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1. Introduction 
 

Remarkable attention is given to rankings arising from various indicators. This 
is especially true of country rankings. People are naturally curious as to how their 
country compares to others, national pride is often at stake, and national governments 
are often quick to claim credit for a high or higher than expected ranking if it can be 
linked, dubiously or otherwise, to public policy. More generally, the media, business 
groups, civil society, sections of the research community and international 
organisations regularly monitor and report on country rankings of indices assessing a 
variety of phenomena such as sustainability, corruption, rule of law, national income, 
economic policy efficacy, institutional performance, happiness, human well-being, 
transparency, globalisation, human freedom, peace or vulnerability.  

It is widely recognised that many of the preceding phenomena are 
multidimensional. This, combined with the availability of more and better data, has in 
recent decades led to the increased use of composite indices. These indices by their 
very nature combine in various ways indicators of achievement in the dimensions of 
the phenomenon in question. Many of the rankings that attract greatest interest arise 
from indices of this type.  

The interest in national governments and others in rankings arising from 
composite indices is, however, blind to long held concerns regarding their 
construction. A central concern is the weighting of dimension specific achievements. 
In a perfect world the weight vectors would be based on information on a meta 
production function for the phenomenon in question. An absence of accepted 
information on these functions has resulted in one of three weighting schemes. The 
most common is to select weights arbitrarily, typically by taking the simple arithmetic 
mean of the indicators in question.1 Using this mean is interpreted as assigning equal 
weights to each dimension. The proponents of this equal weight approach 
acknowledge that is deficient as in reality the dimensions will almost certainly have 
differential importance, but argue that there is no accepted basis or guidance for doing 
otherwise. In this sense the equal weight approach is seen as the least deficient 
available weighing scheme, one that is likely to attract the least disagreement.2  

Ambiguity over the numerical values of weights employed by composite 
indices naturally leads one to question the ranking arising from these measures. 

                                                 
1 Other approaches are either normative or statistical. The normative approach involves setting weights 
either in accordance with individual or societal norms, the former often being those of the designers of 
the index in question. The second is statistical, being purely data-driven. Many different such 
approaches have been proposed. The most popular being principal components analysis, with the first 
principal component extracted from the dimension achievement indicators serving as the composite 
index. Both approaches are fundamentally flawed, the former because of a lack of guidance as to whose 
norms should be used and the latter because of a difficulties in interpretation. 
2 For example, the proponents of the Environmental Sustainability Index (ESI) argued for equal 
weights on the grounds that “that no objective mechanism exists to determine the relative importance 
of the different aspects of environmental sustainability.” Other composite indices, used in 
environmental, well-being and related fields that employ equal weights include the Child Well-being 
Index, Commitment to Development Index, Economic Resilience Index, Economic Vulnerability 
Index, Environmental Performance Index, Environmental Sustainability Index, Gender Empowerment 
Measure, Gender-related Development Index, Genuine Progress Measure, Global Peace Index, Human 
Development Index, Human Poverty Index, Index of Economic Freedom, Global Peace Index and the 
Physical Quality of Life Index. In most of the above cases the index is formed by taking the simple 
arithmetic mean of the component indicators. 
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Specifically, one can ask to what extent these rankings are dependent upon the initial 
weighting vector, and whether any given judgment could be reversed if an alternative 
weighting vector was employed. Such is the focus on this paper. Using a dominance-
based analytical framework, it examines a variable-weight robustness criterion for 
composite indicators that views a comparison as robust if rankings are not reversed at 
any weight vector within a given set. The paper characterizes the resulting robustness 
relations for various sets of weighting vectors and illustrates how they moderate the 
complete ordering generated by the composite indicator in question.  It proposes a 
measure by which the robustness of a given comparison may be gauged and illustrate 
its usefulness using data from the Human Development Index (HDI). The HDI is a 
very well known and widely used measure of well-being at the level of nations and 
the rankings it provides are the subject of intense international interest.3 The paper 
shows how some country rankings are fully robust to changes in weights while others 
are quite fragile, and investigates the prevalence of the different levels of robustness 
in theory and practice and offer insight as to why certain datasets tend to have more 
robust comparisons. It from the outset be emphasised that the fundamental purpose of 
the paper is not to discourage the reporting or use of multidimensional indices and the 
rankings they provide. Rather, it is to facilitate more incisive interpretation of these 
rankings. 

The remainder of paper is structured as follows. Section II provides with a 
description of the mathematical concepts, notations and definitions used throughout 
the paper. A formal treatment of the notion of dominance and its relation to rank 
robustness is provided in Section III. Section III also defines and characterizes a 
partial ordering, analogous to that of Foster and Shorrocks (1988) that facilitates the 
construction of a measure of robustness. Section IV constructs a rank robustness 
measure. Section V looks at the prevalence of robust comparisons, highlighting how 
the number of ambiguous comparisons across an entire sample of observation depends 
on the association between the dimension indicators used in the index in question. The 
HDI and a number of other indices are used in this section to illustrate key points. The 
paper concludes in Section VI. Special attention is given with some reflections on the 
future design of composite indices, in particular trade offs between rank robustness 
and empirical redundancy.  

 

2. Concepts, Definitions and Notation 

 

 This section provides the mathematical definitions and notation used in the 
paper. The number of dimensions to be summarized in a composite index is denoted 
by an integer D ≥ 2. An achievement vector x = (x1,…,xD) ∈ RD indicates the score 
achieved in each of the D dimensions, while X ⊆ RD gives the set of all of 
achievement vectors that are possible. A dataset is a finite set X̂  of n̂  elements 
drawn from X.  For any a,b ∈ RD, let |a| = Σd =1

D ad  denote the sum of a’s components 

                                                 
3 The annual publication of the Human Development Report is a much awaited international event 
owing almost entirely to the HDI country ranking it contains.  This is evident from a 2006 article in the 
New York Times, which with a not insignificant dose of fanfare reported that for “the sixth year in a 
row, Norway was ranked first on the United Nations' human development index as the country 
providing its citizens with the best chance of living a long and prosperous life.”  (New York Times, 
2006). 



Foster, McGillivray, and Seth                                                                                                 OPHI Working Paper No. 26 

www.ophi.org.uk 4

and let a⋅b =   Σd =1
D adbd  represent the inner product of a and b. The expression a ≥ b 

indicates that ad ≥ bd for d = 1, …, D; this is the vector dominance relation.  If a ≥ b 
with a ≠ b, then this situation is denoted by a > b; while a >> b indicates that ad > bd 
for d = 1, …, D.  The least upper bound of a and b, denoted by a ∨ b, is the vector 
having max {ai, bi} as its ith coordinate; the greatest lower bound of a and b, denoted 
by a ∧ b, is the vector having min {ai, bi} as its ith coordinate. 

 
*** Figure 1 Here *** 

 

The unit simplex is defined as S = {s ∈ RD: s ≥ 0 and |s| = 1} and is depicted in 
Figure 1 above for D = 3. It contains all possible ways of weighting the various 
achievements. The vertices of the simplex are given by vd = ed for d = 1, …, D, where 
ed is the usual basis element that places full weight on the single achievement d. The 
centroid or central point of the simplex v0 = (1/D,…,1/D) places equal weight on all 
achievements. Clearly, v0 is the simple average of the vertices of S, or v0 =  Σd =1

D vd / D . 
For example, when D = 3, the vertices of the simplex S are v1 = (1,0,0), v2 = (0,1,0), 
and v3 = (0,0,1), while the centroid is v0 = (⅓,⅓,⅓). 

In what follows, we construct smaller versions of S by proportionally 
contracting the vertices of S toward a given point w0 of S. For any r ∈ (0,1] and d = 
1,2,…, D, define r

dv  = (1 – r)w0 + rvd, and let Sr be the regular simplex generated by 
the vertices v1

r,v2
r,...,vD

r ; equivalently, let Sr be the convex hull of {v1
r,v2

r,...,vD
r }. For 

example, if r = 0.25 and w0 = v0 then 1
rv  = (0.5, 0.25, 0.25), 2

rv  =  (0.25, 0.5, 0.25), 
and 3

rv  = (0.25, 0.25, 0.5) as illustrated in Panel I of Figure 2. The resulting simplex Sr 
is outlined by an equilateral triangle whose vertices are one-fourth of the way to the 
vertices of S from the centroid v0. If w0 = (0.6, 0.2, 0.2), then 1

rv  = (0.7, 0.15, 0.15), 

2
rv  =  (0.45, 0.4, 0.15), and 3

rv  = (0.45, 0.15, 0.4), and Sr is the regular simplex 
depicted in Panel II. Note that as r drops to 0, the simplex Sr shrinks to the point w0, 
while if r = 1, we have Sr = S.  

 

*** Figure 2 Here *** 

 

Lemma 1 Let v0 is the centroid of the unit simplex S. For any w0 ∈ S such that w0 ≠ 
v0, Sr(w0) and Sr(v0) are equal in volume for all r ∈ (0,1]. 

Proof  The dth vertex of the simplex Sr(w0) and Sr(v0) are given by the vectors r
dv (w0) 

= (1 – r)w0 + rvd and r
dv (v0) = (1 – r)v0 + rvd, respectively. The difference between the 

dth vertex of these two simplexes are given by the vector r
dδ  = r

dv (w0) – r
dv (v0) = (1 – 

r)(w0 – v0). Therefore, r
dδ  = (1 – r)(w0 – v0) for all d and Sr(w0) is obtained from Sr(v0) 
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by shifting all vertices of the later by r
dδ . Hence, Sr(w0) and Sr(v0) are equal in volume 

for all r ∈ (0,1].4 

 

3. Robust Comparisons 

 

  While there are many conceivable ways of aggregating achievements, we 
focus here on a common form of multidimensional index based on a weighted average 
of individual levels. A composite indicator C: X × S → R applies the entries of a 
weighting vector w ∈ S to the respective entries in the achievement vector x ∈ X and 
sums to obtain the general form C(x;w) = w⋅x. To implement this approach in practice 
one must select a specific weighting vector. In what follows, it is assumed that an 
initial weighting vector w0 ∈ S has already been chosen; this fixes the specific 
composite indicator C0: X → R defined by C0(x) = C(x;w0) for all x ∈ X. The 
associated strict ordering of achievement vectors will be denoted by C0, so that x C0 y 
if and only if C0(x) > C0(y).  

Arguably the world’s best known composite multidimensional index is the 
HDI. It first appeared in the United Nations Development Program (UNDP) Human 
Development Report 1990 (UNDP, 1990). HDI values have since been published 
annually for more than 170 countries. The HDI provides information on D = 3 
achievements, namely, health, education and income.5 The weighting used in the HDI 
is v0, or equal weighting, and the resulting composite index has the form C0(x) = v0⋅x 
= (⅓)x1 + (⅓)x2 + (⅓)x3. Table 1 provides data for the ten countries with the highest 
HDI levels in 2004 as given in UNDP (2006). The countries are listed in order of HDI 
from highest (Norway), to second highest (Iceland), and so forth, until the tenth 
highest country (Netherlands). The associated information on country comparisons is 
also represented in matrix form in Table 2. Whenever a ‘column country’ has a higher 
HDI value than a ‘row country’, this is indicated with ‘C0’ in the associated cell. Note 
that every cell below the diagonal is filled, reflecting the fact that the HDI, like any 
composite index, generates a complete ordering once a specific weighting vector has 
been chosen.  

 

*** Table 1 Here *** 

 

*** Table 2 Here *** 

 

However, it should be borne in mind that cross-country HDI comparisons are 
entirely contingent on the chosen weighting vector v0 and reveal little about the 
robustness of judgments as the weights are varied. Indeed, look at the twin examples 
of Australia versus Sweden and Ireland versus Canada. The HDI of Australia exceeds 
that of Sweden by about 0.006, and Ireland is higher than Canada by the same margin. 
                                                 
4 Note that if r = 1, then 1

dδ  = 0 and S1(w0) = S1(v0). 
5 The health index is based on life expectancy; the education index is based on enrolment and literacy 
rates; and the income index based on per capita Gross Domestic Product. For detailed derivation of the 
dimension specific indices, see the technical note (UNDP, 2006, p. 394). 
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It is an easy matter to show that Australia has a higher level of the composite indicator 
than Sweden for all weighting vectors w ∈ S. On the other hand, the pair-wise ranking 
of Ireland and Canada can be easily reversed: for example, the weighting vector w' 
obtained from v0 by a 0.05 shift of weight from each of the education and income 
dimensions to the health dimension is one such example.  

In symbols, let C be the composite indicator over the D = 3 dimensions of 
health, education and income, and let x, y, x', and y' denote the respective achievement 
vectors for Australia, Sweden, Ireland and Canada. Then for Australia and Sweden we 
have C(x;v0) > C(y;v0) and this ranking is never reversed at any w ∈ S; while for 
Ireland and Canada, C(x';v0) > C(y';v0) and this ranking is reversed for the alternative 
weighting vector w' given above. In sum, C0 comparisons that appear to be identical 
in Tables 1 and 2 can be differentially robust, and this in turn may have some bearing 
on our interpretation of such comparisons. 

To differentiate among C0 comparisons (such as those found in Table 2) we 
formulate a binary relation over achievement vectors in X that will indicate when an 
initial comparison is robust. Our construction begins with a set W ⊆ S of ‘reasonable’ 
weighting vectors containing the initial vector w0. We say that x robustly dominates y 
given W, written x CW y, if and only if C(x,w0) > C(y,w0) and C(x,w) ≥ C(y,w) for all w 
∈ W. In other words, the composite indicator is higher for x than y when the 
weighting vector is w0, and this ranking is never reversed for any other weighting 
vector in W.  The relation CW is clearly transitive, so that if x CW y and y CW z, then x 
CW z.  However, it will often be the case that x CW y does not hold despite x C0 y being 
true, since CW requires there to be no reversal for any vector in W. As W expands, the 
likelihood of a reversal rises, and fewer robust comparisons can be made; in other 
words, if W ⊆ W' then x CW' y implies x CW y, but not vice versa. This paper explores 
the robustness relation CW for various specifications of the set W, provides 
characterizations of the relations, and offers insight on their applicability.  

 

A. Full Robustness 

B.  

If W = S, the associated relation CW applies when an initial judgment x C0 y is 
never reversed at any configuration of weights. In this case we say that the 
comparison is fully robust and shall denote the relation CW by C1. Requiring 
unanimity over all of S is quite demanding and consequently C1 is the least applicable 
among all robustness relations; however, when it applies, the associated ranking of 
achievement vectors is maximally robust.  

The examples of Australia versus Sweden and Ireland versus Canada from 
Table 1 suggest a simple characterization of C1. Notice that Australia is higher than 
Sweden in each of the three dimensions, and hence C1 holds in this case. In contrast, 
Ireland is higher than Canada in two dimensions and lower in one, which is why C1 
does not apply (i.e., the ranking is reversed when the weight is high enough on the 
‘reversed’ dimension). We have the following result. 

Theorem 1  Let x C0 y for x, y ∈ X.  Then x C1 y if and only if x ≥ y. 

Proof   Suppose that x C0 y is true.  If x ≥ y holds, then clearly C(x;w) = w⋅x ≥ w⋅y = 
C(y;w) for all w ∈ S, and thus x C1 y. Conversely, if x C1 y holds,  then setting w = vd 
in C(x;w) ≥ C(y;w) yields xd ≥ yd for all d, and hence x ≥ y. □ 
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In order to check whether a given ranking x C0 y is fully robust, one need only 
verify that the achievement levels in x are at least as high as the respective levels in y.6 
The following corollary provides two alternative sets of sufficient conditions for C1. 

Corollary  Let x, y ∈ X. Then x C1 y holds if (i) x >> y or if (ii) w0 >> 0 and x > y.  

Proof  Both sets of conditions entail x ≥ y, hence by Theorem 1 we need only verify 
that both imply x Co y. If x >> y, then for any w ∈ S we have w⋅x > w⋅y, hence x Co y.  
If w0 >> 0 and x > y, it follows immediately that w0⋅x > w0⋅y, and hence x Co y. 

One interesting implication of the Theorem 1 is that the relation C1 is 
‘meaningful’ when variables are ordinal and no basis of comparison between them 
has been fixed.7 Suppose that each variable xd in x is independently altered by its own 
monotonically increasing transformation fd(xd) and let y = (f1(x1), …, fD(xD)) be the 
resulting transformed achievement vector.8 We can show that x C1 x' implies y C1 y' 
for the respective transformed vectors y and y'. Indeed, if x C1 x', we know that x C0 x' 
holds by definition, while x ≥ x' is true by Theorem 1. Transforming the variables 
yields y ≥ y' and thus  

(1) w⋅y ≥ w⋅y' for all w ∈ S  

since w ≥ 0. By x C0 x' it follows that w0⋅x > w0⋅x' is true; thus, for some d we 
have wd

0 xd > wd
0 ′ x d , and hence xd > x'd with   wd

0  > 0. Through the transformation we 
obtain yd > y'd and this, when combined with   wd

0  > 0 and (1), yields w0⋅y > w0⋅y', or y 
C0 y'. By (1), then, we have y C1 y'. In other words, if C1 holds for any given 
cardinalization of the ordinal variables, it holds for all cardinalizations. Note that 
while C0 on its own is not meaningful in this context (since transforming variables can 
lead to y' C0 y even though initially we had x C0 x'), the fully robust relation C1 has the 
property that x C1 x' if and only if y C1 y', and hence is an appropriate technology for 
ordinal variables. 

Now returning to the case of the HDI, we might ask how many of the 45 C0 
comparisons given in Table 2 are fully robust.  The answer, provided in Table 3, is 
that just four comparisons exhibit vector dominance of achievement vectors and hence 
C1. This is perhaps not unexpected due to the narrow differences in HDI values 
among the highest ranked countries. The picture for the entire dataset reveals greater 
applicability for the relation C1: for the 177 countries, there are a total of 10,875 fully 
robust comparisons out of a possible 15,576 comparisons, implying that just under 
69.8% of all comparisons are fully robust. Why are there so many fully robust HDI 
comparisons? We return to this point below in Section V. 

 

*** Table 3 Here *** 

 

B.   Limited Robustness 

 

                                                 
6 Note that x C0 y precludes the possibility that x = y, and hence x C1 y actually entails x > y. 
7 Roberts () – meaningful. 
8 The resulting function f:X→RD defined by f(x) = (f1(x1), …, fD(xD)) is called a monotonically 
increasing transformation below. 
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Whereas the previous section took W to be the entire simplex S, we now 
consider using the smaller simplex Sr of weighting vectors. This will lead to a less 
demanding robustness relation than C1, but one that is more generally applicable. 
Recall that the simplex Sr is the convex hull of vertices {   v1

r ,...,vD
r } located a fixed 

proportion r of the way from w0 to the vertices of S. When w0 = v0, the resulting 
simplex Sr is a smaller version of S with v0 at its center; for general w0, the set Sr is a 
scaled down version of S that preserves the relative position of w0. In either case, the 
the size of Sr is always the same for fixed r ∈ (0,1]. Substituting W = Sr in the 
definition of CW yields the rth order robustness relation, denoted here by Cr and 
defined as follows: x Cr y if and only if x C0 y and C(x;w) ≥ C(y;w) for all w ∈ Sr. This 
relation retains all the properties of the general robustness relation, and since the sets 
Sr are nested for a fixed w0, we know that that x Cr y implies x Cr' y whenever r > r'.  

Now suppose that x C0 y holds for the pair x and y of achievement vectors. 
What additional conditions on x and y are needed to ensure that x Cr y? One easy-to-
verify set of necessary conditions is for C(x;w) ≥ C(y;w) at each vertex w = vd

r  of Sr. 
Indeed, define xr = ( x1

r,..., xD
r ) where xd

r  = C(x; vd
r ) = vd

r ⋅x  and let yr be the analogous 
vector derived from y. Then the necessary condition can be stated as xr ≥ yr. The next 
theorem shows that, in fact, this is also sufficient. 

Theorem 2   Let x C0 y for x, y ∈ X.  Then x Cr y if and only if xr ≥ yr. 

Proof  We need only verify that x C0 y and xr ≥ yr imply x Cr y. Pick any w ∈ Sr, and 
note that since Sr is the convex hull of its vertices, w can be expressed as a convex 
combination of v1

r,...,vD
r , say w = α1 1

rv +…+αD
r
Dv  where α1+…+αD = 1 and αd ≥ 0 for 

d = 1,…,D. But then C(x;w) = w⋅x = α1 1
rv ⋅x+…+αD

r
Dv ⋅x = α1 1

rx +…+αD
r
Dx , and 

similarly C(y;w) = α1 1
ry +…+αD

r
Dy ; therefore xr ≥ yr implies C(x;w) ≥ C(y;w).  Since 

w was an arbitrary element of Sr, it follows that x Cr y. □ 

Theorem 2 shows that to evaluate whether a given comparison x C0 y exhibits 
rth order robustness, one need only compare the associated vectors xr and yr. If each 
component of xr is at least as large as the respective component of yr, then the 
comparison is robust according to Cr; if xr has at least one component lower than the 
respective entry of yr, then, the original ranking is not robust. Note that when r = 1, 
we have xr = x, and Theorem 2 reduces to Theorem 1.9 

 

*** Table 4 Here *** 

 

*** Table 5 Here *** 

 

Table 4 illustrates this approach for r = 0.25 for the ten highest HDI countries, 
with the final three columns listing the entries of the associated vector xr. The table 
reveals a host of comparisons that can be made using Cr for this value of r. In 
particular, the ranking between Iceland and USA, which was determined not to be 
fully robust, is rth order robust as is apparent by the dominance of the last three entries 

                                                 
9 Note that since r

dv  = (1-r)w0 + rvd, it follows that { }r
dx  = vd

r ⋅x = (1-r)C0(x) + rxd; in other words, the 
vector xr is a convex combination of the vector (C0(x), …, C0(x)) of average achievements and x itself. 
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for Iceland over the respective entries for USA. On the other hand, the comparison 
between Ireland and Canada, which Table 1 showed was not fully robust, is also not 
robust in the present case, since the fourth column entry for Canada is higher than the 
third column entry for Ireland. Table 5 lists all comparisons among the top ten 
countries that can be made using the robustness relation Cr for r = 0.25; fully 46.7% 
of the possible comparisons can now be made. For the entire list of 177 countries, 
91.8% of the comparisons exhibit rth order robustness for this level of r. 

 

C. Graphical Depiction 

 

Figure 3 uses data from Table 1 to provide graphical representations of the 
conditions associated with the various robustness relations. In each panel, the two-
dimensional simplex S is depicted in the horizontal plane at the base of the graph, as 
are its three vertices vd and the initial weighting vector v0 at its center. The smaller 
simplex Sr and its vertices vd

r  are also represented within S (for the case r = 0.25). 
Now suppose that a given country with achievement vector x has been selected.  For 
any weighting vector w in the simplex, the level of the composite indicator C(x;w) is 
graphed as the height above the vector w. Thus, the heights at v1, v2, v3, and v0 are, 
respectively, x1, x2, x3, and the HDI. The linearity of C in w ensures that these points 
and the remaining C(x;w) values form a tilted ‘achievement simplex’ with vertices as 
high as the dimensional achievements and a center as high as the country’s HDI level. 

 

*** Figure 3 Here *** 

 

Comparisons for three pairs of countries - Australia and Sweden, Iceland and 
USA, and Ireland and Canada - are depicted. In Panel 1 the achievement simplex of 
Australia is completely above the achievement simplex for Sweden, reflecting the 
vector dominance of the respective achievement vectors in Table 1. Australia has the 
higher HDI and it is clear from the graph that there is no weighting vector for which it 
has a lower composite indicator level than Sweden. This is an example where the 
relation C1, or complete robustness, holds.   

The second panel depicts a rather different scenario for Iceland and USA: the 
achievement simplexes intersect and C1 cannot hold. Iceland performs better than the 
USA in terms of both health and education, but USA’s achievement is higher for 
income. More weight on health and education makes Iceland’s level of the composite 
indicator higher than that of the USA, whereas more weight on income makes USA’s 
level higher. Dominance does hold if we restrict consideration to the smaller simplex 
Sr. When the intersection is projected down to S, the resulting (dashed) line does not 
cross Sr and hence all weights in Sr follow the original HDI ranking in selecting 
Iceland above USA. Indeed, Table 4 confirms that Iceland has higher levels of the 
composite indicator than USA at each of the vertices of Sr. Consequently, while C1 
does not hold, Cr certainly does for r = 0.25.   

The final panel depicts the case of Ireland and Canada, which has the same 
HDI difference as Australia and Sweden and intersecting achievement simplexes like 
Iceland and USA, but has different robustness characteristics than each. While 
Ireland’s education and income variables are higher than Canada’s, the health index 
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has the opposite orientation, and C1 cannot hold. If we project the intersection of the 
respective achievement simplexes on S, we obtain a dashed line that cuts Sr, implying 
that Cr does not hold. The Ireland-Canada comparison is not robust even for r = 0.25. 
This is also evident from Table 4 since Ireland has higher levels of the composite 
indicator at two of the vertices of Sr (namely, 2

rv  and 3
rv ) and a lower level at the 

remaining one ( 1
rv ).  

 

4. Measuring Robustness 

 

Up to now, our method of evaluating the robustness of a comparison x C0 y 
has been to fix a set Sr of ‘reasonable’ weighting vectors and then to confirm that the 
initial ranking is not reversed at any member of Sr, in which case the associated rth 
order robustness relation Cr applies. Theorem 2 provides simple conditions for 
checking whether x Cr y holds. The present section augments this approach by 
formulating a robustness measure that associates with any ranking x C0 y a number r* 
between 0 and 1 to indicate its level of robustness.   

We construct r* using two statistics - one that might be expected to move in 
line with robustness and another that is likely to work against it. The first of these is 
Δ0 = C(x;w0) – C(y;w0) > 0, or the difference between the composite value of x and the 
composite value of y at the initial weighting vector w0. Intuitively, Δ0 is an indicator 
of the strength of the dominance of x over y at the initial weighting vector. The 
second is Δm = maxw∈S[C(y;w) – C(x;w), 0], or the maximal ‘contrary’ difference 
between the composite values of y and x. Note that when the original comparison is 
fully robust, then C(y;w) – C(x;w) ≤ 0 for all w ∈ S and there is no contrary 
difference. Consequently Δm = 0. On the other hand, when the comparison is not fully 
robust, then C(y;w) – C(x;w) > 0 for some w ∈ S, and hence Δm = maxw∈S[C(y;w) – 
C(x;w)] > 0. The quantity Δm is the worst-case estimate of how far the original 
difference could be reversed at some other weighting vector. 

The measure of robustness we propose is given by r* = Δ0/(Δ0+Δm). Notice 
that when the initial comparison x C0 y is fully robust, then Δm = 0 and hence r* = 1.  
Alternatively, suppose that the initial comparison is not fully robust so that Δm > 0.  
Then it is clear that r* is strictly increasing in the magnitude of the initial comparison 
Δ0, and strictly decreasing in the magnitude of the contrary worst-case evaluation Δm.  
In addition, if Δ0 tends to 0 while Δm remains fixed, the measure of robustness r* will 
also tend to 0. These characteristics accord well with an intuitive understanding of 
how Δ0 and Δm affects robustness. 

Practical applications of r* may be hampered by the fact that Δm requires a 
maximization problem to be solved, namely, maxw∈S[C(y;w) – C(x;w)]. However, by 
the linearity of C(y;w) – C(x;w) = (y – x)⋅w in w, the problem has a solution at some 
vertex vd of S. At the vertex w = vd the difference C(y;w) – C(x;w) becomes yd – xd, 
and so Δm can be calculated as Δm = maxd(yd – xd), or the maximum coordinate 
difference between y and x. The measure r* can be readily derived using this 
equivalent definition for Δm. For example, recall the case of Ireland and Canada, 
whose respective achievement vectors x' and y' are found in Table 1. The initial HDI 
difference Δ0 = C(x';v0) - C(y';v0)  is 0.956 – 0.950 = 0.006. The maximal coordinate 
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difference y'd – x'd is in dimension d = 1 so that Δm = 0.919 – 0.882 = 0.037.  
Aggregation gives us an r* of 0.14. In contrast, the comparison of Australia with 
Sweden yields the same HDI difference Δ0 = 0.006, but Δm = 0 since all dimensional 
differences support the initial ranking of Australia over Sweden; hence r* = 1. 
Finally, the example of Iceland and USA produces Δ0 = 0.012 and Δm = 0.031 and 
hence a robustness level of about r* = 0.28. 

Now what is the relationship between the robustness measure r* and the 
relations Cr developed in the previous section? The following theorem provides the 
answer. 

Theorem 3 Suppose that x C0 y for x, y ∈ X and let r* be the robustness level 
associated with this comparison. Then the rth order robustness relation x Cr y holds for 
0 < r ≤ r* and does not for r* < r ≤ 1. 

Proof  Let x C0 y and suppose that 0 < r ≤ r*. By definition of r*, we have r ≤ 
Δ0/(Δ0+Δm) and hence rΔm ≤ (1-r)Δ0.  Pick any d = 1,…,D. Then using the definitions 
of Δ0 and Δm we see that r(yd – xd ) ≤ (1-r)(w0⋅x - w0⋅y) and hence rvd⋅y + (1-r)w0⋅y ≤ 
rvd⋅x + (1-r)w0⋅x.  Consequently, vd

r ⋅y ≤ vd
r ⋅x, and since this is true for all d, it follows 

that xr ≥ yr and hence x Cr y by Theorem 2. Alternatively, suppose that x C0 y and yet 
r* < r ≤ 1. Then (1-r)Δ0 < rΔm so that (1-r)(w0⋅x - w0⋅y) < r(yd – xd ) for some d, and 
hence vd

r ⋅y  > vd
r ⋅x or yd

r   > xd
r  for this same d.  It follows, then, that xr ≥ yr cannot 

hold, and neither can x Cr y by Theorem 2. □ 

Theorem 3 shows that the measure of robustness r* is closely related to the 
robustness relations Cr. Indeed, r* is the largest r for which x Cr y holds or, 
equivalently, for which Sr has no weighting vector that reverses the initial ranking. 
Panel 1 of Figure 4 depicts the dashed line of intersection where Iceland and USA 
have the same value of the composite indicator. Also depicted are the simplexes 
corresponding to three values of r. The smallest simplex (r = r″) contains only 
weighting vectors that yield a strictly higher value for Iceland. The largest simplex (r 
= r′) is cut by the dashed line and hence it contains a region where USA has higher 
values. The middle simplex (r = r*) contains vectors for which Iceland has the higher 
value, and a single vector (the vertex that just touches the dashed line) for which the 
values are the same. A smaller r would leave room for the simplex to expand without 
reversing the initial comparison; a larger r would lead to a reversal. Consequently, r = 
r* is the robustness level of the comparison. Panel 2 illustrates the analogous 
construction for a case were initial weights are not equal. Note that the r* value found 
here is larger, showing that r* may well depend upon the initial weighting vector w0. 

 

*** Figure 4 Here *** 

 

*** Table 6 Here *** 

 

To summarize, we have defined a measure of robustness r*, shown how it can 
be calculated in practice, and provided an alternative interpretation in terms of the Cr 
relations and their associated simplexes. Table 6 illustrates this methodology for the 
ten-country HDI example via a ‘robustness profile’ that lists the robustness value r* 
(in percentage terms) for each of the 45 possible comparisons. This includes the 
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information given in Table 3 (which highlights the four entries with r* = 100%) and 
Table 5 (which depicts the 21 comparisons with r* ≥ 25%), and can easily identify the 
Cr comparisons for any given r. Note that the average value of r* in Table 3 is only 
35%, which reflects the fact that the HDI levels are quite similar for the high HDI 
countries and so the Δ0 values are smaller. The next section will apply the methods to 
datasets associated with the HDI and other well-known composite indicators to 
evaluate the applicability of the Cr relations in practice.  

 

5. The Prevalence of Robust Comparisons 

 

 The focus now shifts from individual comparisons to the entire collection of 
comparisons associated with a given dataset X̂  and an initial weighting vector w0. 
The first question is how to judge the overall robustness of the dataset. One option 
would be to use an aggregate measure (such as the mean) that is strictly increasing in 
each comparison’s robustness level. However, rather than settling on a specific 
measure we use a ‘prevalence function’ based on the entire cumulative distribution of 
robustness levels, and employ a criterion analogous to first order stochastic 
dominance to indicate greater robustness. We then apply the methodology to several 
datasets and investigate how various changes affect the prevalence function. 

We begin with an initial weighting vector w0 and a dataset X̂  containing n̂  
observations. Without loss of generality, we enumerate the elements of X̂  as x1, x2, 
…, n̂x  where C0(x1) ≥ C0(x2) ≥ … ≥ C0( n̂x ). The analysis can be simplified by 
assuming that no two observations in X̂  have the same composite value, so that C0(x1) 
> C0(x2) > … > C0( n̂x ).10 There are k̂  = n̂  ( n̂ -1)/2 ordered pairs of observations xi 
and xj with i < j, and each comparison xi C0 xj has an associated robustness level     rij

*. 

Let P = [    rij
*] represent the robustness profile of X̂  (given w0), which lists the level of 

robustness     rij
* for every ordered pair in a manner similar to Table 6.  

The mean robustness level in profile P is given by  r  = Σi Σj>i     rij
*/ k̂ ; it is the 

average level of robustness of the k̂  many comparisons. Of course, a higher mean 
level   r  does not necessarily ensure that the prevalence of Cr is higher for any given r. 
An alternate approach is to summarize robustness levels in a way that reflects the 
entire distribution, and not just the mean. For any given dataset X̂  and initial 
weighting vector w0, define the prevalence function p:[0,1]→[0,1] to be the function 
which associates with each r ∈ [0,1] the share p(r) ∈ [0,1] of the k̂  comparisons 
whose robustness levels are at least r. In other words, p(r) is the proportion of 
comparisons for which the Cr relation applies.11 Suppose that p and q are the 
prevalence functions for X̂  (given w0) and Ŷ  (given u0), respectively. We say that X̂  
has greater robustness than Ŷ  if p(r) ≥ q(r) for all r ∈ [0,1], with p(r) > q(r) for some 
r ∈ [0,1]. In words, no matter the level of robustness r, the share of all comparisons 
that exhibit rth order robustness is no lower for X̂  than Ŷ , and for some r it is higher. 

                                                 
10 This is true for each of the examples presented below. 
11 At r = 0 the complete relation C0 is used and hence p(0) = 1. 
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The two are said to have the same robustness if their prevalence functions are the 
same.   

 

A.  Some Examples 

 

Figure 5 depicts the prevalence functions obtained from several datasets 
associated with well-known composite indicators. The first two are from the 1998 and 
2004 Human Development Index12, which uses equal weights across three dimensions 
(health, education and income) to rank 177 countries. Next is the 2008 Index of 
Economic Freedom (IEF) created by the Wall Street Journal and the Heritage 
Foundation to measure the degree of economic freedom across countries13. There are 
10 dimensions, spanning the spectrum from business freedom to labor freedom, all 
weighted equally in w0. The IEF dataset covers 157 countries for the year 2007. 

 

*** Figure 5 Here *** 

 

The final indicator is the 2008 Environmental Performance Index (EPI), 
developed by Yale University, Columbia University, the World Economic Forum and 
the Joint Research Centre of the European Commission to complement the 
environmental targets of the UN Millennium Development Goals. The EPI is a 
composite indicator whose variables may be viewed at various levels of aggregation14. 
For purposes of illustration, we consider three versions here. EPI10 has ten variables 
and the initial weights are not all equal. EPI6 combines variables (and initial weights) 
to obtain a six variable version with unequal weights. EPI2 aggregates further to 
obtain two variables with equal weight on each. As the initial weighting vectors are 
‘consistent’, each version of the EPI produces identical values at its respective initial 
weighting vector; but due to the different numbers of variables, each has distinct 
robustness characteristics.15 The EPI dataset covers 149 countries during the year 
2007. 

Several initial observations can be made from the prevalence functions given 
in Figure 5. Each graph is downward sloping, reflecting the fact that as r rises, the set 
Sr expands, and hence the number of comparisons that can be made by Cr is lower (or 
no higher). As r falls to 0, each function rises to 100% comparability for Cr; in the 
                                                 
12 Note that the Human Development Indices for the years 1998 and 2004 are obtained from UNDP 
(2000 and 2006), respectively. 
13 The ten dimensions of economic freedoms are Business Freedom, Trade Freedom, Fiscal Freedom, 
Government Size, Monetary Freedom, Investment Freedom, Financial Freedom, Property rights, 
Freedom from Corruption, Labor Freedom. For each dimension, the score is normalized between zero 
and hundred. The final score is obtained by simple average of these scores. 
14 EPI is composed of twenty five-dimensions of performance on environment. However, at the 
objective level all dimensions are summarized in two categories with equal weights: environmental 
health and ecosystem vitality. At the policy level, all twenty-five dimensions are summarized into six 
dimensions at. At the policy level, the weight vector used is (0.5, 0.025, 0.075, 0.075, 0.075, 0.25). 
Further, these six dimensions are sub-categorized into ten dimensions with the weight vector (0.25, 
0.125, 0.125, 0.025, 0.075, 0.075, 0.025, 0.025, 0.025, 0.25). To have detailed information on 
indicators, see http://epi.yale.edu/Methodology.  
15 For consistent initial weighting vectors, the weight on an aggregated variable is sum of the weights 
on the variables that were aggregated. See the next subsection. 
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other direction, the value of p(r) at r = 1 is the percentage of the comparisons that are 
fully robust. There is a wide variation in p(1) across datasets. It is clearly highest for 
the HDI examples, with p(1) being about 69.8% in 2004 and 73.2% in 1998; it is 
47.4% for the two variable EPI; and it is much lower for the remaining indicators16 
(4.2% and 1.5% in the case of EPI6 and EPI10, respectively, and 6.5% for the EFI).  

For r between 0 and 1, the HDI comparisons are also more robust than the 
comparisons of the EPI and the EFI, and of the two HDI datasets, 1998 exhibits 
greater robustness than 2004. For the EPI examples, a higher level of aggregation and 
hence a lower number of variables, leads to greater robustness. However, EPI2 is still 
less robust than either of the HDIs, which have three variables. The shapes of the p(r) 
functions are different, with some being essentially linear, and others exhibiting 
pronounced curves. Drawing on these examples, we now examine the prevalence of 
robustness from a more theoretical perspective. What transformations allow the 
resulting datasets to be compared in terms of robustness? 

  

B. Fixed Robustness and Transformations 

 

We begin with transformations of the data that leave p(r) unchanged and 
hence yield pairs of datasets with the same robustness properties. A monotonically 
increasing transformation of X is a function f:X→RD that can be written as f(x) = 
(f1(x1),…, fD(xD)) where each function fd(xd) is monotonically increasing; a common-
slope affine transformation of X has the additional property that each function fd(xd) 
can be written as fd(xd) = αxd + βd for some  α > 0 and βd in R. We say that Ŷ  is 
obtained from X̂  by a common-slope affine transformation (respectively, by a 
monotonically increasing transformation) if Ŷ  = {f(x): x ∈ X̂ } for some 
transformation f having the appropriate property.  

Applying a monotonically increasing transformation to a dataset preserves the 
orderings of achievements within each dimension, but can disrupt the weighted 
averages across dimensions. In particular, it is possible that C(x';w0) > C(x;w0) and 
C(y';w0) < C(y;w0) where y' and y are transformations of x' and x, respectively, which 
implies that the robustness profiles of Ŷ  and X̂  can be rather different for the same 
w0. On the other hand, if we restrict consideration to common-slope affine 
transformations, we see that C(y;w) = w⋅y = αw⋅x + w⋅β where β = (β1, …, βD), and 
hence C(x';w) ≥ C(x;w) if and only if C(y';w) ≥ C(y;w), where y' and y are the 
respective transformations of x' and x. In this case Ŷ  and X̂  have the same robustness 
profile and hence the same prevalence function p(r) given w0. So, for example, if 
every dimension is scaled up or down in the same proportion, this will leave p(r) 
unchanged, as will simply adding a different constant to each dimension. On the other 
hand, multiplying each dimension by a different positive constant alters the implicit 
weighting across dimensions, potentially changing the rankings of transformed 
observations. Using an arbitrary monotonic increasing transformation likewise can 
alter rankings and lead to different prevalence functions for the transformed dataset. 
Note, though, that fully robust comparisons are preserved under a monotonic 
                                                 
16 For EPI6 and EPI10, we also calculate the prevalence function using initial equal weights. We find the 
dominance relation to hold between EPI6 and EPI10 by EPI6 is more robust that EPI10 for all r. The 
relationship is explained in Figure 6. 
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transformation (as noted in the discussion following Theorem 1), and hence the 
prevalence p(1) of full robustness does not change. These results are summarized in 
the following theorem.17 

Theorem 4 Suppose that the initial weighting vector is fixed. If Ŷ  is obtained from X̂  
by a monotonically increasing transformation, then Ŷ  and X̂  share the same 
prevalence value p(1). If Ŷ  is obtained from X̂  by a common-slope affine 
transformation, then they share the same prevalence function p(r).18  

In the example of the HDI, the normalized income, education and health 
variables used to construct index values are actually monotonic transformations of 
underlying variables involving a nonlinear function in the case of income, and affine 
transformations with different slopes across the three variables. Consequently, the 
specific shapes of the transformations can influence HDI comparisons as well as their 
measured robustness levels. However, as indicated in Theorem 4, these 
transformations do not influence fully robust comparisons and p(1). If one restricted 
consideration to C1 comparisons, there would be no need to select the ‘right’ 
transformations or even to transform variables at all: one could use the original 
income, education and health variables directly.   

A second form of transformation replaces each variable in the achievement 
vector with one or more copies of that variable. A replicating transformation of X is a 
function f:X→RD' for some D' > D such that f(x) = (f1(x1),…, fD(xD)), where each fd(xd) 
is the kd-fold replication (xd,xd,…,xd) for some integer kd ≥ 1. We say that that Ŷ  is 
obtained from X̂  by a replicating transformation if Ŷ  = {f(x): x ∈ X̂ } for some 
transformation f of this type. Transformed achievement vectors have higher dimension 
D' and, consequently, the associated weighting vectors must be adjusted to account for 
this. Now, which initial weighting vector u0 for Ŷ  would correspond to the original 
w0 for X̂ ? One option is to divide the weight   wd

0  equally among the associated 
dimensions in u0; however, it turns out that any allocation of the weight     wd

0  across its 
associated dimensions will do. We say u0 is consistent with w0 if, for each d = 1,…, n̂  
the weight     wd

0  on xd is equal to the sum of the kd entries in u0 associated with fd(xd) = 
(xd,xd,…,xd).  So for example, if D = 2 and f replicates each entry two times, then w0 = 
(½, ½) is consistent with u0 = (½, 0, ¼, ¼).  We have the following result. 

Theorem 5 If Ŷ  is obtained from X̂  by a replicating transformation, and u0 is 
consistent with w0, then Ŷ  and X̂  have the same prevalence function p(r).  

Proof  Suppose that y is a replicated achievement vector associated with x, so that y = 
f(x) for a replicating transformation f. Given the initial weighting vector w0 and a 
consistent weighting vector u0, it is clear that C(y;u0) = u0⋅f(x) = w0⋅x = C(x;w0).  Now 
let r ∈ (0,1] and select any d = 1,…,D along with an index value d' of one of its 
copies. Let   vd

r  denote the dimension d vertex of the simplex Sr in RD and let   v ′ d 
r  denote 

the dimension d' vertex of the simplex Sr in RD'. It is clear that C(x;  vd
r ) =   vd

r ⋅x = (1-

                                                 
17 The result on monotonic transformations would be true even if the initial weighting vectors are 
different – just so both are strictly positive. The role played by common-slope affine transformations is 
similar to assumptions used in social choice theory: see Blackorby, Donaldson, and Weymark (1984). 
18 The first part of Theorem 4 will generate same prevalence function p(1) even if use the dominance 
criterion proposed by Cherchye, Ooghe, and Puyenbroeck (2005). 
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r)C(x;w0) + rxd = (1-r)C(y;u0) + ryd' =  v ′ d 
r ⋅y = C(y;  v ′ d 

r ). Hence, where y' and y are the 
respective transformations of x' and x, we have (i) C(x';w0) ≥ C(x;w0) if and only if 
C(y';u0) ≥ C(y;u0), and (ii) C(x';  vd

r ) ≥ C(x;  vd
r ) if and only if C(y';  v ′ d 

r ) ≥ C(y;  v ′ d 
r ). Since 

(ii) holds for each d and every associated d', it follows from Theorem 2 that x'Cr x if 
and only if y'Cr y, and p(r) is the same for both. □ 

In other words, appending copies of one or more existing variables leaves the 
comparisons and the robustness properties of a dataset unaffected, as long as the 
effective weight on each variable is unchanged.  

As an example, consider what would happen if the education variable in an 
HDI dataset were replicated to obtain a four variable dataset. Using equal weights of 
¼ for the four dimensional dataset would likely alter rankings since this would, in 
effect, increase the aggregate weight on education. However, if the total weight on the 
two education variables is maintained at ⅓, say where each variable receives a weight 
of 1⁄6, then all comparisons and robustness levels would be the same as before.  

 One implication of this is that the number of variables per se does not have an 
independent impact on a dataset’s robustness. In contrast, the empirical evidence 
provided by Figure 5 does seem to suggest that a greater number of variables is 
associated with lower robustness. The evidence is particularly striking for the three 
EPI examples, where the aggregation of variables, and hence the decrease in the 
number of variables, clearly leads to increased robustness – even though they use the 
same underlying data. Is this due to the decreased number of variables?  

Let us examine how EPI6 is constructed from EPI10. The first and fifth 
variables in EPI6 are each obtained by combining three distinct variables in EPI10 
(namely, variables 1-3 and variables 7-9), while the remaining variables are 
unchanged. Weights from the initial weighting vector u0 for EPI10 are used to 
construct each new variable in EPI6 as a weighted average of the source variables 
from EPI10, and the weight on the new variable is the sum of the corresponding 
weights in u0. The new w0 is thus consistent with u0. Now consider a ten variable 
replication of EPI6 that repeats variable 1 three times and variable 5 three times and 
let the initial weighting vector be u0. By Theorem 5, this intermediate dataset has 
precisely the same robustness profile and prevalence function as EPI6. It is not the 
number of variables that is driving the observed decrease in robustness. Instead, its 
source is found in the transformation from the intermediate dataset to EPI10, by which 
the perfectly correlated triplets are converted to variables that are less positively 
associated. The fall in robustness is due to disagreements among the new variables, 
rather than the higher number of variables per se. Association among variables is 
likely the key driver of robustness, and this is explored further in the next section. 

 

C. Robustness and Positive Association 

 

What factors generally lead to greater robustness? At an intuitive level, the 
possibility of fully robust comparisons is related to the degree of correlation or 
positive association among the dimensional variables. For example, if two of the 
achievements are perfectly negatively correlated, so that when one rises, the second 
falls, then it is impossible for vector dominance and hence C1 to hold. On the other 
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hand, if there is complete positive association19 between all variables, so that when 
any variable rises, all rise, then every achievement vector is comparable by vector 
dominance, and C1 is universally applicable. In Figure 5 we saw that both HDI 
datasets have high levels of robustness, and that the prevalence function is higher for 
1998 than for 2004. Indeed, the Kendall tau20 coefficients (τ) for 2004 are 0.55 for 
health and education, 0.66 for health and income, and 0.58 for income and education, 
which indicates strong, positive association among variables; the respective values for 
2004 are even higher, at 0.59, 0.70, and 0.60. Both intuition and empirical evidence 
suggest a link between positive association and robustness. We now turn to the 
theoretical justification for such a link. 

For simplicity, assume that the dataset X̂  has the property that within each 
dimension, all observed values of the variable are distinct.21 Given any two 
dimensions c and d, let Acd be the number of concordant pairs of observations in 
which one of the two observations has higher values in both dimensions c and d. Let 
Bcd be the number of discordant pairs in which one observation is higher in one 
dimension and the second is higher in the other. Then Kendall’s tau correlation 
coefficient for dimensions c and d is defined as τcd = (Acd - Bcd)/(Acd + Bcd). Note that 
the denominator of this expression is k̂  = n̂ ( n̂ -1)/2 while Bcd = k̂  - Acd, so that τcd = 
2Acd / k̂  - 1.  

Now consider the special case where there are only two variables, and so there 
is a single coefficient τ = τ12 and number A = A12 of concordant pairs. In this special 
case, the number of concordant pairs is precisely the number of fully robust pairs, so 
the share of fully robust comparisons is p(1) = A/ k̂ . Therefore, τ = 2 p(1) – 1 and we 
have the following result. 

Theorem 6  If D = 2, then p(1) = (τ+1)/2.  

In the case of two variables, there is a direct relationship between p(1) and the 
level of correlation as measured by Kendall’s tau. If τ = 1 so that the variables have 
perfect positive correlation, then p(1) = 1. If τ = -1, and perfect negative correlation 
obtains, then p(1) = 0. The case of τ = 0 of independence implies p(1) = ½, so that 
half the comparisons would be fully robust in this case. The example of EPI2 has τ = – 
0.053 and hence p(1) = 0.474, by Theorem 6. 

Now consider the general case of D ≥ 2.  Full agreement across all dimensions 
entails concordance in any two dimensions, hence p(1) ≤ Acd / k̂  = (τcd+1)/2 for any 
pair c > d.  We have the following result. 

Theorem 7  Let τmin = minc>d τcd be the minimum value of Kendall’s tau coefficient 
across all pairs of variables. Then p(1) ≤ (τmin + 1)/2.  

This result shows that the smallest Kendall’s tau coefficient, appropriately 
transformed, provides us with an upper bound for the proportion of comparisons that 
are fully robust. If τmin = 1, so that all pairs of variables move together in full accord, 

                                                 
19 Note that if there are more than two dimensions then not all of them can ever be perfectly negatively 
associated. In other words, there does not exist any concept called perfect negative association such as 
perfect positive association. 
20 Kendall’s tau is a measure of association or correlation based on ranks of the variables concerned. 
See Kendall and Gibbons (1990). 
21 This rules out ties and simplifies the definition of Kendall’s tau coefficient. 
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then p(1) = 1 and the bound is tight. If τmin = -1, say when a pair of variables exhibits 
a perfect negative correlation, then no comparison is robust and p(1) = 0 is equal to 
this bounding value. For 0 < τmin < 1, the actual value of p(1) can be equal to or below 
the bound.  For example, for the entire 2004 HDI dataset, τmin = 0.55, and thus 
according to Theorem 4, we have p(1) ≤ 0.78. As noted above, the actual prevalence 
of fully robust comparisons is p(1) = 0.698. For EPI6, EPI10 and EFI, the respective 
values of τmin are -0.147, -0.237, and -0.3395, yielding upper bounds on p(1) of 0.43, 
0.38, and 0.33 respectively.  The true values for p(1) are actually much lower, at 
0.042, 0.015, and 0.065, respectively. 

When there are several dimensions, pairwise correlations can provide only 
partial information on the magnitude of p(1). An interesting alternative is to adjust the 
definition of Kendall’s tau to obtain a multidimensional measure of association that 
corresponds exactly to p(1). Let A be the number of pairs of observations in which 
one of the two observations has higher values in all dimensions, and let B be the 
number of pairs for which dimensions disagree. Given any dataset X̂  having an 
arbitrary number of dimensions D > 0, we define Kendall’s coefficient of positive 
association by τ = (A - B)/(A + B), or the number of fully robust comparisons minus 
the number that are not fully robust, over the total number of comparisons. With 
dimensional ties ruled out, the total number of comparisons is once again k̂  = n̂ ( n̂ -
1)/2 while B = k̂  - A, so that τ = 2A / k̂  - 1 = 2p(1) - 1 and p(1) = (τ+1)/2.  

In the two-dimensional case, the coefficient τ reduces to the standard two-
dimensional Kendall’s tau; for more dimensions it requires agreement across all 
dimensions before counting the comparison in favor or positive association. So for 
example, the positive association measures for the HDI datasets in 1998 and 2004 are, 
respectively, τ = 0.464 and τ = 0.396, while for the EFI it drops to τ = − 0.87.  The 
coefficient for the EPI dataset rises from − 0.97, to − 0.916, to − 0.053 as we move 
from largest to smallest number of dimensions. This is a useful way of restating a 
robustness property of datasets using more familiar terminology, while emphasizing 
the fundamental link between positive association and robustness. 

An alternative route is to make use of the general notion of ‘increasing 
association’ found in Boland and Proschan (1988), among other sources.22 We say 
that dataset Ŷ  is obtained from dataset X̂  by an association increasing 
rearrangement if for some x ≠ x' we have: (a) neither x ≥ x' nor x' ≥ x holds; (b) y = x ∨ 
x' and y' = x ∧ x'; and (c) y" = x" for all x" ≠ x, x'.  In other words, the datasets are 
identical apart from a pair of noncomparable observations in X̂  that were made 
comparable in Ŷ  by placing all the higher values in one observation (the least upper 
bound) and all the lower values in another (the greatest lower bound).  We have the 
following result. 

Theorem 8 Suppose that the initial weighting vector is fixed. If dataset Ŷ  is obtained 
from dataset X̂  by a series of association increasing rearrangements, then the share 
p(1) of fully robust comparisons is higher for Ŷ  than for X̂ . 

                                                 
22 The notion of increasing correlation in the literature of multidimensional inequality and poverty was 
first introduced by Atkinson and Bourguignon. Tsui (1999, 2002) introduced correlation increasing 
majorization based on ‘basic rearrangement’ due to Boland and Proschan (1988). 
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Proof  Fix the initial vector w0 and let Ŷ  be obtained from X̂  by a single association 
increasing rearrangement involving x, x', y, and y' as defined in (a)-(c) above. If we 
can show that p(1) rises, then we are done. To do this, we need only focus on 
comparisons involving at least one of the vectors x and x' in X̂ , since the remaining 
vectors are unchanged. Consider first the comparison involving both x and x'. By (b) 
we know that neither x ≥ x' nor x' ≥ x holds, and hence by Theorem 1 neither x C1 x' 
nor x' C1 x can be true. However, by construction y > y' and since by assumption no 
achievements in any given dimension of x and x' can be equal, we must have y >> y'. 
By the Corollary it follows that y C1 y' holds, which represents a gain of one 
comparison for Ŷ  as compared to X̂ . 

 Now consider a case-by-case analysis of comparisons involving vectors x and 
x' and any given unchanged vector x". (i) Suppose that x" can be compared to both of 
x and x' using C1. The case where x C1 x" and x" C1 x' simultaneously hold is 
impossible, since it implies x ≥ x' in contradiction to (a). Similarly the case where x' 
C1 x" and x" C1 x both apply contradicts x' ≥ x, and is likewise impossible. On the 
other hand, if x" C1 x and x" C1 x' hold, then x" ≥ x and x" ≥ x' must both be true, and 
hence x" >> x and x" >> x' since no two vectors in X̂  can have equal entries in a 
given dimension. By construction, then, y" >> y and y" >> y', which yields y" C1 y and 
y" C1 y', by the Corollary. Similarly, x' C1 x" and x C1 x" yields y' C1 y" and y C1 y", 
and so in all possible cases y" can be compared to both of y and y' using C1. Clearly, 
Ŷ  and X̂  have the same number of fully robust comparisons of this type. (ii) 
Suppose that x" can be compared to exactly one of x and x' using C1. If the 
comparison is x C1 x", then x >> x" and hence by construction y >> y", which implies 
y C1 y". In a similar fashion, if the comparison is x' C1 x", then we also conclude y C1 
y". Alternatively, if the comparison is x" C1 x, then x" >> x and hence by construction 
y" >> y', which implies y" C1 y'. By the same argument, if the comparison is x" C1 x', 
then we conclude y" C1 y' once again. So in each circumstance, y" can be compared to 
at least one of y and y' using C1 and hence Ŷ  has at least as many fully robust 
comparisons of this type as X̂ . (iii) Suppose that x" can be compared to neither of x 
and x' using C1. Then, trivially, Ŷ  has at least as many fully robust comparisons of 
this type as X̂ . Consequently, the number of fully robust comparisons across cases 
(i) – (iii) is at least as high for Ŷ  as for X̂ ; and given the original single comparison 
gain by Ŷ  over X̂ , it follows that p(1) must be strictly higher for Ŷ  than for X̂ . □ 

 One natural implication of the theorem is that association increasing 
rearrangements lead to a higher value for Kendall’s coefficient of positive association 
τ. It is also easy to see that none of the pairwise coefficients τcd will fall, and that at 
least one will rise. Consequently, this form of transformation is especially useful for 
illustrating the connection between full robustness and positive association.  

Theorem 8 provides information on the share p(1) of fully robust comparisons, 
but not on p(r) for r < 1. The following example shows how greater association across 
variables need not translate to increased prevalence of rth order robustness.  Suppose 
that X̂  is made up of the four vectors x = (30,80), x' = (100,30), x" = (90,100), and 
x'" = (80,120). With equal initial weights we see that C0(x) = 55, C0(x') = 65, C0(x") = 
95 and C0(x'") = 100, and yet only two comparisons x" C0 x and x'" C0 x are fully 
robust. Let Ŷ  be made up of the four vectors y = (30,30), y' = (100,80), y" = x", and 
y'" = x'", so that Ŷ  is obtained from X̂  by an association increasing rearrangement. 
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Then the number of fully robust comparisons rises to three, since now y" C0 y, y'" C0 y 
and y' C0 y hold. Clearly, p(1) rises as a result of the association increasing 
rearrangement.   

What about the prevalence p(r) at other values of r? For example, let r = 0.40, 
and note that the vectors used to indicate Cr are (45,65), (79,51), (93,97), and (92,108) 
for X̂  and (30,30), (94,86), (93,97), and (92,108) for Ŷ . The number of Cr 
comparisons in X̂  is four, while only three Cr comparisons are possible in Ŷ , and 
hence p(r) is negatively affected by an association increasing rearrangement in this 
case. Note that the rearrangement results in a vector y' that is not comparable to the 
other two unchanged vectors, y" and y'", and this is preserved in the rth order ranking; 
whereas, the noncomparability of x' with x" and x'" does not survive the averaging 
underlying Cr. Since this example has two dimensions, it also follows that Theorem 4 
applies, and Kendall’s tau coefficient is higher in Ŷ  than X̂ . Consequently, p(r) can 
strictly fall when there is greater association or when the tau coefficient between the 
two dimensions rises. While it is clear that p(1) is linked to positive association 
among variables, the specific mix of factors that determine the placement and shape 
of p(r) for r ∈ (0,1) has yet to be determined.  
 

6. Conclusion 
 

Rankings arising from composite indicators receive remarkable attention. Yet 
they are dependent upon an initial weighting vector, and any given judgment could, in 
principle, be reversed if an alternative weighting vector was employed. This leads one 
to question rankings provided by composite indices, especially if there is ambiguity 
over the numerical values of the weights they employ. Many well known and widely 
used indices are characterised in this way.  

Using a dominance-based analytical framework, this paper examined a 
variable-weight robustness criterion for composite indicators that views a comparison 
as robust if the ranking is not reversed at any weight vector within a given set. It 
characterized the resulting robustness relations for various sets of weighting vectors. 
An illustration of how these relationships moderate the complete ordering generated 
by the composite indicator. A measure by which the robustness of a given comparison 
may be gauged was then proposed, and illustrated using the Human Development 
Index (HDI). The paper also demonstrated how some rankings are fully robust to 
changes in weights while others are quite fragile. Finally, the paper investigated the 
prevalence of the different levels of robustness in theory and practice and offer insight 
as to why certain datasets tend to have more robust comparisons. 

It was emphasised at the outset of the paper that its intention was not to 
discredit or discourage the use of composite indices, but to facilitate better use of 
them. The paper helps in this regard by reducing the undue emphasis placed on 
ranking that were not robust to weight vector, hopefully placing greater emphasis on 
those rankings that have higher robustness. It promotes this outcome by allowing end 
users of composite indices to discern between the two cases, thereby making the HDI 
and other composite indicators more useful and less misleading. 

Two findings of the paper are worth highlighting further. Both are suggestive 
of additional research.  The first relates to the interesting empirical observation is the 
near linearity of the prevalence functions associated with the HDI datasets. In other 
words, increasing r by a given amount decreases the prevalence of robust rankings by 
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fixed amount, independent of the initial level of r. This means that in the case of the 
HDI, the entire shape of p(r) is determined by the percentage of fully robust 
comparisons, p(1). Hence if one were to remove from consideration all fully robust 
comparisons, the conditional prevalence functions would be virtually identical. Put 
differently, among all comparisons that are not fully robust, the percentage of 
comparisons having robustness level r or less is r itself; so, for example, only 5% of 
these comparisons have robustness level of 0.05 or less (or, equivalently, 0.95 or 
more). It would be interesting to explore this regularity further. 

The second finding relates to previous literature on the HDI. This literature has 
examined the statistical associations between the HDI and pre-existing well-being 
indicators, including its individual components (McGillivray, 1991, 2005, 
McGillivray and White, 1993, Booysen, 2002, McGillivray and Noorbakhsh, 2004, 
Cahill, 2005). The underlying concern of this literature is the empirical redundancy of 
the HDI, the new information it provides vis-à-vis these indicators. Redundancy is an 
increasing function of the statistical association of the HDI with respect to these 
indicators. It follows that the HDI would be considered to be fully redundant with 
respect to a pre-existing well-being indicator if the chosen correlation coefficient 
between them was unity. McGillivray (1991) introduced the notion of “redundancy of 
composition” in critiquing the construction of the HDI. High redundancy of 
composition, in the context of rankings, was considered to be an undesirable property 
on the grounds of parsimony. That is, on these grounds makes little sense to combine 
a set indicators if any one of them provides basically the same rankings as their 
composite owing to high correlations among them. McGillivray found that the HDI 
was subject to a high degree of rank redundancy of composition given a high degree 
of rank correlation between the index and its components. While according to the HDI 
redundancy literature a high degree of correlation between its components and the 
HDI itself is bad, the current study finds that it is good as rank robustness appears to 
be an increasing function of the extent of this correlation. Future research could 
address this apparent contradiction. In the absence of strong conceptual guidelines as 
to the choice of components of a composite index, or in the choice of indicators to 
measure achievement components selected with such guidance, one might speculate 
as to whether an optimal trade off exists between rank robustness and the redundancy 
of composition. Future research could address this issue. 

Four further directions for future research ought to be emphasised. The first is 
to develop and integrate statistical robustness into the analysis. The second involves a 
link with a theoretical literature that addresses uncertainty. The structure of the 
general robustness relation defined above for a given set W of weighting vectors is 
closely related to discussions of “Knightian uncertainty” (Bewley, 1986) and 
ambiguity in which an individual decision maker has a set of prior probability 
distributions instead of a single prior.  One way in which the approach of this paper 
differs from this literature is that it privileges the initial weighting structure instead of 
treating it as just one of many.  The criterion discussed by Bewely requires a strict 
improvement at all possible probability vectors. This paper’s approach allows the 
comparison to be weak at the other non-distinguished vectors in the set.23  
Nonetheless, there is a fundamental link between the two that would be interesting to 
explore. Thirdly, the interpretation given in the paper is that each dimension of the 
                                                 
23 Bewely further privileges a specific option that he calls the status quo in order to explain certain 
observed behaviors that are inconsistent with traditional decision theory.  Our approach treats all 
options symmetrically. 
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achievement vector is the measured amount of a given achievement. One could 
instead view the dimensions as being obtained from the underlying achievements by 
some transformation based on, for example, the utility or welfare from the specific 
dimension. Such an approach might well be adapted to deal with this case, and with 
other departures from the linearity inherent in composite indicators. Finally, there is 
clearly a link between the fully robust criterion outlined in this paper and first order 
stochastic dominance in the multidimensional setting. How does rth degree robustness 
relate to multidimensional stochastic dominance?  Is there an analog in the framework 
employed by this paper to second order multidimensional stochastic dominance?  It 
would be interesting to pursue this direction as well. 
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Figure 1: Unit simplex 

 
 

Figure 2: Constructing Sr  

 

v1
r 

v2
r  v3

r 

v1 = (1,0,0) 

v2 = (0,1,0) (0,0,1) = v3 

v1 = (1,0,0) 

v2 = (0,1,0) (0,0,1) = v3 

w0

v0 

v1
r 

v2
r  v3

r

Panel I Panel II 

v1 = (1,0,0) 

v2 = (0,1,0) (0,0,1) = v3

v0 



Foster, McGillivray, and Seth                                                                                                 OPHI Working Paper No. 26 

www.ophi.org.uk 26

 

Figure 3: The Robustness Relations 

 
 

Figure 4: Iceland and USA  

 
 

 

 

 

Figure 5: Prevalence Function for all Indices 
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Figure 6: Prevalence function for the EPI: Equal versus Unequal Initial Weights 
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Table 1: Human Development Index and Components: The Top 10 
Countries in 2004 

Rank Country HDI Health Education Income 
1 Norway 0.965 0.909 0.993 0.993 
2 Iceland 0.960 0.931 0.981 0.968 
3 Australia 0.957 0.925 0.993 0.954 
4 Ireland 0.956 0.882 0.990 0.995 
5 Sweden 0.951 0.922 0.982 0.949 
6 Canada 0.950 0.919 0.970 0.959 
7 Japan 0.949 0.953 0.945 0.948 
8 United States 0.948 0.875 0.971 0.999 
9 Switzerland 0.947 0.928 0.946 0.968 
10 Netherlands 0.947 0.892 0.987 0.962 

 

Table 2: HDI Comparisons 
Country   Norway Iceland Australia Ireland Sweden Canada Japan USA Switzerland Netherlands 

 Rank 1 2 3 4 5 6 7 8 9 10 
Norway 1 ****          
Iceland 2 C0 

****         
Australia 3 C0 C0 ****        
Ireland 4 C0 C0 C0 ****       
Sweden 5 C0 C0 C0 C 0 ****      
Canada 6 C0 C0 C0 C 0 C 0 ****     
Japan 7 C0 C0 C0 C 0 C 0 C 0 ****    
USA 8 C0 C0 C0 C 0 C 0 C 0 C 0 ****   
Switzerland 9 C0 C0 C 0 C 0 C 0 C 0 C 0 C 0 ****  
Netherlands 10 C0 C0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 **** 
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Table 3: Fully Robust Comparisons 
Country   Norway Iceland Australia Ireland Sweden Canada Japan USA Switzerland Netherlands 

 Rank 1 2 3 4 5 6 7 8 9 10 
Norway 1 ****          
Iceland 2  ****         
Austral. 3   ****        
Ireland 4    ****       
Sweden 5   C1  ****      
Canada 6  C1    ****     
Japan 7       ****    
USA 8        ****   
Switzerland 9  C1       ****  
Netherlands 10 C1         **** 

 

Table 4: Human Development Index and Robustness for r = 0.25 
Rank Country HDI x1

r x2
r  x3

r 
1 Norway 0.965 0.951 0.972 0.972 
2 Iceland 0.960 0.953 0.965 0.962 
3 Australia 0.957 0.949 0.966 0.956 
4 Ireland 0.956 0.937 0.964 0.966 
5 Sweden 0.951 0.944 0.959 0.951 
6 Canada 0.950 0.942 0.955 0.952 
7 Japan 0.949 0.950 0.948 0.948 
8 United States 0.948 0.930 0.954 0.961 
9 Switzerland 0.947 0.942 0.947 0.952 
10 Netherlands 0.947 0.933 0.957 0.951 
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Table 5: Robust Comparisons for r = 0.25 
Country   Norway Iceland Australia Ireland Sweden Canada Japan USA Switzerland Netherlands 

 Rank 1 2 3 4 5 6 7 8 9 10 
Norway 1 ****          
Iceland 2  ****         
Australia 3 Cr  ****        
Ireland 4 Cr   ****       
Sweden 5 Cr Cr Cr  ****      
Canada 6 Cr Cr Cr   ****     
Japan 7 Cr Cr     ****    
USA 8 Cr Cr  Cr    ****   
Switzerland 9 Cr Cr Cr      ****  
Netherlands 10 Cr Cr Cr Cr Cr     **** 

 

Table 6: Measure of Robustness (in Percentage) 
Country   Norway Iceland Australia Ireland Sweden Canada Japan USA Switzerland Netherlands 

 Rank 1 2 3 4 5 6 7 8 9 10 
Norway 1 ****          

Iceland 2 20 ****         

Australia 3 35 19 ****        

Ireland 4 86 14 4 ****       

Sweden 5 53 94 100 11 ****      

Canada 6 61 100 60 14 14 ****     

Japan 7 28 34 23 9 7 2 ****    

USA 8 77 28 17 67 5 3 1 ****   

Switzerland 9 49 100 41 16 17 20 6 2 ****  

Netherlands 10 100 68 57 47 25 13 4 7 1 **** 

 
 
 


