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Abstract

Many structures in economics – from development indices to expected utility – take the
form of a linear composite index, which aggregates linearly across multiple dimensions using
a vector of weights. Judgments rendered by composite indices are often given great
importance, yet by definition are contingent on an initial vector of weights. A comparison
made with one weighting vector could be robust to variations in the weights or, alternatively,
it may be reversed at some other plausible vector. This paper presents criteria to discern
between these two cases. A general robustness quasi-ordering is defined that requires
dominance or unanimous comparisons for a set of weighting vectors, and methods from the
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Bewley model of Knightian uncertainty are invoked to characterize it. We focus on a
particular set of weighting vectors suggested by the epsilon-contamination model of
ambiguity, which allows the degree of confidence in the initial weighting vector to play a
role. We provide a practical vector-valued representation of the resulting epsilon-robustness
quasi-ordering and propose a numerical measure to gauge the robustness of a given
comparison. An empirical illustration reports on the robustness of Human Development
Index country rankings. We extend our methods to certain nonlinear composite indices and
explore the links with decision theory, partial comparability in social choice, and the
measurement of the freedom of choice.

Keywords: Composite index, robust comparisons, dominance, ambiguity, epsilon-
contamination, Knightian uncertainty, Human Development Index
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1. Introduction

Linear composite indices, or weighted-sum aggregation methods, are commonplace in
economic theory and are frequently invoked in social and economic assessments
involving multiple dimensions. Expected utility and price indices have this structure. So
too does the Human Development Index (HDI), which aggregates across three equally
weighted achievements in health, education and standard of living. Another example is
provided by the ubiquitous annual college rankings that convert data on tests scores,
educational facilities, and other dimensions into an index to rank universities or
departments. The published rankings of certain composite indices generate substantial
interest and can impact resource allocation decisions and other economically relevant
outcomes.1

A ranking generated by a composite index is, however, contingent on the choice
of weights: a slight variation in the weights may alter the judgment across a pair of
alternatives. And while there are usually plausible methods for selecting initial weights
(Decancq and Lugo, 2013), none may be so compelling or precise as to exclude all
alternative weights. Given that any comparison made using a composite index is a
candidate for reversal, it would seem advisable to explore methods that could evaluate its
level of robustness. This is the motivation for the present paper, which provides tractable
methods for characterizing and evaluating the robustness of rankings generated by
composite indices.

A number of recent papers have considered related issues, particularly in the
context of empirical composite indices. Cherchye et al. (2007) and Saisana et al. (2005)
consider various “sources of uncertainty” in the construction of a composite index, such
as weights, normalization, aggregation techniques, and choice of indicators. Variation in
the specification of these factors leads to a distribution of values around the initial
composite index value, which they estimate using Monte Carlo methods. McGillivray
and Noorbakhsh (2006) evaluate the effect of changing weights by computing the
correlations between the original HDI country ranks and those arising from alternative
weights. Each of these papers considers a few representative sets of alternative weights in
their empirical analysis. Cherchye et al. (2008) consider simultaneous changes in the
weights, the normalization, and the aggregation method used by the HDI and derive
conditions under which an original comparison is preserved; however, their use of a
specialized formula for weighting and normalization limits the applicability of their
method.

In what follows, we provide an approach to evaluating robustness with respect to
weights that is based on dominance quasi-orderings. This approach is similar to
stochastic dominance and related techniques used in income distribution analysis, such as
poverty comparisons over a range of poverty lines or inequality comparisons given by the

1 Country-based composite indices have proliferated of late and include indices of sustainability, corruption, rule of
law, economic policy efficacy, institutional performance, happiness, human well-being, transparency, globalization,
human freedom, peace and vulnerability. See, for example, Bandura (2008).
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Lorenz quasi-ordering.2 A “robustness quasi-ordering” is defined based on an a priori
specification of a set of weighting vectors. A comparison made by the composite index is
said to be robust if it is not reversed for any weighting vector in the set. The analysis
draws on structures found in the literatures on Knightian uncertainty (Bewley 1986,
2002) and on multiple prior models of ambiguity (Gilboa and Schmeidler 1989).
Motivated by a result from Bewley, we characterize this specific form of quasi-ordering
from among all possible relations that might be used to check robustness. We further
show a straightforward link between the quasi-ordering and the Gilboa-Schmeidler
maxmin criterion.

In order to implement the robustness approach in practice, a set of weighting
vectors must be selected. One convenient possibility is suggested by the epsilon-
contamination model from decision theory: the set of all weighting vectors that can be
expressed as a convex combination of the initial weighting vector and a universal set of
weighting vectors, where the coefficients on each are respectively (1 − ) and . The
coefficient (1 − ) is interpreted as the level of confidence in the initial vector; the
“contamination” parameter  is a direct measure of the size of the set around this vector.
Greater confidence in the initial weighting vector is reflected in a lower level of -
contamination and a smaller set. Our main result characterizes the -robustness relation
and demonstrates that it has a tractable vector-valued representation: a pair of alternatives
is ordered by the -robustness relations when the associated vector representations can be
ranked using vector dominance.3

We then augment our approach by moving beyond zero-one tests to a continuous
measure of the robustness of a given comparison. Our measure is constructed using two
elements: the difference between the composite index levels of the two alternatives and
the maximal “contrary” difference across all possible weighting vectors. We show that
the measure has an intuitive interpretation as the maximal level of contamination  for
which the comparison is -robust.

An empirical example of our methods is then presented using HDI data.4 A
significant proportion of HDI comparisons across countries are found to be fully robust.
An intermediate value of  is selected and comparisons that satisfy and fail the -
robustness test are identified. We then construct a table of robustness levels for
comparisons among the top ten countries and note that many of these comparisons have
limited robustness. The example shows how our techniques can be readily used for
interpreting the rankings of composite indices and appropriately discounting comparisons
that have minimal robustness.

The rest of the paper is structured as follows. Section 2 provides the notation and
definitions that are used in the rest of the paper. The robustness quasi-orderings are

2 See Atkinson (1970, 1987), Bawa (1975), Foster and Shorrocks (1988a,b), and Sen and Foster (1997) for related
discussions.

3 See Foster (1993, 2011) and Sen and Foster (1997, pp. 205–207) for discussions of vector-valued representations.
4 For simplicity, we use the traditional HDI, which is a linear composite index of normalized achievements. The current
HDI is nonlinear but, as discussed below, is also amenable to our robustness analysis. See UNDP (2010) for details of
these indices.
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defined and characterized in Section 3. In Section 4, we construct the robustness measure
and demonstrate its relationship to -robustness. Section 5 applies this measure to the
Human Development Index. Section 6 extends the analysis to certain nonlinear composite
indices and explores the links with other theoretical constructs. Section 7 provides some
concluding remarks and outlines future research directions.

2. Notation and Definitions

Let X  RD denote the nonempty set of alternatives to be ranked, where each alternative
is represented as a vector x  X of achievements in D  2 dimensions. For a, b  RD, the
expression a  b indicates that ad  bd for d = 1, …, D; this is the vector dominance
relation. If a  b with a ≠ b, this situation is denoted by a > b; while a >> b indicates that
ad > bd for d = 1, …, D. Let  = {w  RD: w  0 and w1 +…+ wD = 1} be the simplex of
weighting vectors. A composite index C: X    R combines the dimensional
achievements in x  X using a weighting vector w   to obtain an aggregate
achievement level C(x;w) = wx = w1x1+…+wDxD. In what follows, it is assumed that an
initial weighting vector w0   has already been chosen; this fixes the specific composite
index C0: X  R defined as C0(x) = C(x;w0) for all x  X. The associated ordering of
achievement vectors will be denoted by C0, so that x C0 y holds if and only if C0(x) ≥ 
C0(y). For every d  {1,…,D}, we denote by ed the usual basis vector, whose dth element
is equal to one and the remaining entries are zero, e.g., e2 = (0,1,0,…,0).

3. Robust Comparisons

We construct a general criterion to determine when a given comparison x C0 y is robust.
Let W   be a nonempty set of weighting vectors containing initial vector w0. Define the
robustness relation RW on X by

x RW y if and only if C(x;w)  C(y;w) for all w W

for any pair x,y  X. Whenever x RW y is true, the inequality C(x;w)  C(y;w) holds at w =
w0 and is robust to the choice of w  W. When x C0 y holds but x RW y does not, this
means that C(x;w) < C(y;w) for some w W, and hence the initial ranking is not robust.
Let IW and PW denote the symmetric and asymmetric parts of RW. Notice that RW is
typically not a complete ordering but is reflexive and transitive.

Relation RW is closely linked with other dominance criteria, including Sen’s
(1970a,b) approach to partial comparability in social choice and Bewley’s (1986, 2002)
multiple prior model of Knightian uncertainty. Bewley’s presentation, in particular,
suggests a natural characterization of RW among all binary relations R on X. Consider the
following properties, each of which is satisfied by RW.

Quasi-ordering (Q): R is reflexive and transitive.
Monotonicity (M): (i) If x > y then x R y; (ii) if x >> y then y R x cannot hold.
Independence (I): Let x, y, z, y', z'  X where y' = x + (1–)y and z' = x + (1–)z for

0 <  < 1. Then y R z if and only if y' R z'.
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Continuity (C): The sets {x  X | x R z} and {x  X | z R x} are closed for all z  X.

Axiom Q allows R to be incomplete. Axiom M ensures that R follows vector dominance
when it applies and rules out the converse ranking when vector dominance is strict.
Axiom I is a standard independence axiom, which requires the ranking between y and z to
be consistent with the ranking of y' and z' obtained from y and z, respectively, by a
convex combination with another vector x. Finally, Axiom C ensures that the upper and
lower contour sets of R contain all their limit points. We have the following
characterization, the proof of which is given in the appendix.

Theorem 1: Suppose that X is closed, convex, and has a nonempty interior. Then a binary
relation R on X satisfies axioms Q, M, I, and C if and only if there exist a non-empty,
closed, and convex set W   such that R = RW.

Proof: In the Appendix.

Consequently, any relation satisfying the four axioms can be generated by pair-wise
comparisons of the composite index over some fixed set W of weighting vectors.

The relation RW has an interesting interpretation in terms of the maxmin criterion
of Gilboa and Schmeidler (1989) for multiple priors. Suppose that x RW y for some
nonempty, closed set W  . By linearity of the composite index, this can be expressed
as C(x – y;w)  0 for all w W, or as minwW C(x – y;w)  0. The Gilboa-Schmeidler
evaluation function GW(z) = minwW C(z;w) represents the maxmin criterion, which ranks
a pair of options x and y by comparing GW(x) and GW(y), or the respective minimum
values of the composite indicator on the set W. Our robustness ranking x RW y is obtained
by applying GW to the net vector (x – y) and checking whether the resulting value is
nonnegative. Indeed, x RW y if and only if GW(x – y) ≥ 0.5

With Theorem 1, the selection of a robustness criterion reduces to the choice of an
appropriate set W of weighting vectors. But which W should be used? As we argue
below, the answer depends in part on the confidence one places in the initial weighting
vector w0. If one has confidence that w0 is the most appropriate weighting vector, then
this would be reflected in the specification of a smaller set W containing w0. The limiting
case of W = {w0} indicates utmost confidence in w0 and hence no additional robustness
test is required: x C0 y is equivalent to x RW y. On the other hand, a larger W would
suggest less confidence in w0, a more demanding robustness test RW, and correspondingly
fewer robust comparisons. Clearly RW' is a sub-relation of RW whenever W  W'. We
now further investigate RW for some natural specifications of W.

5 The maxmin criterion applies when GW(x) - GW(y) ≥ 0, while our robustness criterion holds when GW(x-y) ≥ 0. The 
maxmin criterion generates a complete relation, but requires comparisons of C(x,w) with C(y,w') for some w  w',
which is not so easily interpreted in the present context. See Ryan (2009) for related discussions of Bewley (2002) and
Gilboa and Schmeidler (1989).



Foster, McGillivray and Seth Rank Robustness of Composite Indices

OPHI Working Paper 26b www.ophi.org.uk

5

Full Robustness

We begin with the limiting case where W = , the set of all possible weighting vectors,
and denote the associated robustness relation by R1. When x R1 y holds, we say the
comparison x C0 y is fully robust since it is never reversed at any configuration of
weights. Requiring unanimity over  is quite demanding and consequently R1 is the least
complete among all such relations; however, when it does hold, the associated ranking of
achievement vectors is undoubtedly robust.

Consider the vertices of , given by vd = ed for d = 1,…,D, where ed places full
weight on the single achievement d. Clearly C(x;vd) = xd, which suggests a link between
the R1 and vector dominance. We have the following characterization.

Theorem 2: Let x, y  X. Then x R1 y if and only if x ≥ y. 

Proof: Suppose that x C0 y is true. If x ≥ y holds, then clearly C(x;w) = wx ≥ wy = C(y;w)
for all w  , and thus x R1 y. Conversely, if x R1 y holds, then setting w = vd in C(x;w) ≥
C(y;w) yields xd ≥ yd for all d, and hence x ≥ y. ■ 

In order to check whether a given ranking x C0 y is fully robust, one need only verify that
the achievement levels in x are at least as high as the respective levels in y. It follows that
completely robust indifference x I1 y is equivalent to x = y, while the strict robustness
ranking x P1 y is equivalent to x > y.

One interesting implication of Theorem 2 is that judgments made by R1 are
“meaningful” even when variables are ordinal and no basis of comparison between them
has been fixed.6 Suppose that each variable xd in x is independently altered by its own
monotonically increasing transformation fd(xd) and let x' = (f1(x1),…, fD(xD)) be the
resulting transformed achievement vector. It is clear that x > y if and only if x' > y', and
consequently, by Theorem 2 we have x R1 y if and only if x' R1 y'. In other words, if R1

holds for any given cardinalization of the ordinal variables, it holds for all
cardinalizations. Note that while C0 on its own is not meaningful in this context (as y' C0

x' is entirely consistent with x C0 y), the fully robust relation R1 is preserved and hence is
appropriate for use with ordinal, non-commensurate variables.

Epsilon Robustness
Now consider    defined by  = (1–){w0} +  for 0 ≤  ≤ 1, which is made up of 
vectors of the form (1–)w0 + w, where w  . Parameter value  = 0 yields 0 = {w0}
and hence the “no robustness” case, while  = 1 yields 1 =  or full robustness. Each 

with 0 <  < 1 is a rescaled version of  in which the relative position of w0 is unchanged.
Figure 1 provides examples of  for the case of D = 3 and  = ¼, where Panel 1 has w0 =
(1/3,1/3,1/3) and Panel 2 has w0 = (3/5,1/5,1/5). As noted in the figure,  is a measure of
the relative size of . For a given w0 the sets are nested in such a way that   '

whenever  > '.

6 For a formal discussion of “meaningful statements” see Roberts (1979).
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The set  of weighting vectors can be motivated using the well-known epsilon
contamination model of multiple priors commonly applied in statistics and decision
theory.7 In that context, w0 corresponds to an initial subjective distribution and 

contains all probability distributions that are convex combinations of w0 and a
distribution from the set  of all objectively possible distributions, where (1–) represents
the decision maker’s level of confidence in w0 and  is the extent of the “perturbation”
from w0. The Gilboa-Schmeidler evaluation function GW then reduces to a form invoked
by Ellsberg (1961), namely G(z) = (1–)C(z;w0) +  minwC(z;w) using our notation.8

Figure 1: Examples of 

Substituting  into the definitions of RW yields the -robustness relation R for 
in [0,1]. Since the sets  are nested for a given w0, it follows that x R y implies x R' y
whenever  > '. The rankings require C(x;w) ≥ C(y;w) for all w in  and hence at each

of its vertices 
dv = (1–)w0 + vd. Define x = ( 1x ,…, Dx

) where dx
= C(x; Dv

) = Dv
·x,

and let y be the analogous vector derived from y. The following result characterizes R.

Theorem 3: Let x, y  X. Then x R y if and only if x ≥ y.

Proof: We need only verify that x  y implies x R y. Pick any w  , and note that
since  is the convex hull of its vertices, w can be expressed as a convex combination of


1v ,..., 

Dv , say w = 1


1v +…+D


Dv where 1+…+D = 1 and d  0 for d = 1,…,D. But

then C(x;w) = wx = 1


1v x+…+D


Dv x = 1 1x
+…+D Dx

, and similarly C(y;w) = 1

1y  +…+D Dy ; therefore x  y implies C(x;w)  C(y;w). Since w was an arbitrary

element of , it follows that x R y. ■ 

7 See for example, Carlier, Dana, and Shahidi (2003); Chateauneuf, Eichberger, and Grant (2006); Nishimura and
Ozaki (2006); Carlier and Dana (2008); Asano (2008); and especially Kopylov (2009).

8 See Kopolov (2009).



Foster, McGillivray and Seth Rank Robustness of Composite Indices

OPHI Working Paper 26b www.ophi.org.uk

7

Theorem 3 shows that to evaluate whether a given comparison x C0 y is -robust,
one need only compare the associated -robustness vectors x and y. If each component
of x is at least as large as the respective component of y, then the comparison is -
robust; if any component is larger for y than x, then the comparison is not. Checking
whether the x vector dominates y is equivalent to requiring the inequality C(x;w) ≥ 

C(y;w) to hold for each vertex w = 
Dv of the set . Note further that x is a convex

combination of the vectors (C0(x),…,C0(x)) and x, namely, x = (1–)(C0(x),…,C0(x)) +
x, so that when  = 1 we obtain the condition x ≥ y in Theorem 2, while for  = 0, the
condition reduces to a simple comparison of C0(x) and C0(y).

Restricted Robustness

The full robustness criterion in Theorem 2 and the epsilon-robustness criterion in
Theorem 3 both use the entire simplex  as the universal set of weighting vectors. In
certain cases, however, it may be natural to restrict the universal set to be a nonempty

subset ̂ of . For example, let D = 3 and consider the restricted set ̂ = {w  : w1 ≤ 
1/3}. In the inequality constraint, the first weight is no more than one-third and hence the
sum of the other two weights is no less than two-thirds. Alternatively, the restricted set

̂ = {w  : w1 = 1/3} adds a second inequality w1 ≥ 1/3 and requires the first weight to 
be one-third and leaves the second and third weights free to vary, except that they must
sum to two-thirds.9 Both of these examples yields a nonempty universal set that is
delimited by a finite number of linear inequality constraints and hence is a convex
polytope; such a set can be equivalently seen as the convex hull of a finite number n ≥ 1 
of vertices { 1̂v ,…, ˆnv }. See Figure 2.

Figure 2: An Example of ˆ


9 This example is analogous to an example in Ellsberg (1961): a ball is to be drawn from an urn having one-third red
balls and two-thirds yellow or black balls, with the frequency of red balls being known but the frequency of yellow (or
black) balls being uncertain.

w0
2v̂1̂v

• •1̂v 2v̂•
̂ ˆ


••

.

..
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When w0  ̂ , we define ˆ
 = (1–){w0} +  ̂  for 0 ≤  ≤ 1 and consider the 

generalized -robustness relation ˆ
R obtained by setting W = ˆ

 in the definition of RW.

The ith vertex of ˆ
 is constructed as ˆ

iv = (1–)w0 +  îv for i = 1,…,n. Define x̂ = (
1x̂

,…, ˆ
nx ) where ˆ

ix = C(x; ˆ
iv ) or the value of the composite index of x evaluated at

weighting vector
îv for all i, and let ŷ  be the analogous n-dimensional vector derived

from y. We have the following result, whose proof is entirely analogous to the proof of
Theorem 3.

Theorem 4: Suppose that ̂ is a convex polytope and let x, y  X. Then x ˆ
R y if and

only if x̂  ≥ ŷ  .

The logic of the previous two results still applies in the case where additional linear
inequality constraints have been imposed and the resulting universal set is an arbitrary

convex polytope. Verifying x ˆ
R y amounts to checking whether the inequality C(x;w) ≥ 

C(y;w) holds for a finite number of weighting vectors, namely w = ˆ
iv ; the robustness

quasi-ordering is represented by the associated n-dimensional vector ordered by vector
dominance.

As an example, consider the restricted universal set ̂ = {w  : w1 = 1/3} and

the initial weighting vector w0 = (1/3, 1/3, 1/3) depicted in Figure 2. The vertices of ̂
are given by

1v̂ = (1/3, 0, 2/3) and
2v̂ = (1/3, 2/3, 0), so that the weight on dimension 1

remains fixed at 1/3, but the weights on the other two dimensions are allowed to vary.

Full robustness x 1R̂ y in this case requires n = 2 comparisons, one for each vertex, which

can be succinctly expressed as x̂ ≥ ŷ where

x̂ = (x1+2x3, x1+2x2)/3 and ŷ = (y1+2y3, y1+2y2)/3.

Now for  = 1/2, the relevant vertices of ˆ
 are given by

1̂v = (1/3, 1/6, 1/2) and
2v̂ =

(1/3, 1/2, 1/6) and the conditions for x ˆ
R y are less stringent, namely x̂  ≥ ŷ  , where

x̂ = (2x1+x2+3x3, 2x1+3x2+x3)/6 and ŷ  = (2y1+y2+3y3, 2y1+3y2+y3)/6

are the associated -robustness vectors.

4. Measuring Robustness

Our method of evaluating the robustness of comparison x C0 y fixes a set ˆ
 of weighting

vectors and confirms that the ranking at w0 is not reversed at any other w  ˆ
 , in which

case the associated -robustness condition x ˆ
R y applies. Theorem 4 provides simple
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conditions for checking when x ˆ
R y holds. This section augments this approach by

formulating a measure that identifies a robustness level r  [0,1] for any comparison x C0

y, where levels r = 0 and r = 1 correspond to the absence of robustness and to full
robustness, respectively, and each r  (0,1) is some level between the two extremes.

We construct r using two statistics – one that might be expected to move in line
with robustness and another that is likely to work against it. The first of these is

A = C0(x) – C0(y)

or the difference between the composite value of x and the composite value of y at the
initial weighting vector w0. Intuitively, A is an indicator of the strength of the dominance
of x over y at the initial weighting vector. It is nonnegative whenever x C0 y. The second
is

ܤ����� = ൝
max௪ ∈୼෡[(ݓ;ݕ)ܥ − [(ݓ;ݔ)ܥ for max௪ ∈୼෡[(ݓ;ݕ)ܥ − [(ݓ;ݔ)ܥ > 0

0 otherwise

or the maximal “contrary” difference between the composite values of y and x if this
quantity is positive, and zero otherwise. Note that when the original comparison is fully

robust over ̂ , then C(y;w) – C(x;w) ≤ 0 for all w  ̂ and there is no contrary
difference. This is the case where B = 0. On the other hand, when the comparison is not

fully robust, then C(y;w) – C(x;w) > 0 for some w  ̂ , and hence B = maxw ̂ [C(y;w) –
C(x;w)] > 0. B is then the worst-case estimate of how far the original difference at w0

could be reversed at some other weighting vector.

We propose the following as our measure of robustness:

=ݎ ቐ

஺

஺ା஻
forܤ�� > 0

1 forܤ�� = 0

Notice that when the initial comparison x C0 y is fully robust over ̂ , we have B = 0 and
hence r = 1, as desired. Alternatively, when the initial comparison is not fully robust and
B > 0, the measure r is strictly increasing in the magnitude of the initial comparison A and
strictly decreasing in the magnitude of the contrary worst-case evaluation B. These
characteristics accord well with an intuitive understanding of how A and B might affect
robustness.10

Practical applications of r may be hampered by the fact that it requires a
maximization problem to be solved, namely maxw ̂ [C(y;w) – C(x;w)]. However, by the

linearity of C(y;w) – C(x;w) = (y – x)w in w, the problem has a solution at some vertex îv

where the difference C(y;w) – C(x;w) takes on the simplified expression îv ·(y – x) = ˆ
iy –

10 The limiting case where A falls to 0 is of particular interest. If it occurs in the presence of a fixed B > 0, the measure
of robustness r tends to 0, which is its value for the case A = 0 and B > 0; if it occurs when B = 0, the measure r tends to
1, which is its value for the case A = 0 and B = 0.
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ˆ
ix . Consequently, B depends on the maximum coordinate of the vector ŷ – x̂ , which in

the case of ̂ = , becomes the maximum coordinate of y – x. The measure r is readily
derived using this equivalent expression.

Now what is the relationship between the robustness measure r and the relation
ˆ
R developed in the previous section? The following theorem provides the answer.

Theorem 5: Let r be the robustness level associated with comparison x C0 y for x, y  X.

Then x ˆ
R y holds if and only if 0 ≤  ≤ r.

Proof: Select any comparison x C0 y and let r ≥ 0 be its robustness level. We consider 
first the case of 0 < r < 1. If 0 ≤  ≤ r, then by the definition of r, we have  ≤ A/(A + B)
and hence B ≤ (1 – )A. Pick any i = 1, …, n. From the definitions of A and B, we see

that ( ˆ
iy – ˆ

ix ) ≤ (1 –)(w0x – w0y) and hence  îv y + (1 – )w0y ≤  îv x + (1 – )w0x.

Consequently, ˆ
iv y ≤ ˆ

iv x, and since this is true for all i, it follows that x̂  ≥ ŷ  and thus

x ˆ
R y by Theorem 4. Conversely, suppose that r <  ≤ 1. Then (1 – )A < B so that (1 –

)(w0x – w0y) < ( ˆ
iy – ˆ

ix ) for some i, and hence ˆ
iv y >

îv x or ˆ
iy  > ˆ

ix for this same

i. It follows, then, that x̂  ≥ ŷ  cannot hold, and neither can x ˆ
R y by Theorem 4.

Consider next the case of r = 0. If 0 ≤  ≤ r, it follows that  = 0. Clearly x C0 y

immediately ensures that x 0R̂ y. Conversely, suppose that r <  ≤ 1. By the definition of 

r, we have A = 0 and B > 0, and hence the vector −ොݔ ොhasݕ both positive and negative

entries, as must −ොఌݔ .ොఌݕ Consequently x ˆ
R y cannot hold. Finally, consider the case of r

= 1. Clearly B = 0 and hence the comparison x C0 y is fully robust over ̂ . Thus x ˆ
R y

for all 0 ≤  ≤ 1, which completes the proof. ■ 

As  rises, the robustness criterion becomes more demanding and ˆ
R less

complete. Theorem 5 identifies r as the maximal  for which x ˆ
R y holds, and hence ˆ

r

is the largest set ˆ
 over which the original comparison is not reversed. Alternatively, r

is the largest  for which the Gilboa-Schmeidler (or Ellsberg) evaluation function of the

net achievement vector (x–y) is nonnegative; i.e., ˆ ( – )G x y = (1–)C(x–y;w0) + minw ̂

C(x–y;w) ≥ 0. Note that reducing the size of the universal set ̂ reduces the size of ˆ


and allows additional comparisons to be made by ˆ
R . This implies that for a given

comparison x C0 y the measure of robustness r will rise or at least will not fall. Exactly
how much r is affected depends on the extent to which the maximum contrary valuation
B falls as the set of weights shrinks.
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5. Empirical Illustration

To illustrate our methods, we now apply them to the well-known Human Development
Index (HDI) in its traditional version as an equally weighted linear composite index over
the three dimensions of health (H), education (E), and standard of living (SL).11 For
simplicity, we take Δ to be the universal set of weights, which has the initial weighting
vector w0 = (1/3,1/3,1/3) at its center.

Table 1 lists the top ten countries by HDI value. While the associated C0 ranking
is a complete ordering, it says nothing about the robustness of a given judgment to
changes in weights.

Table 1: The Top 10 HDI Countries in 2004

Rank Country HDI

1 Norway 0.965
2 Iceland 0.960
3 Australia 0.957
4 Ireland 0.956
5 Sweden 0.951
6 Canada 0.950
7 Japan 0.949
8 United States 0.948
9 Switzerland 0.947
10 Netherlands 0.947

Table 2 evaluates the robustness of three specific comparisons. The first set of
columns restates the HDI information from Table 1. The next three columns provide the
dimensional achievements x1, x2, and x3 needed to ascertain whether the full robustness
R1 is obtained. It is evident that the achievement vector of Australia dominates the
achievement vector of Sweden and hence by Theorem 2 this comparison is fully robust.
However, for the comparison between Iceland and the US there is a reversal in the
standard of living dimension, while the Ireland/Canada comparison has a reversal in
health, and so neither of these comparisons is fully robust. Observe that the HDI margin
between Australia and Sweden (0.006) is identical to the margin for Ireland and Canada,

11 As noted in Section 6 below, our methods are equally applicable to the new HDI introduced in 2010, which is a
geometric mean; an empirical example can be obtained from the authors upon request. Data for 2004 were obtained
directly from the UNDP and allow greater precision than the rounded off published figures in the 2006 Human
Development Report. In particular, Switzerland has a slightly higher HDI level than the Netherlands, although the
rounded off levels are identical. For more extensive empirical applications of our method, see Permanyer (2011) and
Foster, McGillivray and Seth (2012).
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and yet the robustness characteristics of the two comparisons are quite different: the
Australia/Sweden comparison is fully robust; whereas the Ireland/Canada comparison is
not. Also notice that the HDI margin between Iceland and USA is twice as large (0.012)
and yet it too is not fully robust.

Table 2: Three HDI Comparisons

Rank Country HDI
H E SL H E SL
x1 x2 x3

25.0
1x 25.0

2x 25.0
3x

3 Australia 0.957 0.925 0.993 0.954 0.949 0.966 0.956
5 Sweden 0.951 0.922 0.982 0.949 0.944 0.959 0.951
2 Iceland 0.960 0.931 0.981 0.968 0.953 0.965 0.962
8 USA 0.948 0.875 0.971 0.999 0.930 0.954 0.961
4 Ireland 0.956 0.882 0.990 0.995 0.937 0.964 0.966
6 Canada 0.950 0.919 0.970 0.959 0.942 0.955 0.952

The final three columns of Table 2 report the entries of the associated ε-
robustness vectors for  = 0.25 to check the -robustness of the comparisons. Recall that
each element of the ε-robustness vector is the composite index evaluated at the respective
vertex of . A quick evaluation in terms of vector dominance reveals that both the
Australia/Sweden and the Iceland/USA comparisons are -robust by Theorem 3, but the
absence of vector dominance in the Ireland/Canada comparison implies that -robustness
does not hold for this ranking when  = 0.25. In other words, there are weighting vectors
in  at which Canada’s composite index is larger than that of Ireland.

The analysis in the previous paragraph shows whether the comparisons are robust
for a particular robustness level. We can also calculate the levels of robustness for each of
these comparisons. The Australia/Sweden comparison is fully robust, with A = 0.006 and
B = 0, and hence r = 100%. The Iceland/USA comparison has A = 0.012 and B = 0.031,
and hence r = 27.9%. In contrast, the Ireland/Canada ranking has A = 0.006 and B =
0.037, and therefore r = 14.3%.12 Table 3 presents the level of robustness of pair-wise
comparisons for the top ten countries. For every cell below the diagonal, the “column
country” of the cell has a higher ranking according to C0 than the “row country”. The
number in the cell indicates the level of robustness of the associated comparison,
expressed in percentage terms. Out of the 45 pair-wise comparisons involving the top ten
countries, four are fully robust, while 20 of them have robustness levels of 25% or higher.
However, for the entire dataset of 177 countries for the same year, we find that 69.7% of
the pair-wise comparisons are fully robust while about 92% have robustness levels of
25% or higher.13

12 The robustness measures were computed from the more precise underlying data and hence may differ slightly from
computations using numbers reported in Table 2.
13 We are ignoring the reflexive comparisons as any comparison of a country with itself is trivially fully robust. For an
extended discussion of the prevalence of robust comparisons in a given dataset, and how it relates to positive
association among dimensions, see Foster, McGillivray, and Seth (2012).
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Table 3: Robustness Levels (Percentage)

Country NOR ISL AUS IRL SWE CAN JPN USA CHE
Rank 1 2 3 4 5 6 7 8 9

Norway (NOR) 1 – – – – – – – – –

Iceland (ISL) 2 19.5 – – – – – – – –

Australia (AUS) 3 34.8 18.9 – – – – – – –

Ireland (IRL) 4 85.7 14.0 3.6 – – – – – –

Sweden (SWE) 5 53.1 94.0 100 10.5 – – – – –

Canada (CAN) 6 61.3 100 60.5 14.3 13.8 – – – –

Japan (JPN) 7 27.6 34.0 23.0 9.1 7.1 2.5 – – –

USA (USA) 8 76.6 27.9 16.6 67.3 5.3 3.0 0.7 – –

Switzerland (CHE) 9 49.3 100 41.1 15.6 16.7 19.5 6.3 1.9 –

Netherlands (NLD) 10 100 67.5 56.6 47.1 24.7 12.8 3.7 7.1 0.6

6. Extensions, Links and Further Applications

The analytical results in this paper can be applied to certain composite indices that are not
linear but can be transformed into linear composite indices. For example, expected utility
analysis typically makes use of nonlinear utility transformations xd = ud(sd) where sd is an
underlying source variable. Another example is provided by the class of alternative
human development indices proposed by Chakravarty (2003), for which xd = sd

/D, with
for 0 <  < 1. In these cases, robustness can be analyzed for the transformed variables xd

using the methods presented above.14 If a composite index can be expressed as a
monotonic transformation f of a linear composite index, so that F(x;w) = f(C(x;w)), then
the robustness analysis for F can be conducted in terms of the underlying C. The current
Human Development Index (UNDP 2010), which takes the form of a geometric mean,
provides an example having both forms of transformation, namely, f(C(x;w0)) where xd =
lnsd and f(t) = et. The robustness analyses for the new measure can be conducted on
C(x;w0) using the standard methods. Thus, our approach is not limited to linear composite
indices but also applicable to a wide range of nonlinear composite indices such as the
new Human Development Index (UNDP 2010), Human Poverty Index, and the Inequality
adjusted HDI.15

Our robustness analysis is closely related to constructs found in other areas of
economic theory, and these links might well suggest directions for future investigation.
We now describe several of these links – to decisions under uncertainty, to partial
comparability in social choice, and to opportunity freedom.

14 Note that in the case of full robustness, the criterion can be equivalently expressed in terms of the underlying
variables sd. See the discussion after Theorem 2 in Section 3.
15 The Inequality-adjusted HDI can be expressed as a composite index due to its property of path independence. See
Foster, Lopez-Calva and Szekely (2005) and Alkire and Foster (2010). Other examples of applicable nonlinear
composite indices can be found in Hicks (1997).
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First, our theoretical framework mirrors the structure used in decision making
under uncertainty, where x is interpreted as the state-specific utility levels associated with
an act, w is a probability vector, and C(x;w) is the expected utility. Decision making
under risk can then be seen as the special case where w0 is given and the complete
ranking C0 is available. Our analysis evaluates the robustness of choice under risk of
uncertainty, where the latter takes the form of -contamination relative to a universal set

of probability vectors. A finding of x 1R̂ y (and hence r = 1) ensures that the selection of

x over y is completely robust, whereas a very low level of r may lead one to re-evaluate
the decision. For example, consider the choice between x = (2,3,3), and y = (2,4,4), given

w0 = (1,0,0) and let the universal set be ̂ = . Clearly, x C0 y holds, which is consistent
with x being chosen over y and, indeed, this weak ranking is confirmed by the maxmin
criterion of Gilboa and Schmeidler (1989). The robustness level of x C0 y, though, is r =
0; if there were any lack of confidence in w0, and some other w were used, the expected
utility ranking would be strictly reversed and the choice of x over y would be seen as
wrong. In contrast, the robustness level of the converse comparison y C0 x is r = 1,
indicating the robust priority of y over x in this case.16

Second, our robustness approach and indeed the recent constructs from
uncertainty and ambiguity analysis have certain parallels in the theory of social choice.
Especially relevant is Sen’s (1970a, 1970b) analysis of partial comparability in utilitarian
evaluations of welfare. Options x and y are now vectors of “basic” utility levels across the
population for two social states, while the utilitarian welfare level is just the sum of
entries. The comparability of utilities of different persons is modeled in this context as
the set of allowable transformation vectors, each containing coefficients that
independently rescale each person’s utility up or down before summing. Partial
comparability is modeled using a cone of coefficient vectors that is larger than a single
ray (complete comparability) and smaller than the strictly positive orthant (non-
comparability), with a larger set indicating less comparability. Sen explores whether a
given social choice comparison is robust to the changes allowed under partial
comparability and defines the associated dominance quasi-ordering on the set of social
states. Without loss of generality we can normalize the utility coefficients to sum to one,
in which case his structure maps perfectly into our framework, with w being the
normalized vector of coefficients, C(x;w) being the utilitarian welfare given w, and RW

being his dominance quasi-ordering given the set W of allowable (normalized) coefficient
vectors. Sen even provides an indicator of partial comparability between two social states
that is similar in spirit, but different in orientation, to our measure of robustness.

Third, the analysis is also relevant to the evaluation of the freedom (or flexibility)
inherent in opportunity sets or menus of alternatives.17 A decision maker has two

16 Note that w0 is the probability vector in W =  at which the minimum level of expected utility is achieved for both x
and y, and this minimum level is the same for both. Hence, GW(x) = GW(y), and the maxmin criterion is unable to
discern between dominated x and dominant y. The criterion leads the decision maker to evaluate x and y through the
lens of w0, which suppresses information that is arguably relevant in an uncertain environment. Put differently, if there
were the least bit of doubt that w0 would be the correct initial weight, then y should be the unambiguous choice.
17 See for example Kreps (1979), Foster (1993, 2011), Arrow (1995), and Sen (2002).
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decisions: in period one, an opportunity set must be selected; in period two an alternative
must be selected from the chosen opportunity set. The decision maker is endowed with a
set of potential utility functions for evaluating alternatives in the second period. However,
in the first period, the decision maker is uncertain which utility function will be relevant
in the second period and must try to select an opportunity set that offers enough freedom
or flexibility to provide reasonable alternatives at the second stage for every possible
utility function. If the decision maker has a single utility function, and hence knows
period two utility in period one, then the sets can be ranked using an indirect utility
approach in which the value of a set is the utility of its best element. If the decision maker
has plural utilities and uncertainty about which of them might arise, then each
opportunity set maps to a vector of indirect utilities – one for each of the possible utility
functions. Kreps (1979) and Arrow (1995) posit the existence of a probability vector w0

that indicates the relative likelihood of each utility function and leads to a complete
ranking C0 of opportunity sets via the expected utility function C(x;w0). The counting
approach of Pattanaik and Xu (1990) can be viewed as a special case where the decision
maker has equal probabilities over a set of utilities that represent all logically possible
preferences and thus has very little information with which to differentiate among
alternatives. At the other extreme is the case of full robustness where any probability
vector in  could arise and the relation R1 becomes the effective freedom ranking of
Foster (1993, 2011), which in turn can be represented as vector dominance over the
utility vectors. Our robustness analysis could provide a method for bridging these two
extremes and identifying new intermediate measures of freedom.

7. Concluding Remarks

Composite indices are commonly used in economics and other disciplines to order and
rank alternatives. The information provided by these rankings is often of great
importance and influence, yet by definition is contingent on an initial vector of weights.
This paper has presented methods for evaluating the extent to which comparisons are
robust to changing weights. We began with a general robustness quasi-ordering requiring
dominance or unanimous comparisons for a set of weighting vectors and applied a result
from the Bewley (1986) model of Knightian uncertainty to characterize it. We then
focused on particular sets of weighting vectors suggested by the epsilon-contamination
model of ambiguity reflecting one’s “degree of confidence” in the initial weighting
vector, as in Ellsberg (1961). Practical vector-valued representations of the resulting
epsilon-robustness quasi-orderings were provided, and a numerical measure to gauge the
robustness of a given comparison was proposed and characterized in terms of the quasi-
orderings.

An illustration of the applicability of the paper’s methods was also presented,
using the well-known Human Development Index in its traditional linear version. A
significant proportion ─ nearly 70% ─ of HDI comparisons for the year 2004 across 
countries were found to be fully robust. It was observed that the robustness of
comparisons could be very different even when the HDI differences were essentially the
same. The paper then provided an extension of its methods to certain nonlinear composite
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indices (including the current Human Development Index (UNDP 2010), which takes the
form of a geometric mean) and explored links with decision theory, partial comparability
in social choice, and the measurement of the freedom of choice.

One lesson to be drawn from this paper is that unless greater care and
sophistication are used in the reporting of composite indices, their ability to inform will
be marginalized. It is commonplace in reporting the results of econometric analysis to
provide a range of diagnostic and other statistics, including t-ratios, so the reader can
make judgments about the veracity of these results. No such analysis presently
accompanies the release of composite index values and rankings, despite the ambiguities
associated with the design of these indices. This paper has provided several methods and
one statistic (the robustness measure) that could be reported alongside composite index
values and ranks, thereby improving the information content and strengthening the
interpretation of results.

We end by discussing two potential extensions of our approach – to
multidimensional poverty and to price indices. A recent paper by Alkire and Foster
(2011) presents a new approach to evaluating multidimensional poverty that has been
taken up by various countries and international organizations. In this approach each
dimensional deprivation has a value, and persons are considered poor if the sum of their
deprivation values exceeds a poverty cutoff. Once the poor are identified and the nonpoor
data have been censored, the “adjusted headcount ratio” measure of poverty can be
defined as a linear composite index of the censored data with (normalized) deprivation
values taking on the role of initial weights. A natural question is whether poverty
comparisons are robust to changes in these weights. Our methods are immediately
applicable to the aggregation step of the process – after the poor have been identified – to
evaluate a limited form of robustness. However, in the poverty setting, weights can also
affect who is seen as being poor. It would be interesting to try to formulate an analogous
notion of robustness in the identification of the poor and then to combine the two stages
to obtain an idea of the overall robustness of the measure.18

A second potential extension is to price indices and the related constructs of
poverty lines and purchasing power parity (PPP) indices.19 In an interesting example,
Digby (2001) used CPI data for the British Virgin Islands for 1996 and 1997 to show how
estimates of inflation are sensitive to CPI weights. In particular, he showed that if the
weight on the food item were varied from 0% to 100% and the rest of the weight were
equally distributed across the other six items, then inflation estimates would range from
2.9% to 3.5%. This exercise is similar to our restricted robustness setting, where
commodities are grouped into food and non-food items, and then the weights on the two
groups are varied. The statements being subjected to robustness tests are not, however,

18 To get a sense of the robustness of country rankings for the Multidimensional Poverty Index (MPI) – an
implementation of the adjusted headcount ratio to 109 countries – Alkire and Santos (2010) and Alkire, Roche, Santos
and Seth (2011) recalculate the index for three alternative weighting vectors and compare country rankings to those of
the initial weighting vector.
19 A recent ILO manual on consumer prices explained the importance of weights in this context: “If all prices moved in
the same way, weights would not matter. On the other hand, the greater the variation in price behaviour between
products, the greater the role of weights in measuring aggregate price change” (ILO 2004).
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only concerned with rankings (e.g, prices have risen from 1996 to 1997) but can depend
on the cardinal values of the composite index (e.g., inflation is above 2.9%). It would be
interesting to explore robustness criteria that could apply to these more stringent
statements.
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Appendix

Proof of Theorem 1. Let R be a binary relation on a set X that is closed, convex, and has
some z in its interior.

If R = RW for some non-empty, closed, and convex W  , then it is immediate
that RW satisfies Q, M, I, and C.

Conversely, suppose that R satisfies Q, M, I, and C. Define U = {x  X: x R z} as
the upper contour set of R at z. We know that z  U by Q and U is closed by C.
Moreover, we can show that U is convex. Pick any x, y  U. Let x' = x + (1 – )y for
some  with 0 < < 1. Then, where z' = z + (1 – )y, we have x', z'  X and by axiom I
it follows that x' R z'. Moreover, by a second application of I, it follows from y R z that z'
R z. Therefore, by Q we have x' R z and so U is convex.

Since, z is in the interior of X, there exists  > 0 such that N = {x  RD: ||x – z|| ≤ 
}  X. Define UU ∩ N and note that it is compact, convex, and contains z, so that
the set K = {z} – U is compact, convex, and contains 0. Let K = Cone K be the cone
generated by K. It is immediate that K is closed, compact, and contains 0. We can state
that K has the property that for x, y  X we have x R y if and only if y – x  K. To see
this, let x, y  X and select > 0 small enough that z' satisfying z = y + (1 – ) z' lies in
N and x' = x + (1 – ) z' is also in N. Clearly, z – x' = (y – x) for > 0. So if x R y,
we know that x' R z by I, and hence z – x'  K which implies y – x  K. On the other
hand, if y – x  K, then since z – x'  K, we have x' R z so that x R y by I, establishing the
result.

Now let P = {p  RD: p∙k ≤ 0for all k  K} be the polar cone of K, so that by
standard results on polar cones, P is closed and convex. It is clear that P  DR

, since by

monotonicity, we have –vd  K and so p∙(–vd) ≤ 0 and pd  ≥ 0, where vd is the D-
dimensional usual basis vector for co-ordinate d. In addition, we can show that P contains
at least one element p  0. Indeed, it is clear from M that K contains no k >> 0 (otherwise,
we would have x << z with x R z). Then, K ∩ DR

=  and since both sets are convex, we

can apply the Minkowski separation theorem to find p0  0 in P. Let W =  ∩ P, so that
cone W = P. Clearly, K is the polar cone of both P and W, hence, K = {t  RD: w∙t ≤ 0for
all w  W}.

We now show that R = RW. If x R y, then y – x  K and so w(y – x) ≤ 0 for all w 
W, hence x RW y. Conversely, if x RW y, then by definition we have w(y – x) ≤ 0 for all w
 W, hence x – y  K or x R y. ■ 


