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Abstract 

Several recent studies have suggested that the distribution of income (earnings, jobs) is becoming more 
polarized. Much of the evidence presented in support of this view consists of demonstrating that the 
population share in an arbitrarily chosen middle income class has fallen. However, such evidence can be 
criticized as being range-specific – depending on the particular cutoffs selected. In this paper we propose 
a range-free approach to measuring the middle class and polarization, based on partial orderings. The 
approach yields two polarization curves which, like the Lorenz curve in inequality analysis, signal 
unambiguous increases in polarization. It also leads to an intuitive new index of polarization that is 
shown to be closely related to the Gini coefficient. We apply the new methodology to income and 
earnings data from the US and Canada, and find that polarization is on the rise in the US but is stable or 
declining in Canada. A cross-country comparison reveals the US to be unambiguously more polarized 
than Canada. 
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Section A: Introduction 

The presence of a sizable, well-off middle class is typically presumed to be an important factor in the 
growth and development of today’s successful industrial economies. The middle class provides much of 
the labour force for the economy and is a key market for the national product. A large portion of a 
country’s tax revenue is collected directly or indirectly from the middle class. It also has a special role in 
the relative political stability these nations have enjoyed. According to Lester Thurow (1984), ‘A healthy 
middle class is necessary to have a healthy political democracy. A society made up of rich and poor has 
no mediating group either politically or economically.’ 

In the mid 1980s several researchers noticed a disturbing trend in the United States: the size and perhaps 
the relative affluence of the middle class appeared to be declining. Thurow was one of the first to point 
out the increased polarization of the income distribution. Defining the middle class as those with 
incomes between 75 and 125 per cent of the median income, he concluded that the percentage of middle 
class households fell from 28.2 per cent in 1967 to 23.7 per cent in 1983. Blackburn and Bloom (1985) 
broadened the middle income range to 60 to 225 per cent of the median and found a decrease from 62.4 
per cent to 55.9 per cent over the same period. Other studies employing a variety of different definitions 
and data bases broadly confirm these findings (e.g. Bluestone and Harrison 1986, 1988; Bradbury 1986; 
Horrigan and Haugen 1988). A number of papers offer evidence to the contrary (e.g. Kosters and Ross 
1988; Levy 1987; Rosenthal 1986; Levitan and Carlson 1984). In particular, Levy (1987) has noted that 
the share of income going to the middle 3/5 families in the US has stayed remarkably constant since 
1945, at 52 to 54 per cent of the total. While the various studies on the US experience do not entirely 
agree on the extent or even the existence of increased polarization, the general topic is proving to be an 
important one for research.1  

The condition of the Canadian middle class has only recently been investigated by researchers, primarily 
at the Analytical Studies Branch of Statistics Canada. One study by Myles et al. (1988) examined changes 
in the distribution of jobs between the years 1981 and 1986 using two unique surveys conducted by 
Statistics Canada. They found a slight decline in the middle class over this particular five year period. 
Leckie (1988) observed a similar modest decline in the middle class between 1971 and 1981, where the 
middle income range is defined as 85 to 115 per cent of the median wage. In a recent paper, Wolfson 
(1989) offered some preliminary findings on income polarization in Canada. He noted that the share of 
labour incomes in the range 75 to 150 per cent of the median declined steadily from 39.3 per cent in 
1967 to 30.8 per cent in 1986. He also examined the share of income received by the middle fifth of the 
population and found a general decline amidst ups and downs. The results to date suggest that increased 
polarization may also be taking place in Canada. 

In this work, little emphasis has been placed on the underlying methodology of measuring the middle 
class and the degree of polarization. The purpose of this paper is to provide a methodological base with 
which to analyze polarization. To do this, we begin with the question: are there certain stylized changes 
in the distribution that should be regarded as increasing polarization? We identify two such movements 
which we call ‘increased spread’ and ‘increased bipolarity’. It is argued that any method of measuring 
polarization should be consistent with these basic elements of polarization. 

We begin with the measurement of the middle class. The studies referred to above reveal a variety of 
incompatible definitions and measurement strategies and, naturally, there has been considerable potential 
for confusion and conflicting results. We provide a common framework within which the various 
approaches to defining and measuring the middle class may be compared. We note a potentially serious 

                                                 

1 See also Beach (1989), Harrison and Bluestone (1988), Levy and Murnane (1990), Maxwell (1990), and Winnick (1989). 
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problem in each of these studies: the range defining the middle class is essentially arbitrary. For example, 
why use a range of 75 to 125 per cent of the median income (as Thurow did) rather than 60 to 225 
per cent? Alternatively, why focus on the middle three-fifths of the population (as Levy did) instead of 
the middle fifth?2 If one range yields results that may be reversed at another reasonable range, then 
conclusions obtained at the original range are hardly trustworthy. When faced with a similar problem in 
poverty measurement, Foster and Shorrocks (1988) noted how allowing the cutoff point to vary leads to 
a useful graphical technique by which unambiguous rankings may be made. (This approach is quite 
similar to the Lorenz curve, used in ranking the distributions with respect to inequality.) The difference 
here is that there are two arbitrary cutoff points used in defining the middle class: the upper and lower 
levels of income. Allowing them to vary yields a curve which indicates when the cutoffs are irrelevant: 
when one curve is above another it means that no matter what cutoffs are chosen (as long as the upper 
cutoff is above the median and the lower is below) the first has a larger middle class than the second. 

We apply a similar approach to obtain two polarization curves indicating when one distribution has 
unambiguously more polarization than another. The first curve is related to the ‘increased spread’ aspect 
of polarization. It ranks one distribution above the other in terms of polarization when, no matter what 
range of families is chosen around the median family, the range of incomes (or ‘spread’) necessary to 
capture all the families is larger. We show that this ranking method gives precisely the same answers as 
the above strategy for measuring the middle class: one distribution has unambiguously more polarization 
exactly when it has an unambiguously smaller middle class. Our second polarization curve incorporates 
the ‘increased bipolarity’ aspect of polarization as well. It is based on a notion of ‘average distance from 
the median income’, ranking one distribution above the other in terms of polarization when this average 
distance is higher for every range of families about the median. 

In many analyses it is helpful to summarize all the data into a single numerical index, and so we next turn 
to the construction of an index of polarization. We opt for an intuitive measure based on the second 
polarization curve in a similar way that the Gini coefficient is based on the Lorenz curve. We 
demonstrate that the resulting formula has two nice interpretations. First, it can be depicted in terms of 
the Lorenz curve as (twice) the area beneath the curve above the tangent to the curve at the median 
family, renormalized to the median instead of the mean. Our polarization measure is thus seen to be a 
natural companion of the Gini measure of inequality. Second, we show that the polarization index may 
be expressed as a function of the ‘between-group’ inequality minus the ‘within-group’ inequality as 
measured by the Gini coefficient (where the two groups are families above and below the median). 
Inequality and polarization move together when the inequality between these groups rises; they move in 
opposite directions when there is more inequality within the groups. 

To illustrate our methods, we provide a preliminary analysis of polarization in Canada and the US. Using 
data from the Luxembourg Income Study, the Survey of Consumer Finances in Canada, and the Current 
Population Survey in the US, we analyze how polarization and inequality changed during the 1980s and 
offer a cross-country comparison for the year 1988. Our results reveal that polarization and inequality 
have remained virtually unchanged in Canada, while at the same time both have been on the rise in the 
US Moreover, by 1988, there was an unambiguous ranking between the two countries: the US clearly has 
greater polarization and inequality than Canada. 

                                                 

2 This point was emphasized in the interesting paper of Horrigan and Haugen (1988). 
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Section B: Elements of Polarization 

Our approach to measuring polarization will be based on techniques used in measuring the middle class. 
Before proceeding, though, we will identify certain stylized distributional changes leading to clear-cut 
increases in polarization. The first is an unambiguous movement away from the middle, as depicted in 
Figure B1, which may be termed increased spread. This is the classic example of the rich becoming 
richer and the poor becoming poorer, resulting in a distribution with a greater gap between the two 
groups.3 Alternatively, the new distribution is obtained from the initial one by means of a mean-
preserving regressive transfer (called a mean-preserving spread in the literature on risk) taking place 
across the middle. The restriction on the location of the transfer is crucial. Transfers across the middle, 
such as the one depicted in Figure B1, shift the population away from the middle and consequently lead 
to increased polarization via increased spread. Transfers on one side of the middle, from the rich to the 
very rich or from the very poor to the poor, move one group away from, and another towards, the 
middle. This possibility is not covered by our notion of increased spread and may have a very different 
effect on polarization. 

Figure B1: Increased spread 

 

                                                 

3 See Maxwell (1990) for a discussion of this aspect of polarization. 
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Figure B2: Increased bipolarity 

 

Figure B2 illustrates the second polarization-increasing change in distributions, which may be termed 
increased bipolarity. As in the first diagram, both distributions have two masses of individuals. But here 
it is not the relative positions of the masses that are changed – in fact the center of each mass is 
unaltered – it is the distribution around each center that is tightened up. When the spread is unchanged 
and the poles are better-defined, as with the second distribution in Figure B2, we shall say that 
polarization has increased via increased bipolarity. Intuitively, a change of this type involves movements 
away from the middle of the overall distribution by those nearer to the middle and a concurrent, equal-
sized shift towards the middle by those who are further away. According to the increased-spread 
criterion, these two changes should work against one another, with the spread serving to increase 
polarization and the ‘concentration’ decreasing it. The bipolarity criterion decides the issue in favour of 
the (nearer-to-the-middle) spread, by positing that their combined effect is to raise overall polarization. 
This criterion implicitly places more weight on changes in the distribution occurring nearer the middle. 

One immediate consequence of this approach is that the distinction between inequality and polarization, 
earlier noted by Love and Wolfson (1976), may be more clearly identified. Any regressive transfer (or 
mean preserving spread) leads to an unambiguous increase in inequality, irrespective of the location of 
the transfer. Thus, polarization and inequality move in the same direction when the transfer takes place 
across the middle: increased spread leads to greater inequality in Figure B1. However, increased 
bipolarity is associated with a pair of progressive transfers, one on each side of the middle, which 
necessarily diminish inequality. Polarization and inequality move in opposite directions when same-side 
transfers occur, as depicted in Figure B2. This distinction will be discussed at greater length below.4  

                                                 

4 Love and Wolfson (1976) were first to point out the distinction between inequality and polarization. Recent results by 
Amiel and Cowell (1992) suggest that the average individual’s initiative notion of ‘inequality’ may be better represented by 
what we call polarization than by the economist’s definition of inequality. Their international survey found that an 
overwhelming majority of college students polled considered a progressive transfer wholly on one side of the median to 
raise ‘inequality’ rather than lower it (as the Pigou-Dalton transfer axiom would require). 
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Section C: Measuring the Middle 

As noted in the introduction, the most common proxy for increased polarization is a declining middle 
class. Various approaches have been used in measuring the middle-income group; in this section we will 
identify the common framework underlying them. The definitions of Thurow (1984), Blackburn and 
Bloom (1985), and Levy (1987) will be re-examined within this framework. One will be dismissed as a 
measure of the middle, while the fundamental arbitrariness in the remaining two will be noted. We then 
derive a useful partial ordering for measuring the middle that is related to the criterion of increased 
spread. 

Framework 

Most attempts at ‘measuring the middle’ may be broken down into four distinct steps: (i) choosing the 
‘space’, (ii) defining the middle, (iii) fixing the range, and (iv) aggregating the data. The first, and most 
fundamental is the choice of the ‘space’ within which the middle class is to be identified. The most 
common choice is ‘income space’, where income is monthly salary, yearly expenditure, or some other 
single dimensional indicator of welfare. Sometimes the middle class is defined in ‘people-space’ as 
exemplified by the approach used by Levy. 

Once this initial step is decided, the second step is to fix an appropriate definition of the middle. Most 
studies have opted for the median income or, in people space, the individual at the 50th percentile. 
Another possibility is the mean income, although the fact that less than half of the population typically 
achieves this standard lessens its intuitive appeal. The third step is to select a range around the middle, 
thus identifying the middle class. The final step is to aggregate the data on the middle class into an 
overall index reflecting its relative magnitude in some dimension of interest. 

Examples 

The approaches of Thurow (1984), Blackburn and Bloom (1985) and Levy (1987) all conform to this 
general framework. Let us begin with the first two, which work within income space. Both choose the 
median income m as the middle, select a range whose upper and lower cutoffs are percentages of the 
median, and use as their index M the proportion of the population falling within that range. Figures C1 
and C2 depict their method of measuring the middle. In terms of the density function f for the income 
distribution, M is simply the area below f between the lower and upper limits, or the shaded region in 
Figure C1. Alternatively, M may be viewed as the vertical distance between the values of the cumulative 
distribution function (or cdf) F evaluated at the two cutoff points, as depicted in Figure C2. (Note that 
the median income m is located where F achieves the value 0.5.) The same basic diagrams apply to both 
papers, with the only difference being the particular ranges chosen. 
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Figure C1: Finding M for a density 

 

Figure C2: Finding M for a cumulative distribution function 

 

In contrast, Levy (1987) adopts a substantially different approach to measuring the middle. To begin 
with, the middle class is defined in people space rather than income space. The middle is taken to be the 
50th percentile and a range from the 20th to the 80th percentile is identified as the middle class. Of 
course, it would be fruitless to use the measure M in this context. Consequently, an alternative indicator 
– the share of income received by the middle class – is used. 
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Figure C3: Levy’s measure 

 

Figure C4: Lorenz curve and Levy’s measure 

 

This method of measuring the middle also admits a simple graphical representation. Let 1−F  denote the 
inverse of the cumulative distribution function F, so that )(1 pF −  is the income of the person at the thp  

percentile. The mean of F  is μ = F−1(p)dp
0

1∫ , depicted as the shaded and crosshatched area in Figure 

C3. Levy’s measure is F −1( p)dp /μ
0.2

0.8∫  or the ratio of the crosshatched area to the total shaded and 
crosshatched area in the diagram. An alternative representation in terms of the Lorenz curve L of the 
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distribution is given in Figure C4. Recall that for every p  between 0 and 1, the Lorenz value )( pL  is 

the share of income received by the poorest p of the population: L(p) = F −1(q)dq /μ
0

p∫ . Levy’s 
measure is L(0.8)−L(0.2), the difference between the Lorenz values at the 80th and 20th percentiles. 

Critique 

At first glance, Levy’s approach would appear to be a reasonable method of measuring the middle class. 
A closer examination, however, reveals certain major drawbacks. Consider a simple example of a 
uniform distribution between $10,000 and $30,000 having median m = $20,000. The middle three 
quintiles extend from $14,000 to $26,000, and since there are just as many persons with income ε−m as 

,ε+m  the middle 60 per cent receives 60 per cent of the overall income. Now suppose that the 
distribution spreads out to become uniform between $0 and $40,000, as would result if those having an 
income of ε−m  gave a transfer of 0>ε  to those with .ε+m  This is a clear migration away from the 
middle that reduces the size of the middle class according to Thurow or Blackburn and Bloom. 
However, Levy’s measure indicates no change in the middle class: the middle 60 per cent still receives 60 
per cent, by the same argument as before. Indeed, any symmetric distribution will have the same ‘size’ of 
the middle class using Levy’s approach, irrespective of whether the incomes range widely or fall within 
one dollar of the median income. The fact that the income range necessary to capture 60 per cent of the 
population may have to vary extensively (from $12,000 in the initial uniform distribution to $24,000 in 
the second) is totally ignored. Clearly this approach misses out on an important aspect of the 
distribution: its spread. 

Now what does Levy’s index actually measure? We will show that it is more a measure of the skewness 
of the distribution than a measure of the middle class. For any p<0.5, let )( pD  denote the difference 
between the slope of the 45o line of equality and the slope of the chord running from )( pL  to 

),1( pL −  as depicted in Figure C5. Notice that as p  tends to 0.5, the slope of the chord tends to the 
slope of the tangent to the Lorenz curve at 0.5. This slope, in turn, is simply ,/ μm  and so 
limp→0.5 D(p)= ,/)( μμ m−  a natural measure of skewness. As an approximation of this limiting 
formula, )( pD  is also a measure of skewness in its own right: Clearly, )( pD  = 1 – 
[L(1− p)− L(p)]/(1−2p)  or in terms of V (q)=q−L(q) , the vertical shortfall of the Lorenz curve from 
the diagonal, D(p)=[V (1− p)−V (p)]/(1−2p). For any symmetric distribution, the shortfalls are 
symmetric about p=0.5, or equivalently, V (q)=V (1− q) . Consequently, in the symmetric case, 

0)( =pD  and the slope of the chord is 1. However, if the distribution is positively skewed, as is 
typically the case with empirical income distributions, the upper shortfall will exceed the lower shortfall 
(as in Figure C5), and )( pD  will then be positive. The degree of skewness, as measured by ),( pD  
increases as the shortfall discrepancy V (1− p)−V (p) increases and as the Lorenz ordinates )( pL  and 

)1( pL −  move closer together. 
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Figure C5: A measure of skewness 

 

These observations offer a clearer understanding of Levy’s measure and his empirical results. For 
symmetric distributions, Levy’s measure L(0.2)−L(0.8)  takes a value of 0.6. The observed value of 0.53 
suggests that the distribution is positively skewed. The associated chord has a slope of 53/60, which is 
less than the slope of the diagonal, and the Lorenz curve is closer to the diagonal at the 20th percentile 
than it is at the 80th. Moreover, the relative constancy of Levy’s index indicates that skewness as 
measured by D(0.2)=7/60  was basically unchanged over the reported time period. These results are 
interesting, but have little to say about the middle class.5 

A Partial Ordering 

The approach of Thurow and Blackburn-Bloom is certainly more compelling. Even so, there remains a 
certain arbitrariness in the method they employ.  Thurow chooses a middle-class range of 75 per cent to 
125 per cent of the median; Blackburn and Bloom select cut-off points at 60 per cent to 225 per cent of 
the median. As the choice of a range is arbitrary, any number of alternatives would be equally justifiable. 
If one of these alternative ranges leads to contradictory results, this would surely weaken their range-
specific evidence. On the other hand, if every range about the median yields the same direction of 
change, the robustness of their conclusions could not be challenged along these lines. In this section we 
determine whether and when such an unambiguous determination can be made. 

                                                 

5 In private communications, Levy has indicated that he no longer uses this approach to ‘measuring the middle’, and instead 
is pursuing an alternative method based on the generalized Lorenz curve.  See Levy and Murnane (1990) for related 
discussions. 
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We begin with some definitions. Let R= (z , z ) be an interval whose endpoints satisfy 0 ≤z≤1≤ z . 
Given an income distribution F  with median ,Fm  we may use R  to represent the middle-income 
range whose lower cutoff is FF mmz ≤  and whose upper cutoff is z mF ≥ mF . The index 
M(F;R)=F(z mF )−F(zmF )  gives the share of the population in the range defined by R . To see 
whether one distribution, ,F  has a larger middle class than another, G , for the range R , we simply 
compare );( RFM  and );( RGM . Note that since Fm  and Gm  may be different, the absolute cutoff 
points will in general be different; it is the cutoffs as a proportion of the median that are fixed in the 
comparison. 

Our motivating question is whether it is possible for F  to have a larger middle class than G , 
irrespective of which range R  is actually chosen. If this happens we shall say that F  has an 
unambiguously larger middle class than G , written GMF . More precisely, GMF  if and only if 

);();( RGMRFM ≥  for all R , with ];[];[ RGMRFM >  for some R. Figure C6 depicts an example 
where GMF  holds. It is clear that the requirements for such an unambiguous comparison are quite 
strong, so one would expect the resulting ranking M over distribution to be highly incomplete: for many 
pairs of distributions, neither GMF  nor FMG  is true. Because of this, M is said to be a partial 
ordering. 

Figure C6: An example where F M G 

 

Figure C7: M-Curves 
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But just how ‘partial’ is the middle class ordering M; and in what cases is it able to make a judgement? 
To answer these questions, we will characterize M with the help of some straightforward definitions and 
graphs. Let F~  be the (median-) normalized distribution derived from F, defined by ˜ F (z)=F(zmF ). 
Clearly ˜ F (1)=0.5, implying that all normalized distributions intersect at .1=z  Now let )(zM F  denote 
the proportion of the population in F lying between Fm  and ,Fzm  so that 
MF (z) = ˜ F (z) − ˜ F (1) = F(zm f ) − F (m f ) . Noting that M(F;R) = M( ˜ F ;R)  =MF (z) + MF (z ), it is 
apparent that the middle class population can be broken down into a ‘lower middle class’, measured by 

),(zM F  and an ‘upper middle class’, measured by MF (z ). Consequently, whenever two distributions F 
and G satisfy )()( zMzM GF ≥  for all z, and > for some, it follows that F M G. In words, if F has larger 
lower and upper middle classes, irrespective of the cutoffs, then it must have an unambiguously larger 
middle class as well. This case is illustrated in Figures C6 and C7. 

It is perhaps less obvious that the converse must hold true as well. Suppose that F M G, and recall that 
no limitations are placed on z  and z  beyond 0≤ z ≤1≤ z . By choosing zz = and z =1, and then 

1=z and z = z,  the condition )()( zMzM GF ≥  for all z, and )()( zMzM GF >  for some z, follows 
immediately from the definition of F M G, which establishes our first result. 

Proposition 1. F M G is and only if )()( zMzM GF ≥  for all z, with )()( zMzM GF >  for some z. 

The graph of the function )(zM F , which we call the ‘M-curve’ of the distribution F, is depicted in Figure 
C7, along with the analogous curve for G. Proposition 1 shows that the ‘M-curve’ represents the partial 
ordering M in much the same way as the Lorenz curve represents the Lorenz ranking: A higher M-curve 
indicates an unambiguously larger middle class. Even when M is unable to rank two distributions, its 
curve can be a useful tool of analysis, identifying the precise locations where crossings occur and thus 
the cause of the ambiguous ranking. In particular, the M-curve may be used to extend the benchmark 
partial ordering M in practice. For example, if the curves reveal that the source of the ambiguity is a 
crossing far from the median, the researcher may choose to conclude that a sufficiently robust ranking 
can be made. 
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Many measures of the income distribution are closely related to stochastic dominance orderings,6 and 
the present approach is no exception. Figure C6 reveals that M is analogous to first degree stochastic 
dominance of G by F to the left of 1 (since )(~)(~ zGzF ≤  for all )1≤z , while it is first degree stochastic 
dominance of F by G to the right (since )(~)(~ zGzF ≥  for all ).1≥z  Intuitively, the combined effect of 
these two requirements is to leave F with more of its population near its median than G. In particular,  
F M G requires the density function f of F to be higher at its median Fm  than the density function g of 
G is at Gm . 

Figures C6 and C7 also illustrate the link between the partial ordering M and the abstract notion of 
‘increased spread’. Any mean preserving spread across the median lowers the M-curve on both sides of 
1, and consequently leads to a distribution having an unambiguously smaller middle class. Indeed, M 
goes beyond the stylized spreads of this type. Any decrement in income taking place below the median, 
or any increment in income above the median, will unambiguously diminish the middle class. 

However, the ordering can render no judgement when a transfer occurs to one side of the median. Any 
progressive transfer of this type will lower the M-curve somewhere near the median and raise it 
somewhere further away, resulting in M-curves that cross. 

Viewing a decreasing middle class as increased polarization, we now have available a polarization partial 
ordering that reflects the ‘increased spread’ component, but not the ‘increased bipolarity’ component of 
polarization. The next section will analyze the converse of this partial ordering, and then will show how 
it can be extended to accommodate the ‘increased bipolarity’ aspect of polarization. 

Section D: Polarization Curves 

In this section we explore partial orderings of polarization, and the curves that describe them, focusing 
on people space (the vertical axis) rather than income space (the horizontal axis) to define the middle 
class. The first partial ordering is motivated by the question: Given any range around p=0.5 in people 
space, how wide would its range in income space have to be to contain all its members? This leads to a 
ranking and a curve representing it that captures the notion of increased spread, and is directly linked to 
the middle class ordering M. The second partial ordering will place greater weight on incomes closer to 
the middle, being motivated by the question: what is the average income shortfall of those in a given 
range around p=0.5? The resulting curve and ranking will fully reflect the spread and bipolarity aspects 
of polarization. 

Polarization as Increased Spread 

Whether people space or income space is chosen as the space for defining the middle class, the general 
methodology – as outlined above – is the same. This choice may initially seem unimportant since, for 
any given distribution F, every middle income range R=[z,z ] satisfying z ≤1≤ z  has a corresponding 
middle class population range Q = [ q,q ] satisfying q ≤ 0.5 ≤ q  and vice versa. However, when the 
distribution changes, the original income range may no longer correspond to the original population 
range. For example, if we fix an income range in Figure C6, the associated population range for F is 

                                                 

6 See Fishburn and Vickson (1978) for a brief introduction to the three degrees of stochastic dominance.  In particular, F 
stochastically dominates G in the first degree if )()( yGyF ≤  for all y. 
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larger than the one for G. Alternatively, for any given range in people space, F has a smaller income 
range than G. It was the fact that a given Q can have widely varying income spreads for different 
distributions which tripped up Levy’s method of measuring the middle class: increasing the spread can 
leave the income share received by Q unchanged when the income range of Q varies. In contrast, the 
middle class index M is based on the very fact that different distributions have different Qs for a given R. 
M is in fact the length of the associated Q. 

Perhaps the people-space approach can be resurrected by selecting an index which is sensitive to this 
spread. To this end, define );( QFS  to be the normalized income distance ˜ y (q )− ˜ y (q)  associated with 
Q, where ˜ y (q)= ˜ F −1(q) is the median normalized income of the person at the qth percentile. Just as M 
measures the length of the associated range in people space, S measures the length of the range in 
median normalized income space associated with a given Q. A greater level of S indicates that there are 
fewer incomes near the middle, as illustrated in Figure D1, so S is seen to be an index of polarization 
rather than a measure of the middle class. It is the dual index to M, and as such is subject to the same 
critique that it depends on a range that is entirely arbitrary. This consideration leads to a range-
independent partial ordering of polarization, defined as follows: 

 F S G if and only if );();( QGSQFS ≥  for all Q, with ),(),( QGSQFS >  for some Q. 

In words, F S G indicates that no matter which middle-class range about p=0.5 is chosen, the 
normalized income spread required to capture it is larger (or no smaller) for F than for G. This is clearly 
the case in Figure D1. 

Figure D1: An example where F S G 
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Figure D2: First degree polarization curves 

 

Figures C6 and D1 suggest that when F has an unambiguously greater spread, G has an unambiguously 
larger middle class, and vice versa. It is not difficult to confirm this in general. Perhaps the simplest way 
to see it is by defining a curve which represents S in the same way the M-curve represents the ranking M. 
The (first degree) polarization curve FS (q) of a distribution F is defined by SF (q)= ˜ y (q)− ˜ y (0.5)  
= F −1(q) − F −1(0.5) /mF . For each q, the quantity )(qSF  represents the distance between the median 
and the income of the person at the qth percentile, expressed in medians. The polarization curves of the 
distributions in D1 are depicted in D2. An argument entirely analogous to the verification of Proposition 
1 demonstrates that the polarization curve represents the partial ordering S. 

Proposition 2. F S G if and only if )()( qSqS GF ≥  for all q, with )()( qSqS GF >  for some q. 

Moreover, the polarization curve of one distribution is higher exactly when its M-curve is lower than the 
other distribution’s M-curve, as can be seen by comparing diagrams C6 and D1-2. In the lower half of 
the distribution, a higher polarization curve means that the normalized cdf is to the left and above the 
second normalized cdf, and hence the M-curve is lower.  In the upper half, it means that the normalized 
cdf is to the right and below the other normalized cdf which translates once again to a lower M-curve. 
By Propositions 1 and 2, then, we have the following result: 

Proposition 3. F S G if and only if G M F. 

In sum, the polarization ranking S is the converse of the middle-class ranking M. It is represented by the 
first degree polarization curve, which acts like a pair of Lorenz curves signaling greater polarization. It 
has an intuitive interpretation in terms of increased spread. In addition, our previous comments about 
extending M, and its interpretation in terms of stochastic dominance, also apply to S (with the order 
reversed, of course). One final observation may also be made: the polarization ranking is preserved 
under arbitrary increasing transformations of the income variable when distributions have the same 
median. In other words, the ranking S (as well as M) can be meaningfully applied to ordinal data, such as 
IQ or educational attainment, without the kind of criticism that has been leveled against the use of the 
Lorenz criterion in these cases. Since the Lorenz curve ‘adds up’ incomes and relies on the mean, Lorenz 
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comparisons can be altered by transformations of the variable. The polarization curve uses ranges, not 
sums, and is based on the median, which is invariant to increasing transformations. This is a practical 
advantage of S in cases where the variable is not cardinally meaningful. 

When the income variable is cardinally meaningful, though, it may be argued that S does not go far 
enough in identifying polarization, since it ignores increased bipolarity. This may be seen by the fact that 
any progressive transfer wholly on one side of the median lowers the polarization curve for one range of 
incomes, but raises it over another range closer to the median, resulting in crossed curves (as in Figure 
D3). The normalized distribution function of F has greater spread near its median than does G, but 
further away the relationship reverses. To reflect the increased bipolarity, the change closer to the 
median would have to be emphasized. Just as the Lorenz curve builds on low incomes by cumulating 
from the left to the right, we build on the middle incomes by cumulating from the median outwards. 
The next section constructs a second polarization curve based on this idea. 

Figure D3: Increased bipolarity and crossing curves 
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Figure D4: Second degree polarization curves 

 

Polarization as Increased Bipolarity 

For a given distribution F, define the (second-degree) polarization curve FB  by BF (q)= SF (p)
q

0.5∫ dp  
for 0≤q≤1, which is simply the area under the first polarization curve S between 0.5 and q. Since a 
higher first-degree curve integrates to become a higher second degree curve, both curves reflect 
increased spread. The second degree polarization curve, however, is also sensitive to increased bipolarity. 
Figure D4 depicts FB  and GB  for the distributions in Figure D3. Recall that the distribution F has 
increased bipolarity as compared to G: the progressive transfers shift income away from the middle, 
resulting in higher first- and second-degree curves for F near the median. As we move further from the 
middle, the spread FS  falls below GS , but the cumulative spread FB  is still larger than GB . Thus the 
new polarization curve reflects increased bipolarity as well as spread. 

Let B denote the partial ordering generated by the new curves, so that F B G if and only if 
)()( qBqB GF ≥  for all q, with )()( qBqB GF >  for some q. It turns out that B has the following 

interesting interpretation. 

Proposition 4. F B G is equivalent to the requirement that for any middle class population Q, the average 
distance of its members’ incomes from the median (in terms of medians) is no lower in F than in G, and 
for some Q it is higher.  

The verification of this result follows from the observation that BF (q )+ BF (q)  represents the aggregate 
distance from the median (in median units) for the members of Q, while (q − q)  represents Q’s 
population size, and hence (BF (q )+BF (q)) /(q −q)  is the average distance for Q’s members. Therefore, 
if FB  never falls below GB , the sum BF (q )+BF (q)  must be greater than or equal to BG(q )+BG (q)  and 
so the average distance must follow suit. The converse follows from an argument analogous to the one 
for Proposition 1. Thus, a higher second degree polarization curve provides information about the 
average distance to the median for every middle class and vice versa. 
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It is easily seen that the second polarization curve is always convex, and resembles a pair of Lorenz 
curves facing one another. It achieves a minimum of 0 at p=0.5. The left side of the curve reaches a 
maximum at a value of BF (0)= [ ˜ y (0.5)− ˜ y (q)]dq

0

0.5∫ = 1
2 (m −μL ) /m , where Lμ  is the mean income 

among the lower half of the distribution; the right side has a highest value of 
BF (1)= [ ˜ y (q)− ˜ y (0.5)]dq

0.5

1∫ = 1
2 (μU −m) /m , where Uμ  is the mean of the upper half. Since the overall 

mean μ  is halfway between Lμ  and Uμ , this implies that for the typical positively skewed distribution 
with ,μ<m  the right side reaches a higher value than the left. For two distributions with the same 
median, a necessary condition for F B G is for L

G
L
F μμ ≤  and ,U

F
U
G μμ ≤  so that both the lower and upper 

means are as far from the median in F as in G. Additionally, it must be the case that the density of F at 
the median is no higher than the density of G at the median. For if the opposite were true, then FS  
would be below SG  near the median, implying the same for FB  and GB . 

Section E: An Index of Polarization 

Partial orderings and their associated curves have proved to be important tools in analyzing the income 
distribution. With their help, the analyst can graphically depict the aspect of the distribution of particular 
interest and then identify pairs of distributions whose ranking is unambiguous. For example, inequality 
analyses often begin by checking whether one distribution Lorenz dominates another. Numerical indices, 
however, are the most common tools in analyzing the income distribution. A numerical index 
summarizes the aspect of interest in a single number and thus induces a complete ordering over 
distributions. It can be easier to work with than a partial ordering, particularly when comparing large 
numbers of distributions or searching for factors that ‘explain’ changes in the distribution. We now turn 
to the construction of an index of polarization. 

There are a number of qualities that a ‘good’ index should possess. First, the index should conform to 
the basic, underlying notions of the concept being measured; e.g., inequality measures should be Lorenz-
consistent. In the present context, this means that the index agrees with the second degree (and hence 
first degree) polarization curve when it applies. Second, the index should be well motivated and 
understandable. For example, the Gini coefficient can be interpreted as twice the area between the 
Lorenz curve and the diagonal of equality, while the meaning of Theil’s inequality index is somewhat 
more obscure. Third, the index may be required to satisfy certain useful properties or axioms, such as 
decomposability by population subgroup. Since this is a first attempt at constructing a polarization 
index, we will focus on the first two criteria and will leave the third for future work. 

Using the Gini coefficient as a model, we propose to measure polarization as twice the area beneath the 
second degree polarization curve. In symbols, our polarization index P is defined by P= 2BF0

1∫ (q)dq. 
Any distribution with a higher polarization curve will obviously have a higher index value, so P is 
consistent with the unambiguous partial ordering B. When polarization curves cross, it makes 
determinations in much the same way as the Gini coefficient does with intersecting Lorenz curves: it 
decides on the basis of the areas contained by the curves. This is, of course, an entirely arbitrary solution 
but has considerable merit in its simplicity. Moreover, as we shall see below, the resulting index offers 
important new perspectives on the relationship between polarization and inequality. 



Foster and Wolfson  Polarization 

OPHI Working Paper 31  www.ophi.org.uk 18

The Relative Median Deviation, Inequality and Polarization 

Generally speaking, inequality and polarization increase when the distance between those above the 
median and those below the median rises. We can measure the extent of the average distance by 

,/)( μμμ LUT −=  where, as before, Uμ  is the mean of those above the median, Lμ  is the mean of 
those below, and μ  is the overall mean. By analogy to a similar mean-based index7 we shall call T the 
relative median deviation. It turns out that T has an interesting interpretation in terms of the Lorenz 
curve.8 Recall that μ  is the average of Lμ  and Uμ , so that μμμμμμ /)(/)( LU −=−  is the amount of 
income, as a share of the mean, which would be necessary to raise the income of everyone initially below 
the median to the overall mean. This, in turn, is simply the vertical distance of the Lorenz curve from 
the line of equality at p=0.5, denoted as V (0.5)=0.5−L(0.5) above. It follows from its definition, then, 
that T is twice the magnitude of the Lorenz shortfall, or T = 2V(0.5) = 1-2L(0.5).  

Figure E1: Polarization, relative median deviation, and the Gini 

 

Figure E1 depicts T, and also points out an interesting fact concerning T and the Gini coefficient G, 
namely that T is inevitably greater than G when the latter is nonzero. To see this, we have drawn the 
tangent line to the Lorenz curve at P= 0.5 . In combination with the line of equality, this line defines a 

                                                 

7 The relative mean deviation uses the mean income rather than the median as the demarcation line. It can be defined in 
terms of population weighted group means or more simply as twice the shortfall between the diagonal and the Lorenz 
curve evaluated at the mean income. 

8 T also is related to the first degree polarization curve. The area below this curve is   

0

1∫ S(q)dq=B(1)+B(0)= 1
2 (μU −m) /m+ 1

2 (m−μL ) /m= 1
2 T (μ /m), so T is twice the area below the first degree 

polarization curve, normalized by the mean rather than the median. 
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quadrilateral whose area is easily seen9 to be 0.5−L(0.5). Thus T is twice the area of this quadrilateral, 
and since G is twice the area of the region between the Lorenz curve and the line of equality, T is greater 
than G. Consequently, the remaining area of the quadrilateral is never zero when G is nonzero. 

The next result shows that our polarization index is related to the residual area of the quadrilateral below 
the Lorenz curve. In fact, P is the median normalized difference between T and G. 

Proposition 5. 
m

GTP μ)( −=   

The proof is given in the appendix. From Proposition 5, P is the difference between T and G, scaled up 
by the measure of positive skewness ./ mμ  When the distribution is symmetric, the relative median 
deviation T is the sum of inequality G and polarization P. Positive skewness in the distribution leads to a 
value of m/μ  greater than unity, and augments the measure of polarization. It is easy to see how 
inequality and polarization can move in the same direction: An increase in T is likely to bow out the 
Lorenz curve at the same time that it expands the quadrilateral, which may well lead to a greater residual 
area. This is consistent with the effect of a regressive transfer across the median; an increased spread is 
reflected in greater inequality as well as polarization. However, when T is fixed, inequality and 
polarization can move in opposite directions, as in the case of progressive transfers wholly on either side 
of the median. Increased bipolarity is therefore associated with increased polarization, but must lead to a 
decrease in the level of inequality. 

Proposition 5 also shows that the polarization index is easily constructed from four readily available 
statistics: the mean, the median, the Gini coefficient and the relative median deviation (or 1−2L(0.5)) . 
Thus, it should be straightforward to derive polarization values for previous studies from reported 
results. 

Polarization and Decomposing the Gini 

Inequality indices are often decomposed by population subgroups into a term representing between-
group inequality and a term representing (average) within-group inequality. The Gini coefficient does not 
generally admit such a simple decomposition, but it does in the special case where the groups are defined 
by nonoverlapping income ranges. Let the overall population be divided into two subgroups: those 
above the median and those below. The between-group term BG  is found by applying the Gini to the 
‘smoothed’ distribution in which those above m receive the group mean μU , and those below receiveμL . 
The within-group term WG is a population weighted average of the inequality levels within the two 
groups. The overall inequality G is thus broken down as G=GB +GW . 

                                                 

9 The width of the quadrilateral is 1 and the average height is given by the height at its middle, which is 0.5 – L(0.5). 
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Figure E2: Polarization and decomposition of the Gini 

 

This decomposition of the Gini is illustrated in Figure E2. The Lorenz curve of the smoothed 
distribution is formed by connecting the three points along the original Lorenz curve where p=0, 0.5, 
and 1. The slope of the lower segment is μL μ  while the slope of the upper segment isμU μ . The 
between-group term is twice the area captured by this piecewise linear between-group Lorenz curve. The 
degree to which the original Lorenz curve bows away from the between-group Lorenz curve reflects the 
extent of within-group inequality. In fact, by the decomposition formula, WG  is twice the area between 
the original and the between-group Lorenz curve. 

The triangle formed by the between-group Lorenz curve and the diagonal has an area of 
(0.5−L(0.5)) /2 . Therefore, GB =0.5−L(0.5) and since T is 2(0.5−L(0.5))  we know that T=2GB . The 
relative median deviation is twice the between-group term. Substituting this identity along with the 
decomposition formula into Proposition 5 yields the following result:10 

Proposition 6. 
m

GGP WB μ)( −=  

Thus the polarization index is just the inequality between the upper and lower halves of the distribution 
minus the inequality within the two subgroups, all measured by the Gini coefficient and renormalized by 
the median. Since the overall Gini is the sum of BG  and GW , this provides another clear indication of 
how inequality differs from polarization. More inequality between the upper and lower halves of the 
distribution will tend to raise both inequality and polarization; a greater level of within-group inequality 
raises overall inequality, but lowers polarization.  

                                                 

10 The authors would like to thank Professor Chinhui Juhn for pointing out this nice interpretation of P. 
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Section F: Empirical Analysis 

In the previous sections, we have developed new tools for evaluating the polarization of an income 
distribution. We now apply the methodology to income data from Canada and the US. 

The Data 

For each country, we have obtained data on family disposable income over three years. The Canadian 
data for 1981 and 1987 are drawn from the Luxembourg Income Study (LIS), an international 
collaborative effort to assemble consistent income distribution and related microdata sets.11 This source 
has the benefit of having been gathered over a number of countries using a consistent methodology. It is 
available, though, in a somewhat aggregated form, so in addition to this source we have made use of the 
original microdata from the Survey of Consumer Finance (SCF) for this year 1988. The LIS was also the 
source of the first two US years we examine, 1979 and 1986. The 1988 US data are derived from the 
public use file of the March Current Population Survey (CPS). The variable analyzed is family size 
adjusted disposable family income constructed using a 40-30 equivalence scale (an extra adult is 40 per 
cent of the first adult, extra children are 30 per cent). Commentary on data of this type is available 
elsewhere (e.g. Wolfson, 1986 and Wolfson and Murphy, 1992), so we will move directly to the results. 

Results 

Table F1 summarizes our numerical results. The first two rows give the mean and median incomes in 
current dollars in each country’s own currency. To get an idea of how theses figures compare across the 
countries, we could use the OECD’s Purchasing Power Parity conversion factor of $1.25 Canadian per 
American in 1988 to see that the US mean income in Canadian dollars was $20,932, while the median 
similarly expressed was $18,273. The remaining statistics are based on normalizations of the data, so we 
do not need to worry about exchange rates to compare across countries. The third row is the median 
income over the mean, or the slope of the Lorenz curve at p=0.5. Recall that 1 minus this ratio is a 
measure of skewness of the distribution. As expected, the distributions for both countries in all years are 
positively skewed, with a more definite increasing trend exhibited in the UsS. 

Table F1: Canada and US income distributions compared 

 Family Disposable Income per Equivalent Adult Labor Income 

    Canada    US    Canada US  

  LIS LIS SCF LIS LIS CPS LIS LIS 

  1981 1987 1988 1979 1986 1988 1987 1986 

Mean  13,624 19,171 19,768 9,313 15,251 20,932 24,098 20,184 

Median 12,372 17,237 17,825 8,483 13,378 18,273 21,786 17,957 

Median/mean 0.908 0.899 0.902 0.911 0.877 0.873 0.904 0.890 

               

                                                 

11 O’Higgins et al. (1990). 
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 Family Disposable Income per Equivalent Adult Labor Income 

    Canada    US    Canada US  

Quantiles 

Q1 6.9 7.2 7.3 5.9 5.3 4.9 3.6 3.8 

Q2 13.0 13.0 13.0 12.6 11.8 11.5 11.2 10.9 

Q3 18.2 18.0 18.0 18.2 17.6 17.5 18.2 17.6 

Q4 24.3 23.9 23.8 24.7 24.6 24.8 25.7 25.2 

Q5 37.6 37.9 37.8 38.7 40.7 41.4 41.4 42.5 

D9 15.6 15.4 15.2 16.0 16.3 16.5 16.7 17.0 

D10 22.1 22.5 22.6 22.7 24.4 24.9 24.6 25.5 

V19 9.3 9.3 9.2 9.7 10.0 10.2 10.0 10.6 

V20 12.8 13.1 13.4 13.0 14.3 14.7 14.7 14.9 

Inequality               

Gini G 0.300 0.298 0.297 0.320 0.345 0.357 0.372 0.379 

%Pop with incomes:               

< 40% of median 9 9 8 13 14 15 19 18 

< 50% 15 14 14 19 20 21 25 23 

< 60% 22 21 21 24 26 27 29 29 

 60% to 75% 10 11 11 9 9 9 7 9 

 75% to 100% 18 18 18 17 15 14 14 12 

100% to 125% 16 16 17 15 14 13 12 14 

125% to 150% 12 13 11 12 10 11 12 9 

150% to 200% 14 13 14 14 14 14 15 14 

  > 200% 8 8 8 9 12 12 11 13 

% in M given income 
range:               

 75% to 150% of median 46 47 46 44 39 38 38 35 

 75% to 120% 34 34 35 32 29 27 26 26 

 50% to 150% 63 65 64 58 54 53 49 50 
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 Family Disposable Income per Equivalent Adult Labor Income 

    Canada    US    Canada US  

S given pop range:               

40% to 60% 0.291 0.294 0.289 0.301 0.345 0.365 0.365 0.374 

35% to 65% 0.445 0.439 0.436 0.475 0.524 0.557 0.579 0.585 

30% to 70% 0.611 0.606 0.594 0.655 0.718 0.750 0.781 0.783 

25% to 75% 0.792 0.766 0.758 0.843 0.932 0.968 1.025 1.011 

20% to 80% 0.971 0.938 0.936 1.042 1.147 1.185 1.245 1.232 

Avg distance given pop 
range:               

40% to 60% 1.024 1.025 1.018 1.024 1.028 1.031 1.032 1.018 

35% to 65% 1.027 1.026 1.020 1.027 1.032 1.035 1.037 1.020 

30% to 70% 1.031 1.029 1.023 1.031 1.037 1.040 1.039 1.023 

25% to 75% 1.037 1.034 1.029 1.035 1.045 1.047 1.042 1.029 

20% to 80% 1.043 1.042 1.037 1.042 1.055 1.057 1.046 1.039 

Polarization               

Median share L(0.5) 0.283 0.286 0.287 0.269 0.252 0.243 0.230 0.227 

Relative median deviation 
T 0.434 0.428 0.426 0.462 0.496 0.514 0.540 0.546 

Polarization index P 0.148 0.145 0.143 0.156 0.172 0.180 0.186 0.188 

 

The next series in the table gives quantile shares, or the shares of income received by various quantile 
groups. These figures start with the quintiles, or the shares received by groups comprising 20 per cent of 
the families (Q1-Q5), then the ninth and tenth deciles – 10 per cent group shares – are given (D9 and 
D10), and finally the 19th and 20th vingtiles – 5 per cent group shares – are presented (V19 and V20). 
The Canadian data reveal a fairly stable picture from 1981 to 1987, with the lowest and highest quintiles 
gaining slightly at the expense of the third and fourth. Summing over the lowest k quantiles gives the 
Lorenz coordinate for .2.0 kp=  The resulting Lorenz curves cross somewhere between 0.6 and 0.8, 
with the 1987 curve initially higher. In the US, each of the four lowest quantiles lost share to the highest 
quintile between 1979 and 1986. This suggests an unambiguous increase in inequality according to the 
Lorenz criterion. The final four rows show that the very highest have gained substantially in the US over 
time, and modestly in Canada. For example, the highest 5 per cent in the US received 13 per cent of the 
income in 1979 and 14.3 per cent in 1986. The comparable figures for Canada are 12.8 per cent and 13.1 
per cent. When all the shifts in the distribution are summarized in the Gini coefficient, we find a modest 
decrease in inequality in Canada and a reasonably large jump in inequality in the US. 
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In the next three rows we turn to indicators of the prevalence of low income. A relative definition of low 
income is used, where the cutoff is a percentage of the median income. The results show that the 
proportion of low income recipients has risen somewhat in the US and fallen somewhat in Canada, 
irrespective of whether a 40 per cent, a 50 per cent or a 60 per cent cutoff is used. 

The rest of the table presents data on the degree of polarization in the two countries. Data pertaining to 
the middle class are given in the first series. The first five rows show how various median ranges fared, 
while the bottom three lines give the proportion of families in the middle class when the middle income 
range is from 75 per cent to 150 per cent of the median, 75 per cent to 125 per cent, and 50 per cent to 
150 per cent, respectively. We see a rather mild increase in the size of this middle class between 1981 and 
1987 in Canada, owing to an increase at the upper part of the range. In the US there is a reasonably large 
erosion (5 percentage points) of the middle class for each range. The exodus was both upwards to the 
range beyond twice the median and downwards to the low income ranges. 

This phenomenon is likewise reflected in the figures on the spreads of the distribution. For Canada, in 
all but the smallest population range, the income spread (in medians) necessary to capture ranges is 
smaller in 1987 than in 1981. For instance, the spread necessary to encompass the middle 60 per cent of 
the population in 1981 was about 97 per cent of the median income; by 1987 this was about 94 per cent. 
The direction of change was notably different in the US The middle 60 per cent had a spread of about 
104 per cent of the median income in 1979 and approximately 115 per cent in 1986. A similar picture is 
obtained for each of the symmetric ranges given. 

The final rows report our index of polarization P and the relative median deviation T. We see that the 
level of polarization in Canada fell a modest amount from 1981 to 1987. Over the same period the 
relative median deviation tracked similarly, which indicates that difference in mean incomes of the group 
above the median income, and the group below, fell somewhat over the period in question. Reviewing 
our results on the Gini coefficient, we conclude that both inequality and polarization have declined in 
Canada over the period examined. In the US data, a rather different picture is obtained. The polarization 
index began at a higher level and rose even further during the period 1979 to 1986. The relative median 
deviation increased a significant amount, reflecting a widening in the mean incomes of the upper and 
lower groups. These figures suggest that both inequality and polarization increased in the US over this 
time period. 

A graphical cross-section comparison of the US and Canada is presented in Figures F1 and F2 for the 
year 1988. Each country’s cumulative distribution function (in own dollars) is given in the top graph of 
F1. The US distribution is above the Canadian distribution due to the difference in the value of the 
currencies. The figure below the cdfs at the left presents the same data, mean normalized, rotated and 
reflected, resulting in what is often called ‘Pen’s parade’ after Pen (1971). For each percentile on the 
horizontal axis, the curves show the associated levels of income, measured in means, of the family at that 
percentile. The Pen’s parade for Canada is initially higher than the US curve and then falls below at the 
higher incomes: the family at the first decile receives a higher relative income in Canada than in the US, 
while the order is reversed for the family at the ninth decile. Consequently, the Lorenz curve for the US 
is below that for Canada, reflecting an unambiguously higher level of inequality in the US than in Canada 
in 1988. 

At the right of Figure F1, the relative levels of polarization are depicted. The first graph is the first 
degree polarization curve which indicates the spread of the distribution. It is obtained from the cdf by 
normalizing by the median then reflecting the graph so that the axes are reversed, cutting the graph at 1, 
and folding the left hand side of the graph up. The US curve dominates the Canadian curve, which 
means that no matter which middle class range on the horizontal axis is selected, the spread needed to 
capture these families is higher in the US than in Canada. By our results relating the polarization ranking 
to the middle class ranking, then, it is apparent that the middle class is unambiguously smaller in the US 
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than in Canada. The final graph is the second degree polarization curve which is obtained from the 
previous curve by integrating outwards from the middle. It shows that the average departure from the 
median associated with a given range on the horizontal axis is larger for the US than for Canada. It also 
indicates a rather noticeable difference in the two country’s polarization index values. Since the area 
under the US curve is greater than the area under the Canadian curve, the US has the higher level of 
overall polarization. 

Figure F2 combines the bottom two diagrams, representing both inequality and polarization in a single 
diagram. The relative median deviation is twice the vertical departure of the Lorenz curve at the 
midpoint p=0.5. The Gini coefficient is twice the area between the Lorenz curve and the line of 
equality. The slope of the tangent line is the median over the mean, so the area beneath the Lorenz curve 
above the line, divided by the slope of the line, is our index of polarization. It is clear from the graph 
that the lower US Lorenz curve has higher values for the relative median deviation and for the Gini 
coefficient. Moreover, the area beneath the Lorenz is greater, while the slope of the tangent is less, 
resulting in a higher level of polarization in the US than in Canada.  

 



Foster and Wolfson  Polarization 

OPHI Working Paper 31  www.ophi.org.uk 26

Figure F1: Canada and US compared: two strands of measures 

0

20

40

60

80

100

-5000 20000 45000 7000
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.000

1.000

2.000

3.000

-0.500

0.500

1.500

2.500

3.500

 

Inequality 

0.000

0.100

0.200

0.300

0.400

Polarization 



Foster and Wolfson  Polarization 

OPHI Working Paper 31  www.ophi.org.uk 27

Figure F2: Canada and US compared: a grand synthesis 
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Appendix 

The proof of Proposition 5 relies on the following lemma. 
 
Lemma  BF (q)=0.5 − μ

m LF (0.5) − (q − μ
m LF (q)) for all .q  

 
 
Proof of Lemma 
 
Case 1:  q ≤ 0.5 
 
BF (q)  = SF ( p)dp

q

0.5∫ = 1
m (F −1(0.5) − F −1( p))

q

0.5∫ dp  

= (0.5− q) − 1
m [ F−1(p)dp

0

0.5∫ − F−1(p)dp
0

q∫ ] 
= (0.5−q) − μ

m (LF (0.5) − LF (q)). 
 

Case 2:   q ≥ 0.5  
 
BF (q)  = SF (p)dp

0.5

q∫ = 1
m (F−1(p) − F−1(0.5))

0.5

q∫ dp  

= 1
m [ F−1(p)dp

0

q∫ − F−1(p)dp
0

0.5∫ ]− (q−0.5)  
= μ

m (LF (q) −LF (0.5))− (q−0.5)  
 
 
Proof of Proposition 5 
 
By the Lemma,  
      P  =2 [0.5 − μ

m LF (0.5) − (q − μ
m LF (q))]

0

1∫ dq  

= m−μ
m dq

0

1∫ + μ
m 2(.5− LF (.5))dq − m−μ

m 2qdq
0

1∫ − μ
m 2(q− LF (q)

0

1∫ )dq
0

1∫  
= m−μ

m + μ
m T − m−μ

m − μ
m G 

= (T − G) μ
m  


