poor. However, a double-union approach does not appear to capture people who are 

either chronically or multidimensionally poor in any meaningful sense.  

Table 9.7 Cardinal Illustration with Relevant Values of 𝒌 and 𝝉 

 𝒌 = 𝟏/𝟑   𝒌 = 𝟐/𝟑   𝒌 = 𝟏 

  𝝉 =
𝟏/𝟑  

𝝉 =
𝟐/𝟑  

𝝉 =
𝟏  

 𝝉 =
𝟏/𝟑  

𝝉 =
𝟐/𝟑  

𝝉
= 𝟏 

 𝝉 =
𝟏/𝟑  

𝝉 =
𝟐/𝟑  𝝉 = 𝟏 

𝑴𝟎
𝒄  0.124 0.095 0.049  0.053 0.028 0.007  0.008 0.003 0.000 

𝑯𝒄 0.49 0.27 0.10  0.16 0.05 0.01  0.02% 0.005 0.000
5 

𝑫𝒄 0.58 0.79 1.00  0.46 0.72 1.00  0.43 70.01% 1.00 
 𝑨𝒄 0.43 0.45 0.48  0.70 0.72 0.75  1.00 1.00 1.00 

 
We thus consider the cutoffs where 𝑘 = 𝜏 = 2/3. In this situation, 5% of people are 

chronically multidimensionally poor. The average chronic intensity is 72%, meaning that 

people experience deprivations in 72% of dimensions in the periods in which they are 

poor. The average chronic duration is 72% also, meaning that the average poor person is 

deprived in 72% of the three periods. The overall chronic Adjusted Headcount Ratio of 

0.028 shows that Chile‘s population experiences only 2.8% of the deprivations it could 

possibly experience. All possible deprivations occur if all people are multidimensionally 

poor in all dimensions, and in all periods. 

9.4.4 Poverty Transitions Using Panel Data 

Using the identification matrix and the associated doubly censored deprivation matrices 

that have been constructed above, it is also possible to analyse poverty transitions. 

Comparisons can be undertaken – for example, between subgroups experiencing 

different dynamic patterns of multidimensional poverty – to ascertain different policy 

sequences or entry points that might have greater efficacy in eradicating 

multidimensional poverty. This section very briefly describes the construction of 

dynamic subgroups and some of the descriptive analyses that can be undertaken. 
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9.4.4.1 Constructing Dynamic Subgroups 

The chronic multidimensional poverty measures constructed previously respect the 

property of subgroup consistency and subgroup decomposability; thus, they can be 

decomposed by any population subgroup for which the data are arguably representative. 

In addition, it can be particularly useful to describe multidimensional poverty for what 

we earlier called ‗dynamic subgroups‘ – the definition of which can be extended when 

panel data cover more than two periods. 

By ‗dynamic subgroups‘, we mean population subgroups that experience different 

patterns of multidimensional poverty over time. These include the groups mentioned in 

section 9.3.1 who exited poverty (1,0), entered poverty (0,1), or were in ongoing poverty 

(1,1). The possible patterns will vary according to the number of waves in the sample as 

well as the observed patterns in the dataset. With three waves, there are four basic 

groups: falling—people who were non-poor and became multidimensionally poor; 

rising—people who were multidimensionally poor and exited poverty; churning—

people who both enter and exit multidimensional poverty in different periods, and long-

term—people who remain multidimensionally poor continuously.23 

The dynamic subgroups are formed by considering the 𝑛 × 𝑇 identification matrix 𝑄(𝑘). 

Note that we use the matrix that is censored by the poverty cutoff 𝑘 but we do not, in 

this section on poverty transitions, apply the duration cutoff.  Consider a matrix of four 

persons and three periods in which each person experiences one of the four categories 

mentioned above. Recall that an entry of one indicates that person 𝑖  is 

multidimensionally poor in period 𝑡 and a 0 indicates they are non-poor. 

 Falling:  0  0  1  (and  0  1  1) 
 Rising:  1  0  0  (and   1  1  0) 
 Churning:  1  0  1  (and  0  1  0) 
 Long-term:  1  1  1 

For more than three periods, additional categories can be formed. Note that the 

categories can and must be mutually exhaustive. Each person who is multidimensionally 

poor in any period (whether chronically or transiently poor) can be categorized into one 

of these four groups. 

                                                 

23 See Hulme, Moore and Shepherd (2001), Hulme and Shepherd (2003), and Narayan and Petesch (2007). 
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9.4.4.2 Descriptive Analyses 

Having decomposed the population into the non-poor and these (or additional) dynamic 

subgroups of the population, it can be useful to provide the standard partial indices for 

each subgroup, both per period and across all three periods: 

x 𝑀0, 𝐻, and 𝐴 (and standard errors); 
x Percentage composition of poverty by dimension (often revealing) and censored 

headcounts; 
x Intensity profiles across the poor (or inequality among the poor—see section 

9.1). 

It can also be useful to provide details regarding the sequences of evolution. For 

example, from the 𝑄(𝑘) matrix, isolate the subgroup of the poor who ‗fell into‘ poverty 

between period 1 and period 2 (that is, whose entries are 0,1 for the respective periods 𝑡1 

and 𝑡2 .). Compare their evolution with those who stayed poor (1,1) and those who stayed 

non-poor (0,0), in the following ways: 

x At the individual level, compare the raw headcount in period 1 with the raw 
headcount in period 2. 

x Identify the dimensions in which deprivations were (a) experienced in both 
periods, (b) only experienced in period 1, and (c) only experienced in period 2. 

x Summarize the results, if relevant and legitimate, further decomposing the 
population into relevant subgroups whose compositional changes follow 
different patterns. 

x Repeat for each adjacent pair of periods. Analyse whether the patterns are stable 
or differ across different adjacent periods. 
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