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Abstract 

A number of multidimensional poverty measures have recently been proposed, within counting 
approach framework, respecting the ordinal nature of dimensions. Besides ensuring a reduction in 
poverty, however, it is important to monitor distributional changes to ensure that poverty reduction has 
been inclusive in reaching the poorest. Distributional issues are typically captured by adjusting a poverty 
measure to be sensitive to inequality among the poor. This approach however has certain practical 
limitations. It conflicts, for example, with some policy-relevant measurement features, such as the ability 
to decompose a measure into dimensions post-identification, and does not create an appropriate 
framework for assessing disparity in poverty across population subgroups. In this paper, we propose and 
justify the use of a separate decomposable inequality measure – a positive multiple of „variance‟ – to 
capture the distribution of deprivations among the poor and to assess disparity in poverty across 
population subgroups. We demonstrate the applicability of our approach through two contrasting inter-
temporal illustrations using Demographic Health Survey (DHS) datasets for Haiti and India. 
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1. Introduction 

The progress of a society remains incomplete without improving the conditions of those stricken with 

poverty. It is commonly agreed that there are three important aspects in poverty measurement – 

incidence, intensity and inequality – that should receive consideration because each may differently 

influence policy incentives.1 Measures that only capture incidence, such as the World Bank‟s $1.25/day 

poverty headcount ratio, create incentives for a policy maker, who is keen on showing a large reduction 

in overall poverty, to improve the lives of the least poor as this will have the same poverty impact at a 

lower cost than addressing those experiencing the severest poverty. On the other hand, measures that 

capture both incidence and intensity, such as the Multidimensional Poverty Index (MPI) published in the 

United Nation Development Programme‟s (UNDP) Human Development Reports, create incentives for a 

policy maker to address the poorest as well as the least poor, but may not provide over-riding incentives 

to prioritize the poorest. Such a priority can, however, be provided by monitoring the distribution of 

deprivations among the poor, which would ensure that the fruits of poverty alleviation are shared by all 

and that the poorest, whether as individuals or as groups, are not left behind. 

The classical approach to incorporate distributional sensitivity into poverty measurement, following the 

seminal work of Sen (1976), has been to adjust a poverty measure to make it sensitive to the distribution 

across degrees of deprivations among the poor. We will refer to this approach as the assimilated approach 

to poverty measurement. A number of poverty measures using the assimilated approach have been 

developed in the context of unidimensional poverty measurement as well as multidimensional poverty 

measurement following a growing consensus that poverty is not just a reflection of deprivation in any 

single dimension.2 We classify the multidimensional approaches into two types. One constructs measures 

under the assumption that dimensions are cardinal, whose wider applicability is hindered by the fact that 

most dimensions in practice are ordinal or binary. The other takes into consideration this practical nature 

– ordinal and dichotomous – of dimensions while constructing poverty measures. Following the 

extensive literature (Atkinson 2003), we refer to this approach as the counting approach, where the poor 

are identified by counting their number (or weighted sum) of deprivations in different dimensions. In 

                                                 

1 Jenkins and Lambert (1997) refer to these three aspects as „three I‟s of poverty‟. 
2 Single dimensional measures include Thon (1979), Clark, Hemming and Ulph (1981), Chakravarty (1983), Foster, Greer and 

Thorbecke (1984), and Shorrocks (1995). Multidimensional measures include Chakravarty, Mukherjee and Ranade (1998), 
Tsui (2002), Bourguignon and Chakravarty (2003), Massoumi and Lugo (2008), Alkire and Foster (2011), Bossert, 
Chakravarty and D‟Ambrosio (2013), Jayaraj and Subramanian (2009), and Aaberge and Peluso (2012). 



Seth and Alkire  Pro-Poorest Poverty Reduction Assessment 

OPHI Working Paper 77  www.ophi.org.uk 2 

our paper, we focus on the multidimensional counting approach owing to its practicality and a number 

of recent applications. 3 

When dimensions are ordinal or dichotomous, the only way to capture inequality or distributional 

changes in the counting approach framework is by observing the distribution of the simultaneous 

deprivations that poor people suffer. More specifically, each person‟s deprivation profile is summarized 

in a cardinally meaningful deprivation score by obtaining a weighted sum of their deprivations. The 

distribution of such deprivation scores across the poor can be used to capture inequality among the 

poor. In order to incorporate distribution sensitivity, the assimilated approach has been adopted in the 

counting approach framework by Bossert, Chakravarty and D‟Ambrosio (2013), Jayaraj and 

Subramanian (2009), and Aaberge and Peluso (2012). 

The assimilated approach, however, suffers from certain limitations. First, measures based on the 

assimilated approach are useful for poverty comparisons across space and time, but the overall measure 

may become rather intricate to interpret and the underlying policy message may become obscure. 

Second, some assimilated measures are broken down into different partial indices – each separately 

capturing the incidence, intensity and inequality across the poor – in order to study their contribution to 

overall poverty. However, the relative importance assigned to them is seldom made transparent. Third, 

assimilated measures do not provide the appropriate framework for capturing disparity in poverty across 

population subgroups. An overall improvement in poverty may come with an improvement in the 

distribution among the poor or with a more uniform reduction in intensities across the poor, but, 

simultaneously, accompany a non-uniform improvement in poverty across different population 

subgroups. Monitoring uneven progress is important in order to avoid aggravating horizontal inequality 

(Stewart 2008). Finally, assimilated measures in a multidimensional framework necessarily compromise a 

crucial policy-relevant property – dimensional breakdown – that allows overall poverty to be expressed 

as a weighted sum of dimensional deprivations (Alkire and Foster 2013). This final shortcoming leads to 

an impasse because one must either choose a measure that respects the dimensional breakdown property 

or a measure that is sensitive to the distribution among the poor. 

In this paper, we depart from the assimilated approach and instead propose and justify the use of a 

separate inequality measure.4 A separate inequality measure only captures the distribution across the 

                                                 

3 A particular counting measure, the adjusted headcount ratio developed by Alkire and Foster (2011), has been applied by 
international organizations and country governments. The UNDP used it to introduce the Global MPI (Alkire and Santos 
2010), the Colombian and Mexican governments used it to create official poverty measures (Foster 2007; CONEVAL 
2011; Angulo, Diaz and Pardo 2011); the Bhutanese government adapted it to create the Gross National Happiness Index 
(Alkire, Ura, Wangdi and Zangmo 2012). 
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degree of deprivations adding valuable information besides any intuitive poverty measure. If a poverty 

alleviation program has reduced poverty by leaving the poorest behind, then even though the poverty 

measure would show a reduction in poverty, the inequality measure will reflect the deterioration in the 

distribution of deprivations among the poor. If the inequality measure is decomposable then its 

between-group component can provide valuable information by assessing whether changes in poverty 

have been uniform across population subgroups. Finally, our approach breaks the impasse by allowing 

one to capture the distribution across the degrees of deprivations through the inequality measure and at 

the same time allowing the use of a measure that respects dimensional breakdown. 

We justify the choice of our inequality measure through certain normative value judgments and some 

desirable properties. We show that the only inequality measure that serves our purpose is a positive 

multiple of „variance‟. The measure is additively decomposable, facilitating the study of disparity across 

subgroups. Given that variance is an absolute measure of inequality, it always reflects the same level of 

inequality whether the magnitudes of deprivation are computed by counting deprivations or by counting 

attainments. 

We support our methodological development with two inter-temporal illustrations using Demographic 

Health Survey (DHS) datasets of Haiti and India. In order to assess poverty, we use the MPI, which is a 

counting measure respecting the dimensional breakdown property. In Haiti, we find that between 2006 

and 2012 the MPI fell by 0.014 points per annum, which was accompanied by large and statistically 

significant reductions in incidence and intensity as well as inequality among the poor. Improvement was 

visible in the distribution across the degrees of deprivations among the poor within every sub-national 

region and disparity between sub-national MPIs also went down. A contrasting scene was visible in the 

case of India, where, although the pace of MPI reduction between 1999 and 2006 was half the pace of 

the MPI reduction in Haiti, reductions in both incidence and intensity were statistically significant. 

However, the reduction in inequality among the poor was modest and barely significant. Inequality 

among the poor within certain subgroups did not show any sign of improvement and disparity between 

sub-national MPIs went up. 

The rest of the paper is structured as follows. Section 2 presents the counting approach framework to 

measuring poverty. Section 3 reviews and critically evaluates the assimilated approach to poverty 

measurement and discusses how using a separate inequality measure provides valuable information. In 

                                                                                                                                                                    

4 Separate pie diagrams, in addition to MPIs, have been used to capture the distribution across deprivation scores among the 
poor (see Chapter 10.1, Alkire et al. 2015). The pie diagram provides a good visual depiction of a distribution, but its 
applicability is limited when the number of countries or sub-national regions under consideration is large. 
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Section 4, we propose and justify the inequality measure that is suitable for the purpose of the paper and 

present some policy-relevant decompositions. Supporting empirical illustrations are given in Section 5 

and Section 6 concludes. 

2. The Counting Approach to Poverty Measurement 

This section presents the counting approach framework, which is the mainstay of our paper. We begin 

by assuming that there is a hypothetical society containing 𝑛 ≥ 2 persons and their well-being is assessed 

by a fixed set of 𝑑 ≥ 2 dimensions.5 These 𝑑 dimensions may not contribute equally to the overall well-

being and so a relative weight 𝑤𝑗  is assigned to each dimension 𝑗 based on its value relative to other 

dimensions, such that 𝑤𝑗 > 0 and  𝑤𝑗𝑗 = 1. These 𝑑 weights are summarized by vector 𝑤. The 

achievement of each person 𝑖 in dimension 𝑗 is denoted by 𝑥𝑖𝑗 ∈ ℝ+ and the achievements of all 𝑛 

persons in 𝑑 dimensions are summarized by an achievement matrix 𝑋 ∈ ℝ+
𝑛×𝑑 . The set of all 

achievement matrices of size 𝑛 is denoted by 𝒳𝑛  and the set of all possible matrices of any size is 

denoted by 𝒳 =  𝒳𝑛𝑛 .  

2.1 Identification of Deprivations and of Poverty 

In the counting approach framework, first the deprivations are identified and the information on 

deprivations is used to identify the poor. In order to identify deprivations, each dimension 𝑗 is assigned a 

deprivation cutoff 𝑧𝑗 ∈ ℝ++. If 𝑥𝑖𝑗 < 𝑧𝑗 , the person is considered deprived in dimension 𝑗 or equivalently 

considered to have failed to attain the threshold in that dimension. On the other hand, if 𝑥𝑖𝑗 ≥ 𝑧𝑗 , then 

person 𝑖 is considered non-deprived in dimension 𝑗 or equivalently considered to have attained the 

threshold. The 𝑑 deprivation cutoffs are summarized by vector 𝑧 and the set of all possible deprivation 

cutoff vectors is denoted by 𝒛. Note that the poor are identified either by counting deprivations or 

equivalently by counting attainments. The identification by counting deprivations is a dual to the 

identification by counting attainments. We present notation for both alternatives as they are required in 

the subsequent analysis. 

                                                 

5 In many studies, the terms „dimensions‟ and „indicators‟ are used differently, where dimensions are assumed to be the pillars 
of well-being and each dimension is measured using one or more indicators. 
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Counting Deprivations 

For any 𝑋 ∈ 𝒳, each person 𝑖 is assigned a deprivation status value 𝑔𝑖𝑗 = 1 in dimension 𝑗 if 𝑥𝑖𝑗 < 𝑧𝑗  and 

𝑔𝑖𝑗 = 0 otherwise. The deprivation score of person 𝑖, 𝜋𝑖 , is obtained by the weighted sum of the 

deprivation status values, i.e., 𝜋𝑖 =  𝑤𝑗𝑔𝑖𝑗𝑗 . By definition, 𝜋𝑖 ∈  0,1  ∀𝑖 and 𝜋𝑖 > 𝜋𝑖′  implies that 

person 𝑖′ suffers a higher sum of deprivation(s) than person 𝑖. The deprivation scores of all 𝑛 persons in 

the society are summarized by vector 𝜋 = (𝜋1, … , 𝜋𝑛).6  

Identification of Poverty 

After the deprivation scores are obtained, any person 𝑖 is identified as poor if 𝜋𝑖 ≥ 𝑘 for any poverty 

cutoff 𝑘 ∈ (0,1].7 We define the identification function as 𝜌𝑖 𝑘 = 1 if 𝜋𝑖 ≥ 𝑘 and 𝜌𝑖 𝑘 = 0 

otherwise. The post-identification censored deprivation score of person 𝑖 is denoted by 𝑐𝑖 = 𝜋𝑖𝜌𝑖 𝑘  and the 

corresponding vector by 𝑐 = (𝑐1, … , 𝑐𝑛). Thus, 𝑐𝑖 = 𝜋𝑖  if 𝜋𝑖 ≥ 𝑘 and 𝑐𝑖 = 0, otherwise.8 We denote 

the number of poor after identification by 𝑞 and the set of poor by 𝑍. The share of poor population or 

the incidence is denoted by 𝐻 = 𝑞/𝑛. Without loss of generality, we assume that people are ordered by 

deprivation score from high to low such that 𝑐1 ≥ ⋯ ≥ 𝑐𝑛 . Thus, if 𝑞 > 0, then the first 𝑞 persons are 

identified as poor. We summarize the deprivation scores of the poor by 𝑎 containing 𝑞 elements such 

that 𝑎𝑖 = 𝑐𝑖  for all 𝑖 = 1, … , 𝑞. The average of all elements in 𝑎, is the average deprivation score among 

the poor or intensity, which is denoted by 𝐴 =   𝑎𝑖
𝑞
𝑖=1  /𝑞. 

Counting Attainments 

An alternative but equivalent approach that can be used to assess the extent of multiple deprivations is 

counting attainments, where each person 𝑖 is assigned an attainment status value 𝑔 𝑖𝑗 = 1 in dimension 𝑗 if 
𝑥𝑖𝑗 ≥ 𝑧𝑗  and 𝑔 𝑖𝑗 = 0 otherwise (see Alkire and Foster 2013). The attainment score of person 𝑖 can be 

obtained by 𝜋 𝑖 =  𝑤𝑗𝑔 𝑖𝑗𝑗  and the attainment scores of all persons are summarized by vector 𝜋 . In this 

case, the lower is the attainment score, the higher is the extent of deprivation. Note that by construction, 

for the same achievement matrix 𝑋 ∈ 𝒳, the same deprivation cutoff vector 𝑧 ∈ 𝒛 and the same weight 

                                                 

6 We use a slightly different notation than Alkire and Foster (2011) for denoting deprivation score vectors to simplify 
presentations. Alkire and Foster denote the deprivation score vector by 𝑐 and the corresponding censored vector by 𝑐(𝑘). 
We instead use 𝜋 to denote the deprivation score vector and  𝑐 to denote the corresponding censored vector. 

7 If 𝑘 = 1, then it is the intersection approach. If 𝑘 ∈ (0, min𝑗 {𝑤𝑗 }], it is the union approach. If min𝑗 {𝑤𝑗 } < 𝑘 < 1, it is the 
intermediate approach (Alkire and Foster 2011). 

8 Note that 𝑐 = 𝜋 when a union approach is used for identifying the poor. 
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vector 𝑤, we have 𝜋 𝑖 = 1 − 𝜋𝑖  ∀𝑖. Moreover, if the same poverty cutoff 𝑘 ∈ (0,1] is used such that any 

person 𝑖 is identified as poor whenever  𝜋 𝑖 ≤ (1 − 𝑘) and non-poor otherwise, then the same set of 

people 𝑍 are identified as poor. Thus, 𝜌𝑖 𝑘 = 1 if 𝜋 𝑖 ≤ (1 − 𝑘) and 𝜌𝑖 𝑘 = 0 otherwise. The share 

of poor population, as earlier, is denoted by 𝐻 = 𝑞/𝑛. The post-identification censored attainment score 𝑐 𝑖  
can be obtained as 𝑐 𝑖 = 𝜋 𝑖𝜌𝑖 𝑘  and the corresponding vector is denoted by 𝑐 . As in case of 

deprivations, it can be assumed that 𝑐 1 ≤ ⋯ ≤ 𝑐 𝑛 . The attainment score vector among the poor is 

denoted by 𝑎  containing 𝑞 elements such that 𝑎 𝑖 = 𝑐 𝑖  ∀𝑖 = 1, … , 𝑞. By definition, 𝑎 𝑖 = 1 − 𝑎𝑖  ∀𝑖 and 

𝐴 =   𝑎 𝑖𝑞
𝑖=1  /𝑞 = 1 −   𝑎𝑖

𝑞
𝑖=1  /𝑞 = 1 − 𝐴. 

2.2 Aggregation 

After identification in the counting approach framework, the information on the censored achievements 

is used for measuring the level of poverty in the society using a poverty index 𝑃 𝑋; 𝑧, 𝑘, 𝑤 , where 

𝑃 𝑋; 𝑧, 𝑘, 𝑤 = 0 represents the lowest level of poverty. For any 𝑋,𝑋′ ∈ 𝒳, 𝑃 𝑋′; 𝑧, 𝑘, 𝑤 >

𝑃 𝑋; 𝑧, 𝑘, 𝑤  implies that 𝑋′ has the higher level of poverty than 𝑋, irrespective of whether the 

identification is based on counting deprivations or counting attainments. In Table 1, we present different 

poverty measures that have been proposed in the counting approach framework. The measure proposed 

by Alkire and Foster (2011) applies an intermediate approach for identification. This intuitive measure 

can be presented as a product of incidence and intensity. Each of the other three poverty measures uses 

a union criterion for identification. Aaberge and Peluso‟s (2012) measure requires dimensions to be 

equally weighted. 

Table 1: Poverty Measures based on Counting Approaches 

Literature Poverty Measure Identification 
criterion and weights 

Alkire and Foster (2011)9 𝑃𝐴𝐹 = 𝑀0 = 1
𝑛  𝑐𝑖𝑛

𝑖=1 = 𝐻 × 𝐴  Intermediate 
Chakravarty and 
D‟Ambrosio (2006) 𝑃𝐶𝐷 = 1

𝑛  𝜋𝑖
𝛽𝑛

𝑖=1 ; with 𝛽 ≥ 1 Union 

Bossert, Chakravarty and 
D‟Ambrosio (2013) 𝑃𝐵𝐶𝐷 =  1

𝑛  𝜋𝑖
𝛽𝑛

𝑖=1  
1/𝛽

; with 𝛽 ≥ 1 Union 

Aaberge and Peluso 
(2012)10 

𝑃𝐴𝑃 = 𝑑 −  Γ   𝑝 𝑗𝑗 ′

𝑗=0   𝑑−1
𝑗 ′=0 ; Γ is increasing in its 

argument with Γ 0 = 0 and Γ 1 = 1, and 𝑝 𝑗  is the 
share of people simultaneously deprived in 𝑗 
dimensions  

Union and equal 
weight 

 

                                                 

9 Alkire and Foster (2011) propose an entire class of indices. Here by 𝑃𝐴𝐹  we refer to the particular index in their class – 
adjusted headcount ratio. 

10 For an extension of this approach, see Silber and Yalonetzky (2014). 
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2.3 Population Subgroups 

We introduce the following subgroup notation in order to facilitate the decomposition analysis. We 

assume that there are 𝑚 ≥ 2 mutually exclusive and collectively exhaustive population subgroups within 

the hypothetical society. Population subgroups may be geographic regions or social groups. The number 

of all persons and the number of poor persons in subgroup ℓ are denoted by 𝑛ℓ and 𝑞ℓ, respectively, 

∀ℓ = 1, … , 𝑚 such that  𝑛ℓ𝑚
ℓ=1 = 𝑛 and  𝑞ℓ𝑚

ℓ=1 = 𝑞. Vectors 𝑛 = (𝑛1, … , 𝑛𝑚 ) and 𝑞 = (𝑞1, … , 𝑞𝑚 ) 

summarize the subgroup population and subgroup poor population, respectively. The censored 

deprivation score vector and the deprivation score vector for the poor for subgroup ℓ are denoted by 𝑐ℓ 

and 𝑎ℓ, respectively. As earlier, without loss of generality, we assume that within each subgroup ℓ, 

𝑐𝑖
ℓ ≥ 𝑘 for all 𝑖 ≤ 𝑞ℓ if there is at least one poor person in the subgroup and 𝑐𝑖

ℓ = 0 for all 𝑖 > 𝑞ℓ. 

Relevant Operators 

Notation on the following mathematical relations and operators that we will be using subsequently is 

crucial. The mean of all elements in 𝑢 ∈ ℝ𝑑  is denoted by 𝜇(𝑢). For any 𝑢, 𝑣 ∈ ℝ𝑑 , operator ⋁ is the join 

of 𝑢 and 𝑣 such that 𝑢′ = (𝑢 ⋁ 𝑣) implying 𝑢𝑗
′ = max 𝑢𝑗 , 𝑣𝑗   ∀ 𝑗 and operator ⋀ is the meet of 𝑢 and 𝑣 

such that 𝑣′ = (𝑢 ⋀ 𝑣), implying 𝑣𝑗
′ = min 𝑢𝑗 , 𝑣𝑗   ∀ 𝑗. 

Two Useful Properties 

Poverty measures in the counting approach framework are required to satisfy certain desirable properties 

such as a set of invariance properties, dominance properties, subgroup properties and technical 

properties (see Chapter 2 of Alkire et al. forthcoming). In this section, we present two crucial properties 

that are central to our discussion in the next section. The first requires that the overall poverty measure 

can be expressed as a weighted sum of post-identification dimensional deprivations. This property allows 

one to see how different dimensions have contributed to overall poverty. The second property is related 

to distribution sensitivity among the poor, which requires the overall poverty measure to reflect any 

change in the distribution of deprivations among the poor. 

In order to state these properties formally, we need to introduce two concepts. One is the post-

identification dimensional deprivation of each dimension 𝑗, which we denoted by 𝑃𝑗  𝑥⋅𝑗 ; 𝑧, 𝑘, 𝑤 , where 

𝑥⋅𝑗  is the 𝑗th column of matrix 𝑋 summarizing the achievements of all persons in dimension 𝑗. Note that 

𝑃𝑗  not only depends on its own deprivation cutoff 𝑧𝑗  but also on 𝑤, 𝑧 and 𝑘 whenever a non-union 

identification criterion is used. The other concept is related to rearrangement of dimensional 

deprivations among the poor, which reflects inequality in joint deprivations among the poor. Suppose 
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for any 𝑋 ∈ 𝒳𝑛 , the censored deprivation status values of all 𝑛 persons in 𝑑 dimensions are summarized by 

the 𝑛 × 𝑑-dimensional matrix 𝑔(𝑘). Thus, the 𝑖𝑗th element of 𝑔(𝑘) is 𝑔𝑖𝑗 (𝑘) = 𝑔𝑖𝑗 × 𝜌𝑖 𝑘 . We denote 

the 𝑖th row of matrix 𝑔(𝑘) by 𝑔𝑖⋅. Suppose there exists another matrix 𝑔′(𝑘) corresponding to any 

𝑋′ ∈ 𝒳𝑛  with the same set of poor persons, yet 𝑔′(𝑘) ≠ 𝑔(𝑘), 𝑔′(𝑘) is not a permutation of 𝑔(𝑘), and 

for any 𝑖1 and 𝑖2, 𝑔𝑖1·
′ = (𝑔𝑖1·⋁ 𝑔𝑖2·), 𝑔𝑖2·

′ = (𝑔𝑖1· ⋀ 𝑔𝑖2·), and 𝑔𝑖⋅
′ = 𝑔𝑖⋅ ∀𝑖 ≠ 𝑖1, 𝑖2. A regressive 

dimensional rearrangement among the poor is stated to have taken place whenever 𝑋′ is obtained from 𝑋; 

whereas a progressive dimensional rearrangement among the poor is stated to have taken place whenever 𝑋 is 

obtained from 𝑋′.11 

We now state the two properties, dimensional breakdown and dimensional transfer, using the same terminology 

as in Alkire and Foster (2013). The dimensional breakdown property is the same as the factor 

decomposability property of Chakravarty, Mukherjee and Ranade (1998) for a union approach to 

identification. 

Dimensional breakdown: For any 𝑋 ∈ 𝒳, 𝑃 𝑋; 𝑧, 𝑘, 𝑤 =  𝑤𝑗
𝑑
𝑗=1 𝑃𝑗  𝑥⋅𝑗 ; 𝑧, 𝑘, 𝑤 . 

Dimensional transfer: For any 𝑋, 𝑋′ ∈ 𝒳𝑛 , if 𝑋′ is obtained from 𝑋 by a progressive dimensional 

rearrangement among the poor, then 𝑃 𝑋′; 𝑧, 𝑘, 𝑤 < 𝑃 𝑋; 𝑧, 𝑘, 𝑤 . 

Having introduced the counting approach framework, we now move on to discuss how distributional 

considerations are incorporated into counting poverty measurement. 

3. Capturing Distribution of Deprivations among the Poor 

The primary objective of any poverty alleviation program is to eradicate poverty. Poverty eradication 

may take years or even decades. Often a reduction in poverty is assessed by merely looking at the 

reductions in incidence and intensity, which ignores the distribution of deprivations among the poor 

(Sen 1976). For example, consider a society with the initial deprivation score vector 

𝜋 =  (0, 0.1, 0.3, 0.7, 1, 1). If 𝑘 = 0.3, then 𝐻(𝜋) = 4/6 and 𝐴(𝜋) = 0.75. Now suppose two 

alternative policies – Policy I and Policy II – lead to two different distributions of deprivation scores: 

𝜋𝐼 =  (0, 0.1, 0.1, 0.3, 0.9, 0.9) and 𝜋𝐼𝐼 =  (0, 0.1, 0.2, 0.5, 0.8, 0.8). Then, for 𝑘 = 0.3, 𝐻 𝜋𝐼 =

𝐻 𝜋𝐼𝐼 = 1/2 and 𝐴 𝜋𝐼 = 𝐴 𝜋𝐼𝐼 = 0.7. Both policies have resulted in similar improvements in 

terms of 𝐻 and 𝐴, but only by overlooking an important difference. Policy I has resulted in drastic 

                                                 

11 For other versions of rearrangement properties in poverty measurement, but defined across achievements, see Tsui (2002), 
Bourguignon and Chakravarty (2003), and Alkire and Foster (2011). All of them have been motivated by Boland and 
Proschan (1988). 
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improvements in the conditions of the two least poor persons with initial deprivation scores 0.4 and 0.7 

but only slight improvements in the conditions of the two poorest persons. Policy II, in contrast, has 

resulted in modest improvements in the conditions of all poor persons. Policy I has not been as „pro-

poorest‟ as Policy II, but this difference could not be reflected either by 𝐻 or by 𝐴. 

We should point out at this stage that the concern for inequality in the context of welfare measurement 

is slightly different from the distributional concerns in the context of poverty measurement. In welfare 

measurement, one is concerned with the entire distribution of achievements, where a transfer of 

achievements from a richer person to a poorer person is attributed to a reduction of inequality within 

the distribution. One may question the justification of extending this concept to the distribution of 

achievements among the poor on the grounds that if poor persons already suffer lower levels of 

achievements, why is it crucial to consider a transfer of achievements among two poor persons rather 

than focusing on a transfer of achievements between a poor and a non-poor person? This is a valid 

question, but we should clarify that our goal is not to merely capture inequality among the poor 

irrespective of the level of poverty. Our objective is to capture and evaluate situations where overall 

poverty reduction has not been inclusive in the sense that it has left the poorest behind. 

An illustration with 𝑘 = 0.3 will clarify our point. Suppose the initial deprivation score vector among 

the poor is 𝑎 =  (0.5, 0.5, 0.9, 0.9), which if it over time becomes 𝑎′ = (0.9, 0.9, 0.9, 0.9), then 

inequality among the poor has definitely decreased, but this reduction is accompanied by a large increase 

in poverty. This type of case is not of interest to us because the poverty measure would have already 

reflected it. Given that overall poverty has worsened, the study of inequality among the poor does not 

appear useful. Now, consider another situation where 𝑎 becomes 𝑎′′ = (0.4, 0.4, 0.9, 0.9). In this case, 

𝑎′′ has been obtained from 𝑎 by a reduction in overall poverty, but this leaves the poorest behind, which 

is certainly reflected by increasing inequality among the poor. Our goal is to capture the distributional 

changes of the second type. 

We would also like to point out that a reduction in inequality among the poor does not guarantee that 

poverty is reduced uniformly across all population subgroups. Alkire and Seth (2013), for example, 

found in the Indian context that multidimensional poverty went down between 1999 and 2006, but the 

reductions were slowest among the poorest population subgroups (poorest state, poorest caste and the 

poorest religion). We clarify this point with an example using a ten-person hypothetical society 

containing two subgroups – Subgroup A and Subgroup B – consisting of five persons each. For 

simplicity, we suppose that every dimension is equally weighted and poor persons are identified by the 

union criterion. The initial deprivation score vector of the society is 

𝜋 = (0, 0, 0, 0.6, 0.6, 0.6, 0.6, 0.6, 0.7, 0.7), of Subgroup A is 𝜋𝐴 = (0, 0, 0.6, 0.6, 0.7) and of 
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Subgroup B is 𝜋𝐵 = (0, 0.6, 0.6, 0.6, 0.7). Clearly, there is inequality in deprivation scores among the 

poor within each subgroup. Besides, any poverty measure satisfying standard properties would conclude 

that Subgroup B has more poverty than Subgroup A. Now, suppose that over time the society‟s 

deprivation score vector becomes 𝜋′ = (0, 0, 0, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6). This signifies a 

reduction in overall poverty as well as a reduction in inequality among the poor. If the deprivation score 

vectors of Subgroups A and B become 𝜋𝐴
′ = (0, 0, 0, 0.6, 0.6) and 𝜋𝐵

′ = (0.6, 0.6, 0.6, 0.6, 0.6), 

respectively, then clearly disparity in poverty between these two subgroups has not gone down despite 

improvement in the distribution among the poor. 

How can inequality among the poor and disparity in poverty across population subgroups be captured in 

the counting approach framework? The classical approach, which we refer to as the assimilated approach, 

has been, since the seminal article of Sen (1976), to fine-tune a poverty measure so that it is sensitive to 

inequality among the poor, both in the unidimensional and in the multidimensional contexts. Similar 

paths have been undertaken in the counting approach framework, where inequality can be captured 

across multiple deprivations or across deprivation scores among the poor. Among the measures 

presented in Table 1, the ones proposed by Chakravarty and D‟Ambrosio (2006), Bossert, Chakravarty 

and D‟Ambrosio (2013) and Aaberge and Peluso (2012) fall in the category of assimilated measures, 

which satisfies the dimensional transfer property presented in the previous section. 

Measures pursuing the assimilated approach are primarily used for ordering purposes. For example, 

Jayaraj and Subramanian (2009) found that the ranking of Indian states altered when inequality-sensitive 

poverty indices were used instead of a poverty index insensitive to inequality. The ranking altered owing 

to the different levels of inequality in deprivation scores among the poor within states. If the assimilated 

measures are, in addition, additively decomposable, then the overall poverty can be expressed as a 

population-weighted average of subgroup poverty, which allows an understanding of how subgroups 

contribute to overall poverty. 

The assimilated approach, however, suffers from certain limitations. First, the final index obtained from 

an assimilated approach often lacks intuitive and policy appeal. For some measures, the final figures are 

broken down into various partial indices of incidence, intensity and inequality. However, the relative 

weights that the measure places on each of these aspects are not transparent, which is important. For 

example, consider the following two breakdowns of the poverty measure proposed by Chakravarty and 

D‟Ambrosio (2006) presented in Table 1 assuming 𝛽 = 2. One is, following Aristondo et al. (2010), 

 𝑃𝐶𝐷 𝜋 = 𝐻 × 𝜇 𝑎 ×  1 − 𝐺𝐸 𝑎; 2  ,  
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where 𝜇 𝑎  is the intensity among the poor identified by the union approach and 𝐺𝐸 𝑎; 2  is the 

Generalized Entropy measure of order 2 capturing inequality in deprivation scores among the poor. The 

other breakdown is 

 𝑃𝐶𝐷 𝜋 =  𝜍 𝜋  2 +  𝜇 𝜋  2 = 𝐻2 × [ 𝜍 𝑎  2 +  𝜇 𝑎  2],  

where 𝜍 𝑎  is the standard deviation capturing inequality in deprivation scores among the poor. These 

two breakdowns would attach quite different weights to incidence, intensity and inequality across the 

poor depending on whether the value judgment of inequality is absolute or relative.12 While it is certainly 

better to have lower inequality among the poor than high inequality among the poor, even with low 

inequality across the poor it is far better to have this situation with a low than a high intensity. Certainly, 

the fundamental aim of poverty reduction is not to reduce inequality among the poor, nor the intensity 

of poverty. Rather, it is to eradicate poverty, bringing the incidence to zero. Assimilated measures, 

however, rarely make the relative importance of these policy goals transparent. 

Second, the assimilated measures often involve an inequality aversion parameter, whose value depends 

on how averse an evaluator is to inequality among the poor. The parameter discounts for larger 

inequality by increasing an assimilated index. For the same distribution across the poor, a more 

inequality-averse evaluator would conclude that poverty in the distribution was higher than a less 

inequality-averse evaluator would. Depending on the particular value of the parameter chosen, one may 

have different ranking of regions. This additional parametric decision-making can be a subject of 

significant debate. 

Third, the assimilated approach does not provide an appropriate framework for studying disparity in 

poverty across different population subgroups, even when poverty measures are additively 

decomposable. The consideration of disparity in poverty between subgroups is no less important than 

inequality in deprivation counts among the poor because a large disparity in poverty across subgroups 

may reflect large horizontal inequality and thus may create an environment for potential conflict across 

groups, which may have further adverse consequences on poverty (Stewart 2008). As shown previously, 

a reduction in poverty and even a reduction in inequality among the poor may not necessarily be 

accompanied by a reduction in disparity across subgroup poverty levels. Notice that disparity across 

subgroup poverty levels should not be misconstrued as between-group inequality among the poor, which 

represents disparity across subgroup intensities. 

                                                 

12 We discuss various implications of this value judgment in the next section. In fact, Zheng (1994) shows in the 
unidimensional context that the only poverty index that is both absolute and relative is related to the headcount ratio and 
that there can be no meaningful index of inequality that can be both relative and absolute. 



Seth and Alkire  Pro-Poorest Poverty Reduction Assessment 

OPHI Working Paper 77  www.ophi.org.uk 12 

Finally, in an assimilated approach, two properties outlined in the previous section – dimensional 

breakdown and dimensional transfer – conflict with each other. In fact, no counting poverty measure 

exists that simultaneously respects dimensional breakdown and dimensional transfer (Alkire and Foster 

2013). The measure proposed by Alkire and Foster (2011) in Table 1 satisfies the dimensional 

breakdown property but not the dimensional transfer property; whereas the other three measures 

presented in the table satisfy the dimensional transfer property but not the dimensional breakdown 

property. 

In sum, assimilated poverty measures are certainly useful for ranking, yet they suffer from a number of 

limitations that may hinder their applicability in practice. The conflict between dimensional breakdown 

and dimensional transfer creates an impasse where one is forced to choose a poverty measure that 

satisfies only one of these two properties. Is there a way to come out of this impasse? In this paper, we 

propose an alternative: using a poverty measure that satisfies dimensional breakdown alongside a 

separate, linked inequality measure that depicts inequality across the poor and disparity across population 

subgroups.13 There are certain advantages to this approach. The additional measure provides further 

information besides information on incidence and intensity. Furthermore, the inequality measure may be 

reported along with a poverty measure that satisfies dimensional breakdown. If the inequality measure is 

decomposable, then its between-group component may be used to assess disparity in poverty across 

population subgroups. The next question is which inequality measure should be used? The following 

section justifies our selection of „variance‟ as an inequality measure. 

4. Which Inequality Measure? 

The inequality measure that we should use depends on crucial normative value judgments, which we 

present in the form of properties. Before we present them, let us denote the inequality measure by 𝐼. We 

present the properties in terms of a general 𝑡-dimensional vector 𝑥. Depending on the situation, 𝑥 may 

represent 𝜋, 𝑐, or 𝑎 (and thus 𝑥  may represent 𝜋 , 𝑐 , or 𝑎 ) and 𝑡 may represent 𝑛 or 𝑞 as required. 

Whenever 𝑥 = 𝜋 or 𝑐 and 𝑡 = 𝑛, then 𝑥𝑖 ∈ [0,1] for all 𝑖 = 1, … , 𝑡. Whenever 𝑥 = 𝑎 and 𝑡 = 𝑞, then 

𝑥𝑖 ∈ [𝑘, 1] for all 𝑖 = 1, … , 𝑡. The corresponding subgroup notation introduced in Section 2 applies 

equally to 𝑥 and 𝑡. If 𝑥 is divided into 𝑚 mutually exclusive and collectively exhaustive subgroups, then 

𝑥ℓ and 𝑡ℓ represent the deprivation score vector and the size of subgroup ℓ ∀ℓ = 1, … , 𝑚. Vector 

𝑡 = (𝑡1, … , 𝑡𝑚 ) summarizes the subgroup population for 𝑚 subgroups and vector 
                                                 

13 Some existing empirical studies use a separate inequality measure for capturing inequality among the poor. See the study 
on child poverty by Delamonica and Minujin (2007) which was followed by Roche (2013). 
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𝜇𝑥 = (𝜇 𝑥1 , … , 𝜇(𝑥𝑚)) summarizes the average deprivation scores of all 𝑚 subgroups. Note, when 

𝑥 = 𝑎, then 𝜇𝑥  summarizes the intensities of poverty of all 𝑚 subgroups. 

Table 2: Values of 𝒙 and 𝒕 Under Different Circumstances 

 Deprivation Score 
Vector (𝒙) 

Number of 
Elements (𝒕) 

Range of Each 
Element (𝒙𝒊) 

All Deprivation Scores 𝜋 𝑛 [0,1] 
Censored Deprivation Scores 𝑐 𝑛 [0,1] 
Deprivation Scores of the poor 𝑎 𝑞 [𝑘, 1] 

The most important normative value judgment is whether the concept of inequality across deprivation 

scores should be judged in relative or absolute sense. If the normative assessment of inequality depends 

on absolute distance, then a change in every deprivation score by the same amount leaves the level of 

inequality unchanged. If, on the other hand, the assessment of inequality is relative, then a change in 

every deprivation score by the same proportion leaves the level of inequality unchanged.14 To further the 

discussion, let us provide an example. For simplicity, we assume there are ten dimensions that are equally 

weighted and a union approach is used for identification. Suppose the deprivation score vector 𝑥′ =

 (0.1, 0.1, 0.3, 0.3) is obtained from vector 𝑥 =  (0.4, 0.4, 0.9, 0.9) over time. Looking at these two 

distributions, several questions may arise. Has poverty gone down? How has poverty gone down? Has 

the share of poor been reduced? Has the average deprivation score improved? Have the poorest been 

left behind? Indeed, overall poverty has gone down because every person‟s deprivation score has gone 

down. The incidence has not changed but the intensity has improved; the poorest are not left behind 

because the two poorest persons have had much larger reductions in their number of deprivations. If we 

use any relative inequality measure to capture this distributional improvement, then any relative 

inequality measure would reflect an increase in inequality. Normatively, this appears counter-intuitive 

because the poorest persons in distribution 𝑥′ have two additional deprivations whereas the poorest in 

distribution 𝑥 have five additional deprivations. It might seem that measured inequality in the second 

distribution should be higher, but by every relative measure it will be lower. 

The reason behind this counter-intuitive result may be that it is not appropriate to understand relative 

inequality across deprivation scores as higher values representing worse outcomes. Traditionally, while 

measuring inequality from a welfare point of view where higher values represent better outcome, 

assessment of relative inequality assigns larger weights to lower values. What happens then if we 

                                                 

14 Relative measures have frequently been used when assessing income inequality. Atkinson (1970) proposed considering 
inequality in a relative sense in order to make the measure of inequality independent of mean. The other appealing reason is 
that the property of unit consistency (Zheng 2007) is satisfied. Kolm (1976), on the other hand, discussed the social 
disadvantages of considering inequality in a relative rather than an absolute sense. 
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transform the deprivation scores into attainment scores and then assess relative inequality? Does it 

provide the expected result? Suppose the attainment score vectors corresponding to 𝑥 and 𝑥′ are 

𝑥 =  (0.6, 0.6, 0.1, 0.1) and 𝑥 ′ = (0.9, 0.9, 0.7, 0.7), respectively. Clearly, any relative inequality 

measure in this case would show improvement in the distribution among the poor when 𝑥 ′  has been 

obtained from 𝑥 . Does this approach always produce the desired result? Let us look at another example, 

where the attainment score vector 𝑥 ′ = (0.9, 0.9, 0.2, 0.2) has been obtained from 

𝑥 = (0.5, 0.5, 0.1, 0.1) over time. Clearly, the poorest have been left behind (had an increase of only 

one attainment) while improving the situations of the least poor (improvements in four attainments). 

However, any relative inequality measure would conclude that there has been a distributional 

improvement among the poor. Again, we obtain a counter-intuitive result, which questions the efficacy 

of a relative inequality measure in a counting approach. 

In order to avoid such counter-intuitive conclusions, in this paper, we impose the value judgment that if 

all deprivation scores improve by the same amount (proportion of weighted deprivations), then this 

leaves the level of inequality unchanged. In the inequality measurement literature, this property is known 

as translation invariance. In this case, if the amount of improvement among the poorer is slower, inequality 

should rise, and if the amount of improvement among the poorer is faster, inequality should fall. An 

added advantage of this value judgment is that the same level of inequality is reflected no matter whether 

inequality is assessed across deprivation scores or equivalently across attainment scores.15 

Translation Invariance: For any 𝑡-dimensional vector 𝑥 and 𝛿 > 0, 

𝐼 𝑥 = 𝐼 𝑥 + 𝛿𝟏𝑡 .16 

The next three are standard properties that any inequality measure should satisfy. The second property, 

anonymity, requires that an inequality measure should not change by a permutation of elements in 𝑥. 

Anonymity: For any two 𝑡-dimensional vectors 𝑥 and 𝑥′, if 𝑥′ is a permutation of 𝑥, then 

𝐼 𝑥′ = 𝐼 𝑥 . 

The third property, replication invariance, requires that the inequality measure should enable comparison 

across societies with different population sizes. Technically, if a society is obtained from another society 

by a merely duplicating or replicating the entire population, then the level of inequality should not alter. 
                                                 

15 While measuring the inequality of a bounded variable, Lambert and Zheng (2011) proposed using absolute inequality 
measures due to a separate motivation. They wanted the same level of inequality to be reflected whether inequality was 
measured across attainments or across attainment shortfalls. 

16 Given that the elements of 𝑥 are bounded, we may additionally require that max 𝑥1, … , 𝑥𝑡 ≤ 1 − 𝜀 and 𝜀 ≥ 𝛿 > 0. 𝟏𝑡  is 
a 𝑡-dimensional vector of ones. 
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Replication Invariance: For any 𝑡-dimensional vector 𝑥, if 𝑥′ is obtained from 𝑥 by replicating 𝑥 twice 

or more, then 

𝐼 𝑥′ = 𝐼 𝑥 . 

The fourth property, transfer, is fundamental in inequality measurement and requires that an inequality 

measure should increase due to a regressive transfer. What is a regressive transfer? Suppose, 𝑥′ is obtained 

from 𝑥, such that 𝑥𝑖1
′ = 𝑥𝑖1 − 𝛿 ≥ 0, 𝑥𝑖2

′ = 𝑥𝑖2 + 𝛿 ≤ 1, 𝑥𝑖1 < 𝑥𝑖2 , 𝛿 > 0 and 𝑥𝑖
′ = 𝑥𝑖  ∀𝑖 ≠ 𝑖1, 𝑖2. In 

the counting approach framework, the regressive transfer is equivalent to the regressive dimensional 

transfer introduced earlier. 

Transfer: For any two 𝑡-dimensional vectors 𝑥 and 𝑥′, if 𝑥′ is obtained from 𝑥 by a regressive transfer, 

then 

𝐼 𝑥′ > 𝐼 𝑥 . 

The next set of two properties link subgroup inequalities to the overall inequality. Given that we are 

interested in within-group and between-group inequalities, it is meaningful for the inequality measure to 

be additively decomposable so that overall inequality can be decomposed into a within-group term (𝐼𝑊) and a 

between-group term (𝐼𝐵). 

Additive Decomposability: For any 𝑡-dimensional vector 𝑥, 

𝐼 𝑥 = 𝐼𝑊 𝑥 + 𝐼𝐵 𝑥 =  𝜔ℓ  𝑡, 𝜇𝑥 𝐼 𝑥ℓ 
𝑚

ℓ=1

+ 𝐼  𝜇𝑥 ; 𝑡 ;17 

The overall within-group term is a weighted average of within-group inequalities of the population 

subgroups, i.e., 𝐼𝑊 𝑥 =  𝜔ℓ  𝑡, 𝜇𝑥 𝐼(𝑥ℓ)𝑚
ℓ=1 , where 𝜔ℓ(𝑡, 𝜇𝑥) is the weight attached to inequality 

within subgroup ℓ which depends on both the subgroups‟ populations and the subgroups‟ means.18 The 

between-group term is 𝐼𝐵 𝑥 = 𝐼(𝜇𝑥 ; 𝑡), where 𝐼  𝜇𝑥 ; 𝑡 = 𝐼(𝜇 𝑥1 𝟏𝑡1 , … , 𝜇 𝑥𝑚 𝟏𝑡𝑚 ) and 𝟏𝑡ℓ is a 

vector all of whose 𝑡ℓ elements are equal to one. While computing between-group inequality, elements 

within each group 𝑥ℓ receive the average deprivation score of the group 𝜇 𝑥ℓ , which is incorporated by 

using the 𝑡ℓ-dimensional vector of ones. 

What does it imply when weights attached to within-group terms depend on subgroup means? It implies 

that if the mean deprivations of the subgroups change disproportionately, but the level of inequality and 
                                                 

17 This is the usual definition of additive decomposability also used by Shorrocks (1980), Foster and Shneyerov (1999) and 
Chakravarty (2001). 

18 Note that the weight 𝜔ℓ(𝑡, 𝜇𝑥) for subgroup ℓ is different from weight or value 𝑤𝑗  assigned to dimension 𝑗. 
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the population shares within these subgroups do not change, the share of within-group inequality to 

overall inequality may change without any justifiable reason. In order to avoid such circumstances, we 

impose a practical restriction such that the overall within-group inequality should not change when the 

inequality level and population size of each group remains unchanged but subgroup means change 

disproportionately. 

Within-group Mean Independence: For any two 𝑡-dimensional vectors 𝑥 and 𝑥′, if 𝑡ℓ = 𝑡′ℓ and 

𝐼 𝑥ℓ = 𝐼 𝑥′ℓ  ∀ℓ = 1, … , 𝑚, then 𝐼𝑊 𝑥 = 𝐼𝑊 𝑥′ .19 

The following proposition provides us the only inequality measure that satisfies the above-mentioned 

properties. 

Proposition: For any 𝑥 and any 𝛼 > 0, an inequality measure 𝐼 satisfies translation invariance, 

anonymity, replication invariance, transfer, additive decomposability and within-group mean 

independence if and only if: 

 𝐼 𝑥 =
𝛼
𝑡  [𝑥𝑖 − 𝜇 𝑥 ]2

𝑡

𝑖=1

. (4.1) 

Proof: See Appendix.20 

The only class of inequality measures that satisfies the required properties is a positive multiple (𝛼) of 

variance.21 By construction, the minimum possible value that 𝐼(𝑥) takes is zero, which is attained when all 

elements in 𝑥 take equal value. This is the situation of perfect equality. The maximum possible value that 

variance takes is one fourth of the range of the deprivation score vector, which is attained when half of 

the population have the lowest deprivation scores and the other half have the highest deprivation scores. 

The value of 𝛼 can be chosen in such a way that the value of the inequality measure is bounded between 

zero and one, as is true of any standard inequality measure. For example, if a counting measure uses five 

dimensions with equal weights and a union approach to identification, then deprivation scores among 

the poor range from 0.2 to 1. The maximum possible variance in this case is 0.2 and so we should set 𝛼 

= 1/0.2 = 5. 

                                                 

19 Note that the property is analogous to the path independence property of Foster and Shneyerov (2000) for relative inequality 
measures. The within-group mean independence property does not require an index to be absolute or relative a priori. The 
additive decomposability property along with the within-group mean independence implies path independence. 

20 The proposition is analogous to Theorem 1 of Chakravarty (2001). However, we do not assume differentiability and 
population share weighted decomposability as Chakravarty did. 

21 Note that the unbiased sample estimate for variance is   𝑥𝑖 − 𝜇 𝑥  2𝑡
𝑖=1 /(𝑡 − 1), but this formulation does not satisfy 

population replication invariance. 
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We should point out that the inequality measure provides the same level of inequality, whether the 

identification involves counting deprivations or counting attainments. The following corollary 

summarizes the result, which can be verified very easily by plugging 𝑥 𝑖  in Equation (4.1). 

Corollary: If 𝑥  is obtained from any 𝑥 such that 𝑥 𝑖 = 1 − 𝑥𝑖  ∀𝑖 = 1, … , 𝑡, then 𝐼 𝑥  = 𝐼 𝑥 . 

We now show how the inequality measure presented in Equation (4.1) can be decomposed in order to 

be useful for policy-relevant applications. 

 𝐼 𝑥 =   𝑡ℓ

𝑡 𝐼 𝑥ℓ 
𝑚

ℓ=1
 + 𝛼  𝑡ℓ

𝑡 [𝜇 𝑥ℓ − 𝜇(𝑥)]2
𝑚

ℓ=1

; (4.2) 

where 𝑡ℓ/𝑡 is the population share of subgroup ℓ and 𝐼 𝑥ℓ  is the level of inequality in subgroup ℓ. The 

first term in Equation (4.2) captures the total within-group inequality and the second term captures the 

between-group inequality in 𝑥 across population subgroups. 

We present two interesting cases that we also apply to empirical illustrations in the next section. In the 

first case, the focus remains only among the poor and thus 𝑥 = 𝑎 and 𝑡 = 𝑞. Note that the average of all 

elements in 𝑎 is the average deprivation score among the poor, i.e., 𝐴 = 𝜇(𝑎). The following expression 

computes inequality across deprivation scores of the poor 

 𝐼𝑞 𝑎 =
𝛼
𝑞  [𝑎𝑖 − 𝐴]2

𝑞

𝑖=1

. (4.3) 

Equation (4.3) can be further decomposed as: 

 𝐼𝑞 𝑎 = 𝐼𝑊𝑞  𝑎 + 𝐼𝐵𝑞 𝑎 =   𝑞ℓ

𝑞 𝐼𝑞 𝑎ℓ 
𝑚

ℓ=1
 + 𝛼 𝑞ℓ

𝑞 [𝐴ℓ − 𝐴]2
𝑚

ℓ=1

; (4.4) 

where 𝐼𝑞 𝑎ℓ  is inequality among the poor in subgroup ℓ and 𝐴ℓ is the intensity of poverty in subgroup 

ℓ. The first term in the right-hand side of Equation (4.4), 𝐼𝑊𝑞  𝑎 , captures the total within-group 

inequality and the second term, 𝐼𝐵𝑞 𝑎 , captures disparity between-subgroup intensities. 

In the second case, the focus remains on the entire censored deprivation score vector and thus 𝑥 = 𝑐 

and 𝑡 = 𝑛. Notice that the average of all elements in 𝑐 is the measure 𝑀0 proposed by Alkire and Foster 

(2011) presented in Table 1, i.e., 𝑀0(𝑐) = 𝜇(𝑐). Thus, 

 𝐼𝑛 𝑐 = 𝐼𝑊𝑛  𝑐 + 𝐼𝐵𝑛 𝑐 =   𝑛ℓ

𝑛 𝐼𝑛 𝑐ℓ 
𝑚

ℓ=1
 + 𝛼 𝑛ℓ

𝑛 [𝑀0(𝑐ℓ) − 𝑀0(𝑐)]2
𝑚

ℓ=1

. (4.5) 



Seth and Alkire  Pro-Poorest Poverty Reduction Assessment 

OPHI Working Paper 77  www.ophi.org.uk 18 

The between-group term 𝐼𝐵𝑛 𝑐  in Equation (4.5) assesses disparity between subgroup poverty, or, more 

specifically, disparity between the subgroups‟ 𝑀0. Note that 𝑀0 satisfies the dimensional breakdown 

property and so the term 𝐼𝐵𝑛 𝑐  adds valuable information by capturing disparity across the subgroups‟ 

𝑀0.22 

5. Empirical Illustration 

We now apply the method developed in the previous section to illustrate how it can be applied in 

practice and how it can add valuable information besides a meaningful poverty measure. For our 

purpose, we choose two developing countries with high poverty levels: Haiti and India. Haiti is the 

poorest country in Latin America and the Caribbean; whereas India is the most populous country in 

South Asia and not surprisingly houses the largest number of poor people. These two countries yield 

contrasting results even though poverty went down statistically significantly in both countries. Haiti 

provides a story of success, where poverty reduction between 2006 and 2012 was pro-poorest; i.e., Haiti 

alleviated multidimensional poverty through a relatively larger reduction in poverty among the poorest, 

thus reducing inequality among the poor as well as reducing the disparity in poverty across sub-national 

regions. India, on the other hand, did not enjoy similar success between 1999 and 2006. 

Multidimensional poverty reduction in India was accompanied by only a modest reduction in the 

inequality among the poor and an increase in disparity in poverty across sub-national regions. 

We have already discussed previously that our approach to using a separate inequality measure resolves 

the impasse created by two conflicting properties: dimensional breakdown and dimensional transfer. To 

show the practical efficacy of our approach, we use a poverty measure that respects dimensional 

breakdown. The measure proposed by Alkire and Foster (2011), 𝑃𝐴𝐹 , is the only counting measure in 

Table 1 that satisfies the dimensional breakdown property. We use an empirical adaptation of their 

approach: the global MPI developed by Alkire and Santos (2010, 2014). The MPI is composed of ten 

indicators grouped in three dimensions: education, health and standard of living. All three dimensions 

are equally weighted and indicators with each dimension are also equally weighted. A person is identified 

as poor if the deprivation score is one-third or higher (𝑘 = 1/3). For detailed information on the MPI 

methodology, see Alkire, Conconi and Seth (2014).23 

                                                 

22 We have discussed further possible theoretical decompositions in our previous working paper version. See Seth and Alkire 
(2014). 

23 Minor adjustments in the deprivation cutoffs were made to preserve strict inter-temporal comparability. Details may be 
found for India in Alkire and Seth (2013) and for Haiti in Alkire, Roche and Vaz (2014). 
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For both countries, we use DHS datasets. For Haiti, we use the DHS datasets for the years 2006 and 

2012, and, for India, we use the DHS datasets for the years 1999 and 2006.24 DHS datasets are nationally 

representative as well as representative at the sub-national level, allowing us to conduct analysis across 

population subgroups. Samples are collected through multi-stage stratification. In this paper, we use a 

standard bootstrap procedure for statistical inferences considering this stratified sampling process. Our 

reasons for using the bootstrap technique are: (i) it automatically takes into account the natural bounds 

which are [0,1] in this case, (ii) for between-group inequality and disparity, the sample sizes are not large 

enough to derive asymptotic properties, and (iii) it mostly achieves the same accuracy as the delta-

method (Biewen 2002, Davidson and Flachaire 2007). For applications of bootstrap techniques in 

inequality and poverty measurement, see Mills and Zandvakili (1997) and Biewen (2002). 

Table 3: Change in MPI, Incidence, Intensity, and Inequality among the Poor in Haiti and India 

Haiti (2006–2012) 
MPI 

 
Incidence (𝑯) 

 
Intensity (𝑨) 

 
Inequality (𝑰𝒒) 

2006 2012 Change 
 

2006 2012 Change 
 

2006 2012 Change 
 

2006 2012 Change 
0.335 0.248 -0.087 *** 

 
0.606 0.494 -0.112 ***   0.553 0.503 -0.050 *** 

 
0.253 0.190 -0.062 *** 

India (1999–2006) 
MPI 

 
Incidence (𝑯) 

 
Intensity (𝑨) 

 
Inequality (𝑰𝒒) 

1999 2006 Change 

 
1999 2006 Change 

 
1999 2006 Change 

 
1999 2006 Change 

0.300 0.251 -0.050 *** 

 
0.568 0.485 -0.083 ***   0.529 0.517 -0.012 *** 

 
0.224 0.219 -0.005 * 

The statistical tests of differences are one-tailed tests. ***Statistically significant at 1%, **Statistically significant at 5%, and *Statistically 
significant at 10%. 

5.1 Change in Inequality among the Poor Nationally 

It is evident from Table 3 that Haiti‟s MPI has gone down from 0.335 to 0.248 between 2006 and 2012. 

The incidence has dropped from 0.606 to 0.494 and the intensity from 0.553 to 0.503. What has 

happened to inequality among the poor? Has the poverty reduction been pro-poorest? We use Equation 

(4.3) to compute the level of inequality among the poor 𝐼𝑞 . We normalize by setting 𝛼 = 9 because 

deprivation scores among the poor range between 1/3 and 1 and thus the maximum possible value that 

variance may take is 1/9. It ensures that 𝐼𝑞  is bounded between zero and one. We find that inequality 

among the poor in Haiti has gone down statistically significantly between 2006 and 2012.25 For India, the 

national MPI has gone down from 0.300 in 1999 to 0.251 in 2006 as well as incidence from 0.568 to 

                                                 

24 The years for the Indian datasets are 1998/99 and 2005/06, respectively. However, given that samples covering 80.5% of 
the population in the 1998/99 DHS were actually collected in 1999, and, in the 2005/06 DHS, samples covering 92.6% of 
the population were collected in 2006, we consider 1999 and 2006 as the reference years for the surveys. 

25 Note that we are not using panel datasets and so are unable to track changes in the deprivation score of particular poor 
persons. 
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0.485 and intensity from 0.529 to 0.517.26 All reductions have been statistically significant, but they have 

not been as pro-poorest as in Haiti, which is reflected by the merely modest reduction in inequality 

among the poor. 

Figure 1 presents the distributions of deprivation scores among the poor for both countries. Panel I 

presents the distribution of deprivation scores among the poor in Haiti in 2006 and in 2012. Panel II 

presents the distribution of deprivation scores among the poor in India in 1999 and in 2006. In both 

panels, the horizontal axes present ranges of deprivation scores and the vertical axes present the 

percentage of poor population suffering the range of deprivation scores. In both panels, the grey bars 

represent the distribution of deprivation scores in the first period and the black bars represent the 

distribution of deprivation scores in the second period. For Haiti, we clearly find that the reduction 

among the poorest with a deprivation score of 0.7 and higher has been much larger. When we look at 

the case of India, a stark difference is visible. The situation of the poorest with a deprivation score of 0.7 

and higher has not progressed much, slowing down the pace of reduction in inequality among the poor. 

Figure 1: Distribution of Deprivation Scores among the Poor in Haiti and India 

Panel I: Haiti Panel II: India 

  

 
5.2 Change in Inequality among the Poor within Sub-national Regions 

Has the national pattern of reduction in poverty and inequality among the poor been replicated within 

sub-national regions? We answer this question by computing the inequality measure 𝐼𝑞 𝑎ℓ  using 

Equation (4.3). We set 𝛼 = 9 because the deprivations scores among the poor in this case still range 

between 1/3 and one. Note that the weighted average of the within-group inequalities among the poor 

provides the total within-group inequality 𝐼𝑊𝑞  in Equation (4.4). In Table 3, we present the changes in all 

                                                 

26 Our result confirms the findings of Jayaraj and Subramanian (2009) and Mishra and Ray (2013), who use the measure 
proposed by Chakravarty and D‟Ambrosio (2006) in Table 1. Both studies found that the national reduction in poverty was 
not accompanied by uniform reductions across different population subgroups.  
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ten sub-national MPIs as well as the changes in sub-national inequality among the poor for the ten 

departments of Haiti and seventeen Large States of India. 

In Haiti, the national pattern of poverty reduction has been replicated within almost all sub-national 

regions. The MPI has gone down statistically significantly in all regions except the North-East region. 

Inequality among the poor within each region has gone down statistically significantly but indeed with 

variation across regions. In five regions, the pace of reduction in inequality among the poor has been 

faster than the national average. The pace of reduction in both MPI and inequality among the poor was 

slowest for Aire Métropolitaine. 

Table 4: Changes in MPI and Inequality among the Poor across Sub-national Regions in Haiti and India 

 
Ten Departments of Haiti 

  MPI 
 

Inequality among the Poor 

 
2006 2012 Change 

 
2006 2012 Change 

Aire Métropolitaine 0.195 0.162 -0.033 *   0.189 0.182 -0.007 * 
Artibonite 0.418 0.316 -0.102 ***   0.229 0.196 -0.032 ** 
Centre 0.545 0.391 -0.154 ***   0.313 0.213 -0.100 *** 
Grand-Anse 0.455 0.378 -0.078 *   0.242 0.201 -0.041 *** 
Nippes 0.381 0.257 -0.124 ***   0.207 0.139 -0.067 *** 
North 0.399 0.244 -0.155 ***   0.319 0.198 -0.121 *** 
North-East 0.358 0.323 -0.035     0.238 0.217 -0.021 * 
North-West 0.395 0.311 -0.084 **   0.240 0.147 -0.092 *** 
South 0.336 0.249 -0.087 **   0.218 0.192 -0.026 ** 
South-East 0.398 0.307 -0.091 **   0.223 0.147 -0.075 *** 

 
Seventeen Large States of India27 

 
MPI 

 
Inequality among the Poor 

 
1999 2006 Change 

 
1999 2006 Change 

Andhra Pradesh 0.299 0.194 -0.105 *** 

 
0.223 0.153 -0.070 *** 

Bihar 0.442 0.416 -0.026 ** 

 
0.252 0.268 0.016 * 

Goa 0.112 0.057 -0.055 *** 

 
0.127 0.099 -0.027 * 

Gujarat 0.248 0.175 -0.073 *** 

 
0.207 0.182 -0.025 * 

Haryana 0.190 0.154 -0.036 ** 

 
0.166 0.158 -0.008   

Himachal Pradesh 0.154 0.100 -0.054 *** 

 
0.073 0.066 -0.007   

Jammu & Kashmir 0.226 0.146 -0.080 *** 

 
0.177 0.141 -0.037 ** 

Karnataka 0.255 0.173 -0.082 *** 

 
0.202 0.152 -0.049 *** 

Kerala 0.136 0.038 -0.098 *** 

 
0.080 0.059 -0.021 ** 

Madhya Pradesh 0.368 0.329 -0.040 *** 

 
0.238 0.221 -0.018 ** 

Maharashtra 0.226 0.155 -0.071 *** 

 
0.182 0.151 -0.031 ** 

Orissa 0.381 0.309 -0.072 *** 

 
0.222 0.225 0.003   

Punjab 0.117 0.088 -0.029 *** 

 
0.172 0.126 -0.046 *** 

Rajasthan 0.341 0.310 -0.031 ** 

 
0.234 0.243 0.008   

Tamil Nadu 0.195 0.110 -0.085 *** 

 
0.132 0.083 -0.048 *** 

Uttar Pradesh 0.348 0.314 -0.034 *** 

 
0.211 0.205 -0.007   

West Bengal 0.339 0.283 -0.055 *** 

 
0.231 0.211 -0.021 ** 

The statistical tests of differences are one-tailed tests. ***Statistically significant at 1%, **Statistically significant at 5%, 
and *Statistically significant at 10%. 

                                                 

27 Note that we have combined Bihar with Jharkhand, Madhya Pradesh with Chhattisgarh, and Uttar Pradesh with 
Uttarakhand, as these states were not partitioned in 1999. 
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Again, a contrasting picture is obtained when we look at the seventeen large states of India. The MPI in 

each of the seventeen sub-national regions has gone down statistically significantly, with the largest 

reduction in MPI being in Andhra Pradesh. Unlike Haiti, however, every sub-national region has not 

seen a reduction in inequality among the poor.  Large reductions in inequality are visible in states like 

Andhra Pradesh, Karnataka, Punjab and Tamil Nadu. Inequality has risen statistically significantly in 

Bihar. In order to understand which part of the distribution is responsible for an increase or reduction in 

inequality among the poor, we present the distribution of deprivation scores across the poor for two 

states at the extremes: Andhra Pradesh and Bihar. Clearly, in Andhra Pradesh, a reduction in poverty has 

taken place by improving the situation of those with deprivation scores of 0.6 and higher. In the case of 

Bihar, however, the reduction in poverty has not been inclusive in the sense that the overall reduction 

has not helped those who are more severely deprived. In fact, the shares of the poor with deprivation 

scores of 0.7 and above have increased in 2006. 

Figure 2: Distribution of Deprivation Scores in Two States of India: Andhra Pradesh and Bihar 

Andhra Pradesh Bihar 

  
 

5.3 Disparity across Population Subgroups 

We have looked at inequality among the poor nationally and within sub-national regions. Now, after 

looking at the reduction in national poverty, an obvious question comes in mind: Has the fruit of 

national reduction been shared by all population subgroups? Before closing this section, we explore the 

answer to this question by computing disparity across subgroups using the term 𝐼𝐵𝑛 𝑐  in Equation (4.5). 

Given that MPIs may vary between zero and one, in this case we choose 𝛼 = 4. Thus, 

𝐼𝐵𝑛 𝑐 =  4  𝑛ℓ
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Changes in disparities across population subgroups are reported in Table 4. For Haiti, we compute 

disparity in poverty only across sub-national regions. The sub-national disparity has gone down 

statistically significantly from 0.054 to 0.025. Thus, poorer sub-national regions grew faster and there has 

been a convergence in poverty reduction across sub-national regions. India, however, has a different 

story to tell. Sub-national disparity in India has increased statistically significantly from 0.031 to 0.041. 

When we look at disparity across castes and religions, no changes are visible. Thus, unlike Haiti, we did 

not find any evidence of a convergence in poverty across population subgroups. 

Table 5: Disparity across Different Population Subgroups Haiti and India 

Subgroups 
First 

Period  
Second 
Period 

 Change 

Haiti: Sub-national Regions (2006–2012) 0.054  0.025  −0.029 *** 

India: Sub-national Regions (1999–2006) 0.031  0.041  0.009 *** 
India: Castes (1999–2006) 0.021  0.021  0.000   
India: Religions (1999–2006) 0.004  0.004  0.000   

6. Concluding Remarks 

There have been recent developments in both theory and practice in the measurement of 

multidimensional poverty within the counting approach framework. The categorical or binary nature of 

dimensions and the fact that the counting measures of poverty are based on direct deprivations make the 

use the counting approaches more practicable. Even in counting approaches, however, it is important 

that all three „I‟s of poverty – incidence, intensity and inequality among the poor – can be incorporated. 

If the object of a policy maker is to reduce only the incidence of poverty, then only marginally poor 

people would be lifted out of poverty, ignoring the poorest of the poor completely. If the objective is to 

reduce both the incidence and intensity of poverty, then while the policy maker has no reason to focus 

on the marginally poor instead of the poorest of the poor, the policy maker has no strong incentive to 

assist the poorest of the poor either. It is only when the consideration of inequality is brought to the 

table that a policy maker has greater incentives to assist the poorest. 

The most common approach to incorporating inequality into poverty measurement, what we refer to as 

the assimilated approach, has been to adjust a poverty measure so that the measure is sensitive to the 

distribution of poverty among the poor. This approach, however, has certain limitations. First, 

assimilated poverty measures may lack intuitive interpretations. Even when they combine incidence, 

intensity and inequality, the relative weight that the measure places on each of these aspects is not made 

transparent. Second, assimilated measures often involve selecting a particular value for an inequality-

aversion parameter, which often becomes a subject of debate. Third, these measures do not give a clear 

picture about the disparity in poverty between population subgroups. Finally, they do not allow the 
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possibility of breaking down a measure by dimensions in order to understand dimensional contributions 

to overall poverty (Alkire and Foster 2011). 

In this paper, we propose the use of a separate inequality measure to capture inequality among the poor 

and disparity across population subgroups. Our choice of inequality measure is determined by certain 

desirable properties, in addition to the standard properties. First, we require that the inequality measure 

is additively decomposable so that it can be expressed as a sum of total within-group inequality and 

between-group inequality. Moreover, the total within-group inequality should not change as long as the 

population share and inequality within each population subgroup does not change. Second, we require 

that inequality across deprivation scores to remain unchanged when all deprivation scores increase by the 

same amount. In other words, we require that inequality should be perceived through absolute distances 

between deprivation scores. The only inequality measure that satisfies our requirements is a positive 

multiple of variance. 

We provide an illustration comparing the changes in the situation of the poor in two countries: Haiti and 

India. We use the MPI to assess poverty, which is an adaptation of the poverty measure proposed by 

Alkire and Foster (2011), satisfying dimensional breakdown. We find that in Haiti the overall poverty 

reduction was pro-poorest. Nationally, inequality among the poor went down as well as inequality 

among the poor within every sub-national region. Furthermore, poorer sub-national regions reduced 

MPI more, resulting in a reduction in sub-national disparity in poverty. The Indian experience, however, 

has not been so satisfying. There was a strong reduction in poverty nationally as well as within some sub-

national regions such as Andhra Pradesh and Tamil Nadu. However, inequality among the poor did not 

go down in some states like Bihar. Also, subgroup disparities between sub-national regions and other 

social groups did not go down, preventing a convergence in poverty reduction. 

So what is the value added of using the proposed inequality measure? First, the inequality measure adds 

valuable information to any poverty measure that respects the dimensional breakdown property – such 

as the adjusted headcount ratio proposed by Alkire and Foster (2011), which has been adopted by 

international organizations and country governments. Second, the inequality measure does not involve 

any inequality-aversion parameter, whose selection may cause wide disagreement among policy makers. 

Thus, the additive decomposability property allows overall poverty to be decomposed into within-group 

and between-group components. Although the contribution of within-group and between-group 

components to overall poverty is subject to debate (Kanbur 2006), we show with empirical illustrations 

how understanding their changes over time may provide valuable information. Finally, the inequality 

measure reflects the same level of inequality whether the poor are identified by counting attainments or 

by counting deprivations. 
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At the same time, this research agenda raises a number of interesting questions regarding the dynamics 

of inequality among the poor. For example, in situations in which the intensity of poverty is exceedingly 

high – approaching 100% – then progress in reducing the intensity of poverty is likely to involve a 

temporary increase in inequality among the poor as the intensity of deprivations for some are reduced. 

Using the proposed inequality measure „variance‟ alongside an intuitive measure of poverty, such as the 

adjusted headcount ratio, may enable researchers to identify various patterns of progression of inequality 

among the poor and to link these to other patterns such as conflict, migration, and local or regional 

activities. It will also be interesting to compare multidimensional „variance‟ with income inequality 

among the income poor in order to assess whether diverse kinds of inequality among the poor converge 

or diverge. 
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Appendix 

The proof has two parts: sufficiency and necessity. For the first, it is straightforward to show that the 

inequality measure 𝐼 𝑥 = 𝛼
𝑡  [𝑥𝑖 − 𝜇 𝑥 ]2𝑛

𝑖=1  satisfies anonymity, transfer, replication invariance, 

subgroup decomposability, within-group mean independence and translation invariance. 

Let us show that this is the only inequality measure that satisfies the five properties. An inequality 

measure that satisfies the additive decomposability property also satisfies the decomposability property in 

Bosmans and Cowell (2010), which requires that 𝐼 𝑥 = 𝐹(𝐼 𝑥1 , … , 𝐼 𝑥𝑚 , 𝜇𝑥 , 𝑡) for any function 𝐹. 

Now, we know following Bosmans and Cowell (2010) that the class of inequality measures that satisfies 

anonymity, transfer, replication invariance, decomposability and translation invariance is: 

𝑓 𝐼 𝑐  =

 
 
 
 
 1
𝑡   exp 𝛾 𝑥𝑖 − 𝜇 𝑥   − 1 

𝑡

𝑖=1

if 𝛾 ≠ 0

1
𝑡  [𝑥𝑖 − 𝜇 𝑥 ]2

𝑡

𝑖=1

if 𝛾 = 0

;  

where 𝛾 a real number and 𝑓 ∶ ℝ → ℝ is a continuous and strictly increasing function, with 𝑓(0) = 0. 

The additive decomposability property along with 𝑓 0 = 0 and the functional restriction on 𝑓 requires 

𝑓 𝑥 = 𝛼𝑥 for any 𝛼 > 0. Thus, 

𝐼 𝑥 =

 
 
 
 
 𝛼

𝑡   exp 𝛾 𝑥𝑖 − 𝜇 𝑥   − 1 
𝑡

𝑖=1

if 𝛾 ≠ 0

𝛼
𝑡  [𝑥𝑖 − 𝜇 𝑥 ]2

𝑡

𝑖=1

if 𝛾 = 0

.   

Next, we show which of these measures satisfies the within-group mean independence. Recall that there are 

𝑚 ≥ 2 mutually exclusive and collectively exhaustive subgroups, where the deprivation score vector and 

the population size of any subgroup ℓ are denoted by 𝑥ℓ and 𝑛ℓ. 

Consider 𝛾 ≠ 0. The corresponding measures can be decomposed into within-group inequalities and 

between-group inequality components as: 

𝐼 𝑥 =  𝑡ℓ exp 𝛾𝜇 𝑥ℓ  
𝑡 exp 𝛾𝜇 𝑥  𝐼(𝑥ℓ)

𝑚

ℓ=1

+ 𝐼(𝜇𝑥 ; 𝑡). 
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The measures with 𝛾 ≠ 0 do not satisfy the property of within-group mean independence, which can be 

shown as follows. Suppose for any two deprivation score vectors 𝑥 and 𝓍,  𝑛ℓ = 𝓃ℓ and 𝐼 𝑥ℓ = 𝐼(𝓍ℓ) 

∀ℓ = 1, …𝑚, but 𝜇 𝑥ℓ′  ≠ 𝜇 𝓍ℓ′  and 𝜇 𝑥ℓ = 𝜇 𝓍ℓ  ∀ℓ ≠ ℓ′. Clearly, for 𝛾 ≠ 0, 𝐼𝑊 𝑥 ≠ 𝐼𝑊(𝓍). 

Thus, the class of inequality measures satisfying all the required properties is 𝐼 𝑥 = 𝛼
𝑡  [𝑥𝑖 −𝑡

𝑖=1

𝜇𝑥]2. 


