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Abstract:  
 
The study seeks to compare multidimensional poverty indices in Cameroon generated by 
different multivariate techniques. After carefully exploring the theoretical and empirical 
review of the statistical methods of setting weights in the measurement of 
multidimensional poverty, the study employs three different statistical or data-driven 
methods - principal components analysis, multiple correspondence analysis, and fuzzy set 
approach to set weights in the aggregation procedure. Use is made of the 2001 
Cameroonian household survey data to estimate the models. The poverty distributions 
obtained from the three approaches are submitted to stochastic dominance tests to 
investigate the sensitivity of the resultant poverty index rankings to changes in the 
weighting characterization. It comes out of the empirical analysis that the principal 
components analysis index distribution unambiguous shows less poverty than the multiple 
correspondence analysis and fuzzy set composite indices, while comparison of the two 
latter index distributions shows no clear dominance. 
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1.  INTRODUCTION 

The notion that poverty should be measured on the basis of a large number of variables 

has enjoyed an increasing support in the recent years. For a long time, particularly since 

the introduction of the economic concept of poverty by Booth (1892) and Rowntree 

(1901), the reference indicator has often been income or expenditure per capita. But 

while these indicators act as reasonably accurate and useful measures of economic 

performance, they have been subjected to severe criticisms by several authors, among 

them Townsend (1993), Ravaillon (1996) and Tsui (2002). This has engendered attempts 

to find suitable multidimensional indicators which can capture the different facets of 

poverty. Since the work of Townsend (1979) it has increasingly been recognised that 

other aspects of human life not necessarily related to income do impact on human 

development. These include access to public goods, health, education, housing 

conditions, life satisfaction and so on. Also contributing to this increased interest in 

multidimensional poverty measures is the evolution in conceptual thinking on poverty 

towards functionnings and capabilities as initiated by Sen (1993).  

The consequence of this conceptual revolution is a broadened notion of poverty to 

include vulnerability, exposure to risks, voicelessness and powerlessness (World Bank, 

2001). Today, poverty is no longer confined to the lack of the ability of 

individuals/households to command sufficient resources to satisfy their basic needs 

(Townsend, 1993) nor considered as a mere economic and monetary dimension, but 

rather increasingly considered as human deprivation in various life domains. This 

deprivation from the multidimensional perspective includes both quantitative and 

qualitative measures such as the joy of choices, opportunities and others which are most 

basic to human development and can paint quite different pictures of the poverty situation 

in any given country (Alkire, 2002). 

On the empirical side, the past few decades has witnessed a tremendous search for 

suitable approaches of measuring multidimensional poverty. These approaches include 

the social exclusion approach of Rene Lenoir (1974)1, the multidimensional axiomatic 

approach and the UNDP (1997) human poverty index (HPI). The HPI combines life 

expectancy, education and health. This index, though widely used, has come under 

                                                 
1  This was cited from Evans et al. (1995) 



increasing criticism for leaving out an income dimension and for attributing arbitrary 

equal weights to each dimension2. Again, the choice of what variables should be included 

in the HPI is somehow arbitrary and may not reflect peoples’ preferences and realities of 

the country under study (see Booysen, 2002). The multidimensional axiomatic approach 

begins with the specification of a general function of the form P (x, z) = F [π(xi, z)] where 

F and π(.) are based on some axioms that stipulate how poverty indicators can be assessed 

(Bourguignon and Chakravarty, 2002 and Bibi, 2005). However, the specification of the 

functional form of the equation is quite arbitrary and subjective. 

The main objective of this paper is to employ three multivariate statistical 

methods-notably principal components analysis, multiple correspondence analysis, and 

fuzzy set theory - that allow the available data to speak for themselves in determining the 

relevant variables and optimal weights assigned to each variable in the construction 

composite indices, rather than making a priori assumptions. The second goal of the paper 

is to apply the statistical techniques to Cameroonian data and hence investigate how 

composite poverty index comparisons are sensitive to changes in the aggregation and 

weighting schemes.   

This paper is structured as follows. Section 2 briefly reviews the meaning and 

measurement of multidimensional poverty paying particular attention to weighting 

schemes. Section 3 and 4 present the methodology of statistical methods and data used 

for the analysis respectively. Section 5 presents the results emerging from the estimation 

of the statistical models and uses a stochastic dominance method to test the sensitivity of 

the index-based poverty rankings. Finally, Section 6 concludes with some policy 

implementation remarks. 

 

2. THE MEANING AND MEASUREMENT OF POVERTY 

 

2.1 THEORETICAL BACKGROUND 

Many theoretical works and empirical research have addressed the issue of defining and 

measuring poverty. Different approaches can be distinguished on the basis of the 

variables taken into account: income/consumption, access to goods and services or the 

                                                 
2 See UNDP (2004) Technical note 1 



capability to obtain them. Empirical research on poverty shows that different approaches 

provide different results about its magnitude and evolution. 

Traditional approaches to the measurement of poverty are one-dimensional, since 

they are based on a single indicator, generally income or expenditure per capita, to show 

the level of deprivation. These money-metric measures separate the population between 

poor and non-poor on the basis of poverty lines which can be absolute or relative. 

According to the absolute approach, thresholds are defined on the basis of the amount of 

money needed to secure a minimum standard of living (Nolan and Whelan, 1996). 

Conversely, relative income measures set the threshold at a certain percentage of median 

or mean income (usually 50 or 60%), assuming that those falling below such threshold 

are unlikely to be able to fully participate in the life of the society. Although money-

metric measures have some advantages, in term of easy of computation and 

comparability across countries, they also present some drawbacks that are well 

documented in the literature (see Sahn and Stifel, 2003).  

Building on these shortcomings, the traditional one-dimensional approaches have 

been questioned and alternative multidimensional approaches have been put forward. 

Multidimensional methods allow the researchers to consider various aspects of both 

monetary and non-monetary in explaining poverty and living conditions. According to 

the more recent literature, poverty is widely conceptualized in terms of exclusion from 

the life of society because of a lack of resources, while exclusion means experiencing 

various forms of what society considers as serious deprivation (Nolan and Whelan, 

1996). Consequently, poverty should be best treated as multidimensional and non-

monetary indicators should complement monetary ones in order to better identify the 

poor.  

Despite these advantages, poverty measures which incorporate information from 

many variables have also some drawbacks, mainly concerning difficulties in coping with 

the multidimensionality and the use of non-monetary variables. When trying to make 

operational a multidimensional poverty concept, many theoretical and methodological 

challenges must be faced. Since all these choices significantly affect the resultant 

multidimensional index, it is important to clarify them. 

 



2.2 COMPOSITE INDEXING 

When poverty is conceptualized as a multidimensional construct, it should be measured 

through the aggregation of the different deprivation variables experienced by the 

individuals. Accordingly, measuring multidimensional poverty usually involves the 

incorporation of information provided by several variables into a composite poverty 

index. The general procedure in the estimation of composite indices involves the: 

• choice of the variables to be considered; 

• definition of a weighting scheme for each item or individual; 

• aggregation of the variables and, 

• identification of a threshold which separates poor and non-poor individuals. 

All of these issues must be carefully addressed in the construction of a multidimensional 

poverty index. We only briefly review each of them.  

The first step in the building of a summary measure of poverty concerns the 

selection of the appropriate indicators. Obviously, the choice depends on the data 

availability, but the variables considered affect the resultant index. The selection of 

elementary variables heavily relies on the arbitrary choices of researchers that must face a 

trade-off between possible redundancies caused by overlapping information and the risk 

of losing information (Perez-Mayo, 2005). A partial solution to such arbitrariness is 

provided by the use of multivariate statistical tools (e.g. principal component analysis), 

which allows the researchers to reveal the underlying correlation between basic items and 

to retain only the sub-set that best summarizes the available information.  

Once a preliminary set of variables has been selected, their aggregation into a 

composite index implies choosing an appropriate weighting structure. A number of 

different weighting techniques have been used in the literature. First, some studies apply 

equal weighting for each variable (Townsend, 1979; UNDP, 1997 and Nolan and 

Whelan, 1996), thereby avoiding the need for attaching different importance to the 

various dimensions. Second, in an attempt to move away from purely arbitrary weights, 

in the construction of the composite poverty indices, variables have been combined using 

weights determined by a form of consultative process among poverty experts and policy 

analysts. Although this approach is an improvement on the first solution, it still involves 

subjective decisions regarding the welfare value of each component. Third, weights may 



be applied to reflect the underlying data quality of the variables thus giving less weight to 

those variables where data problems exist or with large amounts of missing values 

(Rowena et al. 2004). The reliability of a composite poverty index can be improved if it 

gives more weight to good quality data. However, this may as a result give more 

emphasis to variables which are easier to measure and readily available rather than more 

important welfare issues which may be more problematic to identify with good data. 

Fourth, variables have also been weighted using the judgment of individuals based on 

survey methods to elicit their preferences (Smith, 2002). The difficulty encountered here 

relates to whose preferences will be used in the application of the weights,, whether it be 

the preferences of policymakers, households or the public. Firth, a more objective 

approach is to impose a set of weights using the prices of various items. However, this is 

only possible if prices are available for all goods and services. Unfortunately, this is not 

the case. Again many respondents are unable to value their goods realistically and 

responses are likely to contain a large amount of error. This is further compounded in 

situations with significant regional price variation and high inflation. Other studies 

develop composite indices by aggregating the variables on the basis of their relative 

frequencies or relying on multivariate statistical methods to generate weights (Perez-

Mayo, 2005). This approach, followed also in our work, will be discussed in greater 

detail in the next paragraphs.  

Finally, the identification of poor or deprived households/individuals requires the 

definition of a threshold, an issue that raises several theoretical and empirical problems. 

Independently of the particular choice about the threshold, the identification of those to 

be considered poor implies always some degree of arbitrariness.  

 

3. METHODOLOGY OF MULTIVARIATE STATISTICAL APPROACHES 

As we stated in Section 2, the aggregation of variables in order to construct a 

multidimensional poverty index can be achieved in many ways. Statistical approaches 

provide alternative solutions to select and aggregate variables in index form without a 

priori assumptions in the weighting scheme. Only those features of each approach that are 

relevant to our context, namely the construction of a composite poverty index, are 



presented in this section, directing the reader to the appendix and/or related references for 

further statistical details.  

 

3.1 PRINCIPAL COMPONENT ANALYSIS (PCA) 

3.1.1 Definition and Goal of PCA 

A principal components analysis (PCA) is concerned with explaining the variance-

covariance structure of a set of variables through a few linear combinations of these 

variables (Krishnakumar and Nagar, 2007). Its general objectives are (1) data reduction 

and (2) interpretation.  

 Although p components are required to reproduce the total system variability, 

often much of this variability can be accounted for by a smaller number k of the principal 

components (PCs). If this is so, then there is as much information in the k components as 

there is in the original p variables. An analysis of PCs often reveals relationships that 

were not previously suspected and thereby allows interpretations that would not ordinally 

result. PCA has been applied by Klasen (2000) in South Africa and Nagar and Basu 

(2001) in India. 

 

3.1.2 Methodological Choice 

The applicability of classical factorial techniques is generally limited by the kind of data 

available. Specifically, standard PCA can in principle be applied only if all the variables 

are numeric (i.e the variables are either quantitative or continuous) and the relationships 

between variables are assumed to be linear (Gifi, 1990 and Kamanou, 2005). But, the 

variables available in our dataset are categorical, measured at nominal and ordinal level. 

Accordingly, linear or classical PCA would not be the most appropriate method. The 

problem is that ordinal variables do not have an origin or a unit of measurement and 

therefore means, variances and co-variances have no real meaning. As PCA relies on 

estimating the co-variance (correlation) matrix, the standard PCA model is no longer 

appropriate.  

Another undesirable feature of the standard PCA is the fact that the analysis is based 

on z-scores which have unit variance and therefore have equal weights on the first PC 

(Kamanou, 2005). The variables are standardised by subtracting the sample mean and 



dividing by the standard deviation. For instance in the case of integer valued variables 

with skewed distributions, regular PCA will give large weights to variables that are most 

skewed, because skewness is associated with small standard deviations. To illustrate this, 

consider a variable that has two modalities 1 and 2, and suppose that about 90% of the 

data are concentrated at modality 1. Then this variable explains very little of the 

variability in the data and would have a very small standard deviation. When the variable 

is standardised by dividing by the standard deviation, the value of the variable would be 

magnified and it would get a large but undeserving weight in the PCA. 

Therefore, to avoid limitations of standard PCA, we propose to adopt an alternative 

approach, allowing us to treat ordinal and binary variables. Kolenikov and Angeles 

(2004) have very recently described a technique, called polychoric PCA, which improves 

on the regular PCA. The polychoric PCA technique is especially appropriate for discrete 

data (binary and ordinal). For this purpose, it assumes that a latent continuous variable 

underlies every ordinal variable. For example, if the observed variable is health status 

measured on a three-point scale (good, fair, poor) it can be reasonably assumed that an 

underlying continuous variable exist. A respondent makes his choice on the scale 

depending on an implicit threshold observational rule, e.g if his health status is worse 

than a certain threshold h1, it is poor; if it is worse than h2 but better than h1, it is fair and 

if it is better than h2 it is good. These thresholds can be estimated and based on these and 

a distributional assumption about the underlying variable, correlation coefficients of the 

underlying continuous variables can be estimated (see Kuklys, 2004). 

 

3.1.2 PCA Model Specification and Weighting Scheme 

To specify the polychoric PCA model, we follow Kolenikov and Angeles (2004). If x is a 

random variable of dimension p with finite p x p variance-covariance matrix V[x] = Σ, 

principal components analysis solves the problem of finding directions of the greatest 

variance of the linear combinations of x’s. In other words, the principal components (yj) 

of the variables x1,….,xp are linear combinations xaxa p
''

1 ,......,  such that   

xay jj
'=    j= 1, …, k  ……………………………………………………….. ……. (1) 

The motivation behind this problem is that the directions of greatest variability give most 

information about the configuration of the data in a multidimensional space. The first PC 



will have the greatest variance and extract the largest amount of information from the 

data, the second component will be orthogonal to the first one, and extract the greatest 

information in that sub-space; and so on. Also, the PCs minimize the sum of squared 

deviations of the residuals from the projections onto linear sub-spaces. The first PC gives 

a line such that the projections of the data onto this line have the smallest sum of squared 

deviations among all possible lines. 

 The solution to equation (1) is found by solving the eigenproblem for the co- 

correlation matrix Σ. This consists of finding λ and a such that: 

Σa = λa  ……………………………………………………………………. ……..(2) 

The solution to the eigenproblem (2) for the correlation matrix gives the set of principal 

components weights a (also called factor loadings), the linear combinations a’x (referred 

to as factor scores) and eigenvalues  λ1≥λ2≥………≥λp. It is easy to establish that V[a’x] 

= λk so that the eigenvalues3 are the variances of the linear combinations (see Technical 

notes at Appendix).  

Total variance = λ1+λ2+………+λp and consequently the proportion of total variance 

explained by the  k-th PC = 
p

k

λλλ
λ

+++ .......21

 

Note that since the variables in our model are binary and ordinal, the matrix on which the 

PCA is based is the polychoric correlation matrix, and not the standard Pearson 

correlation matrix. Polychoric correlations are those correlations between ordinal 

variables and the latent continuous variables underlying each of the ordinal variables. 

They can be interpreted just as the standard Pearson correlation coefficients. Solving the 

eigenproblem of the polychoric correlation matrix is obtained by the bivariate 

information maximum likelihood procedure (Joreskog, 2004).  

PCA is an appealing method for combining variables because the component 

loadings4 or weights generated have a fairly intuitive interpretation. The magnitude of the 

coefficient on any one variable measures the importance of that variable to the PC, 

irrespective of the other variables. That is, they only measure the univariate contribution 

                                                 
3 The eigenvalue for a given factor or component measures the variance in all the variables which is 
accounted for by that factor.  
4 The factor loadings, also called component loadings in PCA, are the correlation coefficients between the 
variables (rows) and factors (columns). 



of an individual variable to the PC, and do not provide information about the other 

variables. In welfare analysis the first PC explains most of the variance in the original 

data set and is often considered to represent the composite poverty index. The index is a 

weighted average of the variable scores with weights equal to the loadings of the first PC. 

Analytically, the composite index C takes the following form: 

∑
=

=
n

i
iii xwC

1

 …………………………………………………………………. …….(3) 

where Ci is the composite welfare index, n is the number of variables, wi is the weight 

attached to variable i, and xi  the score on variable i.  

3.2 MULTIPLE CORRESPONDENCE ANALYSIS (MCA) 

3.2.1 When to use MCA 

MCA allows one to analyze the pattern of relationships of several categorical dependent 

variables (Asselin, 2002). As such, MCA is used when the variables to be analyzed are 

categorical (nominal) instead of quantitative. Each nominal variable comprises several 

levels, and each of these levels is coded as a binary variable. MCA can also 

accommodate quantitative variables by recoding them as nominal observations. Studies 

based on MCA to generate composite poverty indices include the works of Asselin and 

Vu Tuan (2005) in Vietnam; Ki et al. (2005) in Senegal; Ningaye and Ndjanyou (2006) 

and Njong (2007) in the case of Cameroon. 

 

3.2.2 The MCA Model 

Technically MCA is obtained by using a standard correspondence analysis on an 

indicator matrix (i.e., a matrix whose entries are 0 or 1) (see Technical notes at the 

Appendix). The principle of the MCA is to extract a first factor which retains maximum 

information contained in this matrix. The ultimate aim of MCA (in addition to data 

reduction) is to generate a composite indicator for each household.  

For the construction of a CPI from K ordinal categorical indicators, the 

monotonicity axiom must be respected (Asselin, 2002). The axiom just means that if a 

household  i  improves its situation for a given variable, then its composite poverty index 

value CPIi increases: its poverty level decreases (larger values mean less poverty or 



equivalently, welfare improvement). The monotonicity axiom translates into the First 

Axis Ordering Consistency (FAOC) principle (Asselin, 2002). This means that the first 

axis must have growing factorial scores indicating a movement from poor to non-poor 

situation. For each of the ordinal variables, the MCA calculates a discrimination measure 

on each of the factorial axes. It is the variance of the factorial scores of all the modalities 

of the variable on the axis and measures the intensity with which the variable explains the 

axis.  

The weights given by MCA correspond to the standardized scores on the first 

factorial axis. When all the variable modalities have been transformed into a dichotomous 

nature coded 0/1, giving a total of P binary indicators, the CPI for a given household i can 

be written as (see Asselin, 2002): 

( )iPPiii IWIWIW
K

CPI +++= ...
1

2211 , ………………………………………… …(4 ) 

Where Wp = the weight (score of first standardized axis, (score/√λ1) ) of category p 

Ip, = binary indicator 0/1, which takes on the value 1 when the household has the 

modality, and 0 otherwise. The CPI value reflects the average global welfare level of a 

household. 

The CPI constructed using MCA has a tendency of being negative in its lowest 

part. This would make interpretation difficult. However, it can be made positive by a 

translation using the absolute value of the average Cmin of the minimal categorical weight 

W
k

min
of each indicator. Asselin (2002) expresses this average minimal weight as: 

K
C

K

k

k

W∑
== 1

min

min  

The absolute value of Cmin can then be added to the CPI of each household to obtain the 

new positive CPI scores 

 

3.3 THE FUZZY SET APPROACH TO POVERTY 

In the poverty literature, a poverty threshold is often established below which 

households/individuals are considered to be poor. Unfortunately, the choice of a poverty 

threshold is an arbitrary one (Filippone et al. 2001) in that it establishes an artificial 



dichotomy between poor and non-poor. As pointed out by Cerioli and Zani (1990) and 

Cheli et al. (1994), the problem is that a sharp division of households between poor and 

non-poor is unrealistic. This has led Qizilbash (2001) to characterise poverty as a vague 

concept since there seams to be no clear cut-line between the poor and the non-poor. This 

calls for a mathematical framework capable of modelling vague concepts such as 

poverty.  The fuzzy set theory seems particularly appropriate. Cerioli and Zani (1990) 

were the first to apply the concept of fuzzy sets to the measurement of poverty. Apiah-

Kubi et al. (2007) have used the fuzzy set approach to study multidimensional poverty in 

Ghana. 

 

3.3.1 Exposition of the Fuzzy Set Method 

For a brief mathematical exposition of the fuzzy set theory, we follow Dagum and Costa 

(2004), and Apiah-Kubi et al. (2007) to proceed as follows: let X be a set and x an 

element of X. A fuzzy subset P of X can therefore be defined as follows: 

 ( ){ }xFxP P,= , for all Xx∈    

where, PF , is a membership function which takes its values in the closed interval [0, 1]. 

In other words, the fuzzy sub-set P of X is characterized by a membership function ( )xFP  

associating a real number in the interval [0, 1] to each point of X. The value PF represents 

the degree of belonging to P. That is, each value ( )xFP  is the degree of membership of x 

to P. 

In a simple application to poverty measurement, we can let X be a set of n households 

or individuals (i=1, 2, 3, …, n) and P, a fuzzy subset of X, the set of poor people. In the 

fuzzy approach ( )xFP , the membership function of the poor set (household/individual i) is 

defined as : 

• xij= 0, if household i is absolutely non-poor 

• xij=1, if household i completely belongs to the poor set, and   (5) 

• 0<xij<1, if the household reveals a partial membership to the poor set 

 

3.3.2 Constructing the Multidimensional Deprivation Index 



To aggregate of the various variables into a composite index we may proceed in two 

operational stages which consist of (i) specifying the household membership function for 

each of these variables and (ii) specifying the weighting structure and aggregating the 

membership functions. 

3.3.2.1 Estimation of Membership Function 

The determination of the individual membership function ( )iP xF  depends on the type 

variable. Since the variables considered in this study are discrete we restrict the 

construction of membership functions to binary/dichotomous and ordinal variables.  

• Dichotomous variables 

The typical case of dichotomous variables is the possession or non-possession of durable 

goods. But there are also some questions about subjective feelings that are dichotomous, 

that is, answered by yes or no. The ‘have’ attribute is assumed to have a low risk of 

deprivation, while the ‘have not’ has a high risk of deprivation. The two attributes have 

the values of 0 and 1 in the closed set [0, 1], whereby 0 takes the low risk of deprivation 

and 1 takes on the high risk of deprivation. Following Costa (2002) we can define the 

degree of membership to the fuzzy set P of the ai
th household (i=1, 2, …,n) with respect to 

the jth attribute (j=1,……,m), as follows:  

( )( ) ijijP xaXF = ,  0≤xij≤1…………………………………….. (6) 

In other words, Xj(ai) represents an m-order vector of socio-economic attributes which 

will result in the state of poverty of a household ai if partially or not possessed by the 

household. 

In this case: 

• xij=1, iff the ai
th household does not possess the jth attribute (it completely belongs 

to the poor set) 

• xij=0, iff the ai
th household possesses the jth attribute (it is absolutely non-poor). 

Thus the deprivation index of the ai
th household, ( )iP aF (i.e. the degree of membership of 

the ai
th household to the fuzzy set P) can be defined as the weighted average of xij: 



( )
∑

∑

=

== m

j
j

m

j
jij

iP

w

wx

aF

1

1 ………………………………………………………………….. (7) 

where wj is the weight attached to the jth attribute. It is an inverse function of the degree 

of deprivation of this attribute by the population of households. In other words, the lower 

the frequency of poverty in terms of a given variable, the greater the weight this indicator 

will receive. In order to reduce the arbitrariness involved in the estimation of weights 

Cerioli and Zani (1990) propose a logarithmic function represented by the following 

expression: 

0log

1

≥



















=
∑

=

n

i
iij

j

nx

n
w …………………………………………………………… (8) 

ni represents the weight attached to each household ai. Note that ni is equivalent to n 

times the relative frequency of household ai in the total population. It follows 

that∑
=

=
n

i
i nn

1

. 

• Ordinal variables 

Ordinal or categorical discrete variables are those that present several modalities (more 

than two values). The variable presents m modalities ranked from the modality with a 

high risk of poverty to the one with a lower risk (or the reverse). We assign a score cj to 

each modality corresponding to the value (integer) of that modality. If we represent the 

lowest modality as cinf,j and the highest modality as csup,j , then we follow Costa (2002), 

Cerioli and Zani (1990) and Dagum and Costa (2004) to express the membership 

function of the ai
th household as: 

( ) 1=iP aF  if 0 < cij ≤ cinf,j 

( )
jj

ijj
iP cc

cc
aF

inf,sup,

sup,

−
−

=   if cinf,j < cij  < csup,j      (9) 



( ) 0=iP aF   if cij ≥ csup,j  

We observe that cinf,j and  csup,j stand for the two threshold (or extreme) values. Since the 

values are arranged in order of deprivation, cinf,j  is threshold below which the household 

is poor and csup,j  is the threshold above which the household is not poor relative to the jth 

attribute. If cij is between these two thresholds then the household is partially deprived in 

the attribute. We assume that the modalities in the data set are equally spaced.  

3.3.3 Aggregation Procedure 

Having computed for each ai
th household/individual the value of his membership 

function, that is, his “degree of belonging to the set of poor” we can compute the 

multidimensional deprivation index of the population by aggregating the values of the 

membership functions determined above. Costa (2002) specifies the fuzzy poverty index 

of the population as a weighted average of the poverty ratio/index of the ai
th household 

which we represent as follows:  

( )

∑

∑

=

==
n

i
i

n

i
iiP

P

n

naF
F

1

1  = ( ) i

n

i
iP naF

n∑=1

1
……………………………………………… (10) 

In a further refinement Costa (2002) defines another technique of constructing the 

population multidimensional deprivation index by aggregating the one-dimensional 

poverty indices for each of the j attributes considered. Equation (10) expresses the degree 

of deprivation of the jth attribute for the entire population of n households. 

( )
∑

∑

=

==
n

i
i

n

i
iij

jP

n

nx
XF

1

1 …………………………………………………………………(11) 

From equation (11) one can express the multidimensional poverty index of the population 

PF  as a weighted average of ( )jP XF  with the weight wj as defined in equation 8 (see 

Dagum and Costa, 2004). 



( )

∑

∑

=

== m

j
j

m

j
jjP

P

w

wXF

F

1

1 ……………………………………………………..…………. (12) 

We observe that the multidimensional deprivation index of the population is obtained by 

aggregating across either households or across poverty attributes. It should be noted that 

the composite deprivation index Fp is a monotonic increasing function of the degree of 

deprivation or poverty of each household. In this case a deterioration of the living 

conditions of the population, ceteris paribus, results in an increase in the composite 

poverty index Fp. 

 

4. SOURCE AND NATURE OF DATA 

This study uses data from the 2001 Cameroon Household Survey (ECAM II) data 

because of its detailed multi-variate nature which was designed to measure poverty and 

living conditions of the population. ECAM II data represents the most recent and, 

probably, the richest dataset currently available for realising multidimensional analysis of 

poverty and deprivation in Cameroon. ECAM II data are obtainable from the National 

Institute of Statistics. Since the details of the survey methods are published elsewhere we 

provide only a brief description here (see ECAM II, 2001).  

In the data-set a range of questions relating to income /expenditure information 

are available. As far as non-monetary variables are concerned the questions posed 

covered a wide spectrum of items ranging from possession of consumer durables 

availability of certain basic goods and services, quality of housing, education and health 

status. In our analysis of multiple deprivations in this study we select 20 variables from 

the original ECAM II data-set that theoretically capture various dimensions of poverty. 

The survey actually visited 10,992 households. However, to take care of missing values 

we only considered those households that responded to all the 20 questionnaires captured 

in this study. This results in a reduction of the sample size to 9329 households5.  

 The quantitative continuous variable retained in this study is household 

expenditure per capita which, following Cerioli and Zani (1990), and Appiah-Kubi et al. 

                                                 
5 Though this results in the loss of information, we are confident that all households are treated on the same 
basis. 



(2007) we proceed to render it ordinal by categorizing the households into three 

modalities: (1) those with expenditure below the mean (yij < ymean); (2) those with 

expenditure between the mean and 60% above the mean (ymean< yij<ymax) and (3) those 

with expenditure greater than 60% above the mean (yij>ymax). We also transformed and 

recoded some of the other quantitative variables (e.g. distances/time with regard to basic 

infrastructure) into qualitative and ordinal ones.This ensures that all the variables in this 

study are discrete (binary or ordinal) in nature. To ensure comparability of the results, 

each of the multivariate statistical techniques considered in this study is estimated using 

the same 20 variables.  

 

5. RESULTS AND DISCUSSION 

 

5.1 ESTIMATION OF THE PCA MODEL 

To estimate the PCA model, we submitted the 20 variables to a polychoric PCA. In the 

analysis of the polychoric correlation matrix6 we ensured that it be positive semi-definite, 

and so be a proper co-variance matrix. If the matrix is not positive semi-definite, it will 

have negative eigenvalues. By setting negative eigenvalues to zero and reconstructing, 

we obtain the least-squares positive semi-definite approximation to the matrix. 

Estimation of the polychoric correlation matrix shows that the first PC has an eigenvalue 

of 10.03 and explains 50% of the total variance while the second PC has an eigenvalue of 

1.4 and explains only 7.1% of the variance (see Table 1A). The leading eigenvectors 

from the first PC eigenvalue decomposition of the correlation matrix are presented in 

Table 1. 

 
Table 1: Principal Component Loadings 
 

Variable Loadings/Weight 
1. Sick during last two weeks   0.0038 
2. Type of health centre consulted                                                                                          0.0271 
3. Can read /write a simple phrase                                                                                                      0.0525 
4. Level of education                                                                                                       0.0524 

                                                 
6 The polychoric correlation matrix is generated using STATA version 9.2 updated with the polychoric 
menu in the internet.  
 



5. Source of water supply                                                                                                   0.0595 
6. Source of lighting                                                                                                       0.0657 
7. Energy for cooking                                                                                                       0.0571 
8. Type of toilet facility                                                                                           0.0602 
9. Roof material                                                                                                            0.0518 
10. Floor material                                                                                         0.0640 
11. Possession of mobile phone                                                                                               0.0603 
12. Possession of TV set                                                                                                     0.0629 
13. Number of times deprived of water because of unpaid bills                                                                0.0615 
14. Distance to nearest heath centre                                                                                         0.0346 
15. Distance to nearest tarred road                                                                                          0.0506 
16. Number of times deprived of electricity because of unpaid bills                                                             0.0524 
17. Distance to nearest public school                                                                                        0.0213 
18. Possession of refrigerator                                                                                               0.0619 
19. Possession of a car                                                                                                      0.0554 
20. Expenditure per capita                                                                                                   0.0451 

Total 1.0000 
Source: Computed using 2001 CHS data 
 
The interpretation of the component loadings /weights is quite straightforward: each of 

them can be thought as the variable’s relative contribution (see Figure 1A for the absolute 

component loadings plot) to the overall poverty component. Use is made of these weights 

to compute a household-specific composite poverty indicator based on each household’s 

variable values as described in equation (3).  

Close examination of these component loadings reveal that Source of lighting, 

floor material, and possession of TV set are the variables that account for most of the 

poverty component.                                                                                                                                                                                                                                         

 

5.2 ESTIMATION OF THE MCA MODEL 

The MCA7 based on 20 variables and 59 modalities, demonstrates that the first factorial 

axis, explains 34% of the observed inertia (i.e the eigenvalue) while the second axis 

accounts for only 1.5%. To construct the CPI for each household, use is made of the 

functional form of the CPI expressed in equation (4). 

The weights (factorial scores on first axis) attributed to the variable modalities are 

presented in Table 2.  

Table 2: Weights on Variable Modalities 

                                                 
7 The MCA was conducted using the 4.01 SPAD software. 



 
Variables Modalities Weights 

 Yes -0.04 1. Sick during last two weeks   
 No 0.03 
Tradi-practitioners -0.52 2. Type of health centre consulted                                                                                          
 Modern health centre 0.11 
 No -0.82 3. Can read /write a simple phrase                                                                                                      
 Yes 0.33 
 No Level -0.81 
 Primary level -0.20 
 Secondary 0.43 

 
4. Level of education                                                                      

 Higher education 1.55 
 Streams/others -0.89 
 Spring/wells -0.38 
 Public tap 0.24 

 
5. Source of water supply                                                                                                   

Individual taps 1.72 
 Wood/others -1.17 
 Kerosene lamp -0.84 
 Generator 0.05 

 
6. Source of lighting                                                                                                       

 Electricity 0.61 
 Firewood -0.40 
 Charcoal/sawdust 0.32 
 Kerosene 0.35 
 Gaz 1.32 

 
 
7. Energy for cooking                                                                                                       

 Electricity 1.38 
 No toilet -1.24 
 Unconstructed latrine -0.59 
 Constructed latrine 0.27 

 
8. Type of toilet facility                                                                                                  

 Flush toilet 1.90 
 Thatches/mats -1.26 
 Zinc sheets 0.16 

   
9. Roof material                                                                                                            

 Cement/tiles 1.05 
 Mud/wood/others -0.86 
 Cement 0.44 

 
10. Floor material                                                                                           

 Tiles 1.97 
 No -0.17 11. Possession of mobile phone                                                                                               
 Yes 1.72 
 No -0.39 12. Possession of TV set                                                                                                     
 Yes 1.16 
 deprived of water>3 times -0.24 13. Number of times deprived of water 

because of unpaid bills                                                                deprived of water <3 times 1.71 
 distance>3 km -.85 
 1km<distance<3km 0.03 
 500m<distanced<1km 0.26 

 
14. Distance to nearest heath centre                                                                                         

distance<500m 0.44 
 distance>10km -0.82 
 1km< distance<10km -0.30 

 
15. Distance to nearest tarred road                                                                                          

 distance<500m 0.59 
16. Number of times deprived of electricity  deprived >2 times -0.42 



 1< deprived <2 0.59 because of unpaid bills                                                             
 Never 0.96 
 distance>3km -0.85 
 1km< distance<3km 0.08 

 
17. Distance to nearest public school                                                                    

 distance<1km 0.18 
 No -0.23 18. Possession of refrigerator                                                                                               
 Yes 1.61 
 No -0.10 19. Possession of a car                                                                                                      
 Yes 1.92 
 yij < ymean -0.33 
 ymean< yij<ymax 0.43 

 
20. Expenditure per capita  (yij)                                                                                           

 yij>ymax 1.06 
Source: Computed by authors based on 2001 ECAM II data using SPAD software 
 
An analysis of the signs of the weights shows that a negative sign reduces welfare, while 

a positive sign positively contributes to household welfare. Using these weights we 

compute the CPI of each household. To avoid having negative values of CPI we estimate 

the average of the negative values of the CPI and add the absolute value of this average to 

the CPI of each household to obtain the positive CPI scores. 

 For the construction of a CPI from categorical indicators, the monotonicity axiom 

must be respected. The composite poverty indicator must be monotonically increasing in 

each of the primary indicators (Asselin, 2002). The axiom just means that if a household 

improves its situation for a given primary variable, then its CPI value increases: its 

poverty level decreases (larger values mean less poverty or equivalently, welfare 

improvement). The monotonicity axiom translates into the First Axis Ordering 

Consistency (FAOC) principle. This means that the axis has growing factorial scores 

indicating a movement from poor to non-poor situation. 

 In Table 3 we present the discriminatory measures which indicate the relative 

contributions of the variables to the compsite poverty index.  

 
 
 
 
 
 
 
 
 
 



Table 3 Discriminatory Measures of Variables 
 

Variable Relative Contribution 
(%) 

1. Sick during last two weeks   0.02 
2. Type of health centre consulted                                                                                          0.72 
3. Can read /write a simple phrase                                                                                                      3.5 
4. Level of education                                                                                                       5.6 
5. Source of water supply                                                                                                   7.9 
6. Source of lighting                                                                                                       6.8 
7. Energy for cooking                                                                                                       5.8 
8. Type of toilet facility                                                                                                  7.5 
9. Roof material                                                                                                            3.2 
10. Floor material                                                                                                           7.1 
11. Possession of mobile phone                                                                                               3.8 
12. Possession of TV set                                                                                                     5.9 
13 Number of times deprived of water because of unpaid bills                                                                5.3 
14. Distance to nearest heath centre                                                                                         2.9 
15. Distance to nearest tarred road                                                                                          4.7 
16. Number of times deprived of electricity b/c of unpaid bills                                                             4.6 
17. Distance to nearest public school                                                                                        1.36 
18. Possession of refrigerator                                                                                               4.6 
19. Possession of a car                                                                                                      2.4 
20. Expenditure per capita                                                                                                   3.4 

Total 100 
Computed by Authors using 2001 CHS data 
 
Observe that source of water supply, type of toilet facility, and floor material contribute 

the most to the construction of the first axis which is the axis of poverty.  

 
5.3 RESULTS IN THE FUZZY SET FRAMEWORK 

The results of the estimation of the membership functions depicting the levels of 

deprivation for the various categories of deprivation variables, together with their weights 

are presented in Table 4. 

 
Table 4: Fuzzy Poverty Indices (Membership Functions) by Attribute. 
 

Variable  wj ( )jP XF  wj.( ( )jP XF ) 

Sick during last two weeks   0.4112 0.3879 0.1595 
Type of health centre consulted                                                                                          0.7570 0.1750 0.1325 
Can read /write a simple phrase                                                                          0.5398 0.2885 0.1558 
Level of education                                                                                                       0.2280 0.5915 0.1349 
Source of water supply                                                                                                   0.2232 0.5981 0.1335 



Source of lighting                                                                                                       0.8049 0.1567 0.1261 
Energy for cooking                                                                                                       0.0577 0.8757 0.0505 
Type of toilet facility                                                                                                  0.3236 0.4747 0.1536 
Roof material                                                                                                            0.2592 0.5506 0.1427 
Floor material                                                                                               0.1718 0.6733 0.1157 
Possession of mobile phone                                                                                               0.0412 0.9095 0.0375 
Possession of TV set                                                         0.1270 0.7465 0.0948 
Number of times deprived of water because of 
unpaid bills                                                                0.0574 0.8763 0.0503 
Distance to nearest heath centre                                                                                         0.3135 0.4859 0.1523 
Distance to nearest tarred road                                                                                          0.4142 0.3853 0.1596 
Number of times deprived of electricity because 
of unpaid bills 0.1437 0.7183 0.1032 
Distance to nearest public school                                                                                        0.4174 0.3825 0.1596 
Possession of refrigerator 0.0570 0.8769 0.0500 
Possession of a car                                                                                                      0.0214 0.9520 0.0204 
Expenditure per capita 0.1139 0.7694 0.0876 
Total 5.4830 0.4049 2.2200 
Source: Computed from ECAM II Survey Data  
Notes: wj= weight attached to variable j; ( )jP XF  = fuzzy poverty index with respect to variable 

j; wj.( ( )jP XF )= weighted fuzzy poverty index, and FP is aggregate fuzzy poverty index. 

Our study estimates a composite deprivation degree (global fuzzy poverty index) for the 

whole country of 0.4049 in 2001. This means that of Cameroonian households, 40.48 

percent on average registered deprivation on the various well-being indicators. 

Table 4 also reports the weights attached to the attributes considered in this study. 

The smaller the number of households deprived in an attribute, the greater the weight 

attached to it.8 Observe that the highest weight is attached to the variables; source of 

lighting and type of health centre consulted, indicating how strongly these variables do 

impact on the poverty status of Cameroonian households. Observe also that the lowest 

weights are attached to the possession of some goods of comfort namely; possession of 

car, mobile phone, refrigerator and source of energy for cooking. These low weights 

signal how these attributes are not possessed by many of the households. The low weight 

attached to expenditure per capita signals a low intensity in the deprivation of this 

                                                 
8 The reasoning here is that if owning a radio is much more common than owning a TV, a greater weight 
should be given to the former indicator so that if a household does not own a radio, this rare occurrence will 
be taken much more into account in computing the poverty index than if some household does not own a 
TV, a case which is assumed to be more frequent. 
 
 



indicator, meaning that monetary poverty is a common phenomenon in the Cameroon 

society. 

 

5.4 COMPARISON OF POVERTY INDEX DISTRIBUTIONS  

5.4.1 Descriptive Statistics of the Distributions 

To be able to compare the fuzzy poverty index with the poverty indices derived from 

PCA and MCA analysis, we proceed to compute the complement of the household-

specific fuzzy poverty index. This is achieved by performing the following logical 

transformation; pi
c
pi FF −= 1  where c

piF is the complement of the fuzzy poverty index for 

household i. In the fuzzy set framework, the closer the index to 1, the more deprived is 

the household. On the contrary, the closer the conventional poverty indices to unity, the 

less poor or the better off is the household. By computing the complement of the fuzzy 

deprivation index we make a transition from the ordinary fuzzy set framework to the 

conventional welfare measure framework. Such a transition is to facilitate interpretation 

by ensuring that we follow the conventional requirement in distributive analysis that 

more is better than less. It should be noted that such a transformation of indices will not 

change the information provided, since the order of household rank is maintained 

although the distribution average changes. Table 5 gives basic descriptive statistics for 

the composite indices of well-being derived from the three methods. 

 
Table 5: Descriptive Statistics for the Index Distributions 
 
Composite Index No. of 

Observations 
Mean Standard 

Deviation 
Minimum Maximum 

PCA  9326 1.809 .406 1 2.997 
MCA  9326 .717 .341 .093 1.830 
Fuzzy Set  9326 .595 .168 0.001 .976 
Source: Computed by authors 
 
The analysis of Table 5 shows that whether measured by the mean or the standard 

deviation, the household composite indices generated by PCA are higher than MCA 

indices, which on their part are higher than the fuzzy set composite indices. In other 

words national head count poverty measured by PCA index is lower than that measured 

by the MCA index which is lower than that measured by the fuzzy set method. Since 



these are only simply summary statistics, we need to check the robustness of the 

rankings.  

5.4.2 Sensitivity Tests 

To check the sensitivity of the orderings of the three multivariate statistical approaches in 

terms of poverty measurement, we resort to stochastic dominance tests. The theoretical 

foundations on poverty dominance have been developed by Duclos et al. (2003, 2006), 

Consider the case where we intend to investigate whether poverty is lower for method 1 

than for method 2. The traditional procedure to address this question is to establish a 

poverty threshold, choose a poverty index (e.g the FGT index), and calculate poverty 

based on the two different methods and compare. The basic drawback of this procedure is 

that it depends on the poverty line or measure that is chosen. Setting the poverty line is an 

arbitrary process, and it is possible that choosing a different poverty line/measure will 

reverse the poverty rankings (Njong, 2007).The dominance approach to poverty analysis 

aims to avoid these problems by making poverty comparisons that are robust to the 

poverty threshold or measure selected. Suppose that we have two distributions with 

cumulative density functions (cdfs) F(x) and G(x) derived from methods 1 and 2 

respectively. These particular cdfs are also called poverty incidence curves because each 

point on the curve gives the proportion of the population below the poverty line. Then, 

F(x) first-order stochastically dominates G(x) if G(x) ≥F(x). In other words, G(x) is 

everywhere above distribution F(x). In this case, the head count poverty index (P0) will 

always be higher for the first distribution than the second. Duclos et al.(2003, 2006) have 

shown that this sort of poverty comparison is robust to the choice of the poverty threshold 

and for all poverty measures. However, the mere visual inspection of cdfs overlooks the 

issue of sampling variation and may be untrustworthy. Since the cdfs are based on 

samples, there’s the possibility that observed differences merely reflect sampling 

variation and are not significant in the statistical sense.  

 Practically, to test for differences between the distributions we follow the 

approach of Bishop et al. (1991), Duclos et al. (2006) and Araar (2006). They suggest 

that when testing for dominance we calculate test statistics for a number of points (e.g. 

10x10 grids of points) within the relevant interval. If this difference is always of the same 

sign (positive or negative) and statistically significant, then dominance holds for all 



poverty lines and measures. Two distributions are ranked as equivalent if there are no 

significant differences, while if the differences in the set of ordinates change signs within 

the interval, rankings are ambiguous and we may proceed to second-order dominance 

test.  

Table 6 gives the dominance test results for pair-wise poverty index comparisons. 

We used DASP version 1.3 software to conduct the dominance tests.9 

 
Table 6: First-order Poverty Dominance Results 
 

Index Distribution Observation 
PCA MCA No intersection found. PCA dominates MCA 
PCA Fuzzy Set No intersection found. PCA dominates Fuzzy set 
MCA Fuzzy Set Intersection found. Dominance is ambiguous  
Source: Computed by authors 
 
We observe from Table 6 that PCA index distribution dominates both MCA and Fuzzy 
set index distributions. This finding is confirmed by Figures 1 through 2, which reveal  
 

 
that the poverty incidence curve (cumulative distribution function) of PCA index is 

consistently below the other methods’ index distribution functions over a wide range of 

interval. This indicates significant first-order poverty dominance for the PCA cdf over 
                                                 
9 DASP: Distributive Analysis Stata Package by Abdelkrim Araar and Jean Yves Duclos, University of 
Laval, World Bank, PEP and CIRPEE, June 2007. 
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Figure 1: PCA and MCA Poverty Incidence Curves 
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MCA and Fuzzy set cdfs. We may conclude with a fair degree of confidence that over all 

possible poverty frontiers and a broad class of poverty measures the PCA index has less 

poverty than any other. 

 
It comes out of the dominance analysis in Table 6 that there is no clear dominance when 

we compare the MCA and Fuzzy set index distributions. This is further confirmed by 

Figure 3 which shows that before the intersection at the point E, the Fuzzy set cdf 

dominates the MCA cdf and after the intersection, the reverse holds. 
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Figure 2: PCA and Fuzzy Set Poverty Incidence Curves 
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Since the cdfs in Figure 3 cross and the crossing is significant (for brevity we do not 

present the precise test statistic) we conclude that first-order poverty dominance is 

inconclusive. Given that first-order dominance is not observed, we tested for higher–

order dominance (ie second- order and third-order dominance) and found that no clear 

dominance of one index over the other. 

 
6. CONCLUSION AND POLICY IMPLICATION 

In this study we have attempted to experiment a variety of weighting techniques and 

compare the results across the techniques before recommending one or a combination of 

the weighting schemes in deriving index estimates. The comparisons give an 

unambiguous ordering: the PCA index dominates the MCA and fuzzy set index 

distributions. This means that national poverty head count estimates derived from PCA 

weighting techniques are unambiguously lower than those obtained from MCA and fuzzy 

set weighting schemes. Comparison between MCA and fuzzy set indices give 

inconclusive dominance results. From a policy stand point, policy-makers may pay 

particular attention to index values from MCA and fuzzy set methods over PCA 

composite indexing.  The intuition is that the weighting schemes of MCA and fuzzy set 

indexing depict more poverty than that of PCA. 

0 

.2 

.4 

.6 

.8 

1 

CDFs 

0 .2 .4 .6 .8 1 
Poverty Thresholds 

Source: Drawn by authors using DASP software 

Figure 3: MCA and Fuzzy Set Poverty Incidence Curves 
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Since the three index values were constructed using the same 20 ordinal variables, 

we may attribute differences in the dominance results to differences in the weighting and 

aggregation methods. Observe that in the case of PCA, variables are weighted with the 

proportion of the variance in the original set of variables explained by the first PC. This 

technique has the advantage of determining the set of weights which explains the largest 

variation in the original variables. MCA has the same logic as PCA, but it goes further to 

dichotomize and weights the variable modalities instead of the variables themselves. The 

aggregation weights of these two techniques are based on the co-variance or correlation 

matrix of the indicators. The fuzzy set weighting scheme, which is a function of the 

frequency of deprivation in terms of a given variable, assigns weights to the variables 

themselves. Thus differential weighting and conceptual issues may limit meaningful 

comparisons of the index values.  

The statistical approaches experimented in this study have the advantage of 

allowing the available data to determine the optimal weights associated with each 

variable, rather than making value judgments. Although objective, these techniques are 

completely data-driven and the weights obtained are very rigid and may not necessarily 

be policy- appropriate for the country concerned. Despite the objectivity of the statistical 

methods employed in the composite indexing, some subjectivity is evident. Notably, the 

selection of variables to be included in the original sample of variables is ad hoc, and the 

scaling phase of variables to make them ordinal is subjective.  Irrespective of these 

drawbacks, the multidimensionality of composite indices represents one of the major 

advantages of composite indexing. The indices represent aggregate measures of several 

variables that capture different complex development phenomena. 
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APPENDIX I 
 

 
Source: Drawn by authors using STATA 9.2 
 
 
Table 1A: Principal components /Eigenvalues 
-------------------------------------------------------------------------- 
Component    Eigenvalue   Difference    Proportion   Cumulative 
-------------+------------------------------------------------------------ 
Comp1       10.0319      8.62275             0.5016       0.5016 
Comp2          1.4091        .07322             0.0705       0.5720 
Comp3          1.33587      .239718           0.0668       0.6388 
Comp4          1.09615      .133584           0.0548       0.6936 
Comp5          .962571     .158632           0.0481       0.7418 
Comp6           .803939     .087813           0.0402       0.7820 
Comp7          .716126     .093884           0.0358       0.8178 
Comp8         .622241      .05437            0.0311       0.8489 
Comp9         .567862      .037759           0.0284       0.8773 
Comp10        .530103      .039216           0.0265       0.9038 
Comp11         .490887      .163934           0.0245       0.9283 
Comp12         .326953      .033031           0.0163       0.9447 
Comp13        .293922     .046809            0.0147       0.9594 
Comp14         .247112     .012960            0.0124       0.9717 
Comp15         .234152      .053777            0.0117       0.9834 
Comp16       .180374      .029591            0.0090       0.9925 

SICKWKS 

TYHEALTH 

LITERATE 
LEVELEDU 

SOWATER SOLIGHT SOENERGY 
TYTOILET 

ROOFMAT 

FLOORMAT 

MOBPHONE TVSET DEPWATE 

DHEALTH 

DTARROA 

DEPELEC 

DGOVTSC 

FRIDGE 
CAR 

EXPPCA 
-.2 

0 

.2 

.4 

.6 

Component 2 

0 .1 .2 .3 
Component 1 

Figure 1A: Component loadings Plot 



Comp17        .150783      .15078              0.0075       1.0000 
Comp18              0                 0                  0.0000       1.0000 
Comp19                0                 0                   0.0000       1.0000 
Comp20                0                  -                  0.0000        1.0000 
-------------------------------------------------------------------------- 
Source: Computed by authors using STATA 9.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX II 
 

TECHNICAL NOTES 
 

Multivariate methods deal with the simultaneous treatment of several variables. In a strict 

statistical sense, they concern the collective study of a group of variables that take into 

consideration the correlation structure within the group. This section reviews the 

multivariate approaches of Principal Components Analysis (PCA) and Multiple 

Correspondence Analysis (MCA). Unlike the Fuzzy set approach, PCA and MCA may 

not be transparent to readers with little knowledge of statistics, because they require some 

knowledge of advanced Statistics and matrix algebra. In what follows we strive to 

highlight some technical issues inherent in the methods. 

 

1. ANALYTICAL FRAMEWORK OF PCA 

PCA is essentially a data reduction technique. It is a technique often used to 

reduce the dimensionality of the data while retaining most of the variability in the 

original dataset. The basic idea behind this method is to determine orthogonal linear 

combinations (the principal components - PCs) by rotating the original system of 

variables such that the first PC explains most of the variance of the variables (Kamanou, 

2000). If x is a random variable of dimension p with finite p x p variance-covariance 

matrix V[x] = Σ, principal components analysis solves the problem of finding directions 

of the greatest variance of the linear combinations of x’s. In other words, the principal 

components of the variables x1,….,xp are linear combinations xaxa p
''

1 ,......,  such that   

xay jj
'=    j= 1, …, k  ……………………………………………………….. (1) 

The motivation behind this problem is that the first PC will have the greatest variance and 

extract the largest amount of information from the data, the second component will be 

orthogonal to the first one, and extract the greatest information in that sub-space; and so 

on. 

 The solution to equation (1) is found by solving the eigenproblem for the 

correlation matrix Σ. To understand the concept of the eigenproblem, we follow 

Krishnakumar and Nagar (2007).  Let us further denote by θ1,….,θk the k eigenvalues of 



Σ and by a1,.…...,ak the corresponding eigenvectors. Then the principal components (yj) 

equation (1) can be expressed alternatively in matrix form as:   

y = A’x ………………………………………………………………………… (2) 

where A = [a1….ak] is the matrix of eigenvectors of Σ. We have A’A = AA ’ = Ik and  

Σ = AΘA ’ or A’ ΣA = Θ where Θ = diag(θj), j = 1,…, k with the θj’s arranged in 

descending order of magnitude. We also have Σ-1 = A Θ-1A ’. The variances of the PCs are 

equal to corresponding eigenvalues, i.e. V(yj) = θj, j∀  

Now, how do we derive the composite indicator ( i.e the deprivation index) from PCs?  

The two most commonly used approaches are:  

1) The first principal component i.e. the one corresponding to the greatest eigenvalue θj  

If we take the first PC;   xay '
11 =  as an aggregate index then we have V(y1) = θ1. 

2) A weighted average of all the principal components pj’s, j = 1,...,k with the weights wj 

being given by the proportion of the total variance explained by each PC. As for the 

weighted average its variance can be calculated as follows. Let us write it as: 

∑
=

∧
=

k

j
jj pwH

1

  ………………………………………………………………. (3) 

where 

∑
=

=
k

j
j

j
jw

1

θ

θ
 …………………………………………………………… (4) 

The model implicitly assumed by treating the first PC as a suitable index of 

welfare based on ordinal variables can be formulated following Kolenikov and Angeles 

(2004). Let us assume that two ordinal variables xx and x2 are obtained by categorizing 

*
1x and *

2x that come from a bivariate normal distribution with standard normal marginals. 

Denote corr( *
1x , *

2x ) = ρ and 















≈










1

1
,0

*
2

*
1

ρ
ρ

N
x

x
, -1≤ ρ≤1 ………………… (5) 

The categorizing thresholds for the two variables are given by α1,1 and α2,1 (αi,0 = -∞  , αi,2 

= +∞, i=1,2), then the proportion in each cell(i,j) is given by: 

πi,j = π(i,j, ρ,α) = Prob[x1= i, x2 = j] = 

  = Φ2(α1,i, α2,j ; ρ) - Φ2(α1,i-1, α2,j ; ρ) –                                   (6) 

                          - Φ2(α1,i, α2,j-1 ; ρ) + Φ2(α1,i-1, α2,j-1 ; ρ) 



where Φ2(.) represents the cdf of the bivariate standard normal distribution. 

The maximum likelihood estimate of ρ, given threshold values, can be obtained by 

maximizing the following equation: 

( )∑
=

==
N

i
ii xxiL

1
2,1, ,;,loglog αρπ  ……………………………………………. …(7) 

The resulting ρ is what is referred to as polychoric correlation. That is, polychoric 

correlations are those correlations between ordinal variables and the latent continuous 

variables underlying each of the ordinal variables. In practice, the estimation is performed 

in three stages: 

• First, the thresholds are estimated as ,
1

1









Φ= ∑

=

−
j

i

i
j N

Nα    j = 1, …. , k 

where (.)1−Φ is the inverse of the standard normal distribution function and Ni is the 

number of observations in category i.  

• Second, estimation of the latent (polychoric) correlations given the estimated 

thresholds 

• Third, the bivariate information maximum likelihood procedure is used to 

estimate the polychoric correlation matrix 

Having established the correlations, one can proceed to PCA in the regular manner to 

solve the eigenproblem, that is, diagonalise the polychoric matrix10 (as in equation 2 

above).  

 
2. ANALYTICAL FRAMEWORK OF MCA 

MCA is used to analyze the pattern of relationships among observations described by a 

set of nominal variables. Each nominal variable comprises several levels, and each of 

these levels is coded as a binary variable. For example gender, (F vs. M) is one nominal 

variable with two levels. The pattern for a male respondent will be 0 1 and 1 0 for a 

female. The complete data table is composed of binary columns with one and only one 

column taking the value “1” per nominal variable. MCA can also accommodate 

quantitative variables by recoding them as binary variables. We do not lose any 

information by proceeding like this, rather we have an advantage to make appear the 

                                                 
10 Multivariate factorial analyses motly differ according to the nature of the matrix to be diagonalized 



specificities of the modalities considered individually. The principle of the MCA is to 

extract a first factor which retains maximum information contained in this matrix. 

To understand the MCA technique we make the following notations. There are K 

nominal variables, each nominal variable has Jk levels and the sum of the Jk is equal to J. 

There are I observations. The I×J indicator matrix is denoted X. Performing 

correspondence analysis on the indicator matrix will provide two sets of factor scores: 

one for the rows and the other for the columns. These factor scores are, in general scaled 

such that their variance is equal to their corresponding eigenvalue.  

The inertia matrix which is finally diagonalized in the MCA is Burt matrix 

deduced from the binary matrix by B=XTX. The principle of the MCA is to extract a first 

factor which retains maximum information contained in this matrix. And then to extract 

the first eigenvalue (λ1) and the associated eigen vectors. The Burt matrix is important in 

MCA because using correspondence analysis on the Burt matrix gives the same factors as 

the analysis of X but is often computationally easier. But the Burt matrix also plays an 

important theoretical role because the eigenvalues obtained from its analysis give a better 

approximation of the inertia explained by the factors than the eigenvalues of X. 

We may make two interpretations of MCA results: 

a) Each variable modality has a coordinate on each of the extracted axes. It is the factorial 

score which represents its weight in that axes. If we consider α as a factorial axis, Фαp is 

the factorial score of a modality pj on this axis. This score is obtained by: 

  Фαp=  
αλα jpp

np w
j

 

where n is the total number of individuals, p the total number of variables, pj is the 

number of individuals possessing the modality p of the variable j. λα is the eigenvalue of 

factor α. α
jp

w  is the proportion of the eigenvalue associated to λα corresponding to the 

modality pj.  

b) For each of the ordinal variables, the MCA calculates a discrimination measure on 

each of the factorial axes. It is the variance of the factorial scores of all the modalities of 

the variable on the axis and measures the intensity with which the variable explains the 

axis. These quantities are important so as to interpret a factorial axis.  
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