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A comparison between the Pearson-based dissimilarity
index and the multiple-group overlap index�

Gaston Yalonetzkyy

Abstract

The Overlap Index has received renewed attention as a measure of inequality be-
tween two distributions (e.g. Anderson, Ge, and Leo, 2010). In this paper I propose
a straightforward extension of the Overlap index to comparisons of multinomial, mul-
tivariate distributions of wellbeing over several groups. I also compare its properties
against those of a dissimilarity index based on Pearson�s goodness of �t statistic. The
comparison highlights that both indices are similar in declaring perfect between-group
equality if and only if the distributions are identical. They are diferent in their sen-
sitivity to most migrations of individuals from one wellbeing state to another (with
meaningful exceptions), and to di¤erent population invariance axioms. They also dif-
fer in the situations under which they attain its value of maximum inequality. The
comparison illustrates the importance of both group size and concepts of minimum
and maximum inequality in between-group inequality analysis. An empirical applica-
tion of both indices, to a cohort history of between-group inequality in educational
attainment in India, shows that such inequality across gender and caste increased to-
ward independence and then, after the 1950s, it started to decline.

JEL Codes: C10
Keywords: Between-group inequality

1 Introduction

A signi�cant part of the literature measuring between-group inequality relies on indices
that either compare standards of the group distributions (e.g. the means) or compare the
sample values directly.1 Another part of the literature measures between-group inequality

�I would like to thank Sabina Alkire for her very helpful comments.
yOxford Poverty and Human Development Initiative. E-mail: gaston.yalonetzky@qeh.ox.ac.uk
1A good example of measures comparing standards of the group distributions is the between-group

inequality component yielded by decompositions of path-independent indices into between and within-group
components. A complete discussion of these measures is in Foster and Shneyerov (2000). A recent example
of a re�ned between-group inequality measure based on comparisons of distributional standards is provided
by Elbers, Lanjouw, Mistiaen, and Ozler (2008). Examples of between-group indices comparing the sample
values abound. For instance Ebert (1984); Dagum (1987); and several examples from the polarization
literature (e.g. see Esteban and Ray, 1994; Duclos, Esteban, and Ray, 2004).
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on probability space.2 Examples of the latter are the overlap index (e.g. Weitzman, 1970;
Anderson, Ge, and Leo, 2010), the dissimilarity index of the Human Opportunity Index
(HOI) (Barros, Ferreira, Molinas, and Saavedra, 2009), the Pearson-based dissimilarity index
(Yalonetzky, 2009) and indices based on relative distributions (e.g. Handcock and Morris,
1999; Breton, Michelangeli, and Peluso, 2008; Yalonetzky, 2010).
In this paper I discuss the similarities and di¤erences between two such indices: a multi-

group, multivariate version of the overlap index and the Pearson-based dissimilarity index.
Why is this comparison relevant? Firstly, discrete-variable versions of both indices are suit-
able to analise between-group inequality over multinomial and multivariate distributions of
wellbeing. The multinomial measurement of several indicators of wellbeing enhances the
practical relevance of such indices.3 Secondly, in certain contexts, certain values of both
indices re�ect relevant concepts. For instance, in the analysis of inequality of opportunities
both indices achieve their minimum value if and only if distributions of wellbeing are iden-
tical, which re�ects, for instance, so-called circumstance neutralization (Fleurbaey, 2008). 4

Few other indices in the inequality of opportunity literature share this property.5

When comparing both indices, I �nd that besides the aforementioned similarity, they
react in the same way when a migration of one individual within one group between two
(discrete) states of wellbeing restores (or breaks) the equality of the probability of attaining
those two states across groups. I also �nd that the indices are di¤erent in three crucial
aspects: General sensitivity to intra-group migrations between states; ful�llment of di¤erent
population invariance axioms; and situations in which they declare maximum between-group
inequality. These di¤erences are worth higlighting also because they inform the researcher
interested in performing between-group inequality analysis on the choice of indicator, in
the context of multinomially distributed variables. For instance, if the researcher wants the
index to be sensitive to variation in group sizes then the Pearson-based dissimilarity index
is preferrable. Otherwise the overlap index, being insensitive to heterogeneous variations in
group size, should be used.
This paper uses the two indices in an interesting empirical application to document a

cohort history of between-group inequality in educational attainment in India. According to
both indices, educational inequality across gender and caste increased toward independence
and soon thereafter. But then, after the 1950s, it started to decline. According to the overlap
index this decline has been monotonic, whereas the Pearson-based index shows an increase
from the second-to-youngest to the youngest cohort. Yet the latter increase does not counter
the signi�cant reduction in between-group inequality revealed by the same index.
The paper proceeds as follows: The next section introduces the basic notation and de-

�nitions, followed by a section presenting the indices and their similarities. Then follows

2The Gini coe¢ cient is one special case in which estimation of it can be made either on the space of the
variable�s values or on that of probabilities.

3For a good example of the multinomial measurement of several indicators of di¤erent aspects of well-
being see the questionnaire of the recent Chile Missing Dimensions Dataset collected by the Oxford Poverty
and Human Development Institute. (OPHI and de Chile, 2009)

4Fleurbaey (2008) de�nes circumstance neutralization as an allocation of resources in which " [...] it
should be possible to express individual well-being as a function of responsibility characteristics only." (Fleur-
baey, 2008, p. 26)

5One notable exception is the within-tranch approach of Checci and Peragine (2005).
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a detailed discussion of the indices�main di¤erences, followed by the empirical application.
The paper �nally concludes with some remarks.

2 Basic notation, de�nitions and axioms

A contingency table, M , is de�ned as a matrix with A rows and T columns, where (A; T ) 2
N2++, and whose elements belong to the set of non-negative, natural numbers, representing
absolute frequencies or observations. A typical element of a contingency table in row � and
column t, denoting the number of observations in those coordinates, is: N t

k. The sum of
all elements of column t is: N t �

PA
�=1N

t
�. Likewise the sum of all elements in row �

is: N� �
PT

t=1N
t
�. And the total number of observations distributed across the table is:

N �
PA

�=1

PT
t=1N

t
�:

The following de�nitions are necessary for the next sections of the paper:

� The percentage of total observations in column t: wt � Nt

N
:

� The probability of being in row � conditional on belonging to column t: pt� �
Nt
�

Nt :

� The probability of being in row �: p�� � N�
N
=
PT

t=1w
tpt�:

De�nition 1 A minimum intra-column migration (MIM): A contingency table cM is ob-
tained from a table M by MIM if there are rows i and j, and column � , such that: bpt� =
pt�8t ^ 8� 6= (i _ j) ;

�bpti = pti ^ bptj = ptj� 8t 6= � ; bpti = pti � � ^ bptj = ptj + �; where 0 < � � pti.
In the analysis of between-group inequality, the de�nition (MIM) is helpful in analyzing

intra-groups migrations of individuals from one wellbeing state to another. In such a context,
the table�s columns stand for di¤erent groups (e.g. T types in inequality of opportunity
analysis) and the rows stand for discrete, multinomial wellbeing outcomes (e.g. A states).
Using this interpretation of rows and columns of a table, MTA is de�ned as the set of all
tables with a �xed number of groups T and a �xed number of states A. The set of all
contingency tables with a �xed number of groups, but for any number of states is denoted
by MT� = [A�NMTA. Similarly, the set of all tables with a �xed number of state, but
for any number of groups is denoted byM�A = [T�NMTA. Finally, the set of all tables is
denoted byM = [T;A�NMTA. A between-group inequality indicator, I (M), is a mapping
from a contingency table to a real number: I (M) : M ! R. In this paper I focus on a
class of between-group inequality indicators normalized to have values between zero and one:
C (M) � I (M) j C (M) :M! [0; 1]:
An important concern regarding these indicators is whether their value is a¤ected by the

population size and by the relative sizes of the groups. In terms of the contingency table
the question is whether the indicators are sensitive to N , on one hand; and to di¤erential
changes in wt on the other hand. The following two axioms are related to these sensitivities:

Axiom 1 Population invariance (PI): if a table cM is obtained from a table M by a replica-

tion of the whole population, such that cN t
� = �N

t
�8t 2 [1; T ] ; � 2 [1; A]^� > 0; and C

�cM�
= C (M), then C is said to be population invariant.
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Axiom 2 Group composition invariance (GI) if a table cM is obtained from a table M by
di¤erential replications of the population�s groups, such that cN t

� = �tN t
�8t 2 [1; T ] ; � 2

[1; A] ^ �t > 0; and C
�cM� = C (M), then C is said to be group composition invariant.

With these de�nitions and axioms now the indices are introduced and compared to each
other.

3 The indices and their similarities

The Pearson-based dissimilarity index is based on a statistic proposed by Anderson and
Goodman (1957) to test the null hypothesis of homogeneity of multinomial distributions. Its
formula is:

H =
1

minfT � 1; A� 1g

TX
t=1

AX
�=1

wt
(pt� � p��)

2

p��
(1)

The multivariate, multiple-group overlap index is based on the two-group overlap index
proposed by Weitzman (1970). Its formula is:

O = 1�
AX
�=1

minfp1�; p2�; :::; pT�g (2)

Both indices have the key similarity of attaining a minimum value of zero if and only
if the group distributions are all identical. That is: (H = O = 0) $ (pi� = p

j
� = p

�
�8i 6= j).

The proof of this proposition is straightforward.

Another similiarity between the two indices is that they both strictly decrease whenever
a MIM restore pairwise state between-group equality (PSBE) and strictly increase when
they break PSBE. The latter is de�ned by: 9 (�; �) 2 [1; :::; A] j p1� = p2�::: = pT� = p�� ^
p1� = p2�::: = pT� = p��. A MIM that restores PSBE is characterized by: bp1i = bp2i = ::: =cpTi = bp�i ^ bp1j = bp2j = ::: = cpTj = bp�j , i.e. both the dispatching and the receiving state are
rendered homogeneous across groups after the MIM. By contrast, a MIM that breaks PSBE
is characterized by: p1i = p

2
i = ::: = p

T
i = p

�
i ^ p1j = p2j = ::: = pTj = p�j . The proof that H

strictly decreases whenever a MIM restores PSBE and strictly increases whenever a MIM
breaks PSBE is in Yalonetzky (2009). The proof for O requires noticing �rst that a MIM
impacts on the index the following way:

�O � O
�cM��O (M) = �min�p1i ; :::; p�i � �; :::; pTi 	�min�p1j ; :::; p�j + �; :::; pTj 	 (3)

+min
�
p1i ; :::; p

�
i ; :::; p

T
i

	
+min

�
p1j ; :::; p

�
j ; :::; p

T
j

	
Equation (3) accounts already for the fact that in a MIM the migration does not af-

fect other groups�probabilities. If a MIM restores PSBE then: min
�
p1i ; :::; p

�
i � �; :::; pTi

	
=

min
�
p1i ; :::; p

�
i ; :::; p

T
i

	
(because bp�i = p�i ) andmin�p1j ; :::; p�j + �; :::; pTj 	 > min�p1j ; :::; p�j ; :::; pTj 	(because
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bp�j = p�j). Hence a MIM that restores PSBE implies �O < 0. Reversing the migration proves
that a MIM that breakes PSBE also strictly increases the value of the overlap index.
Therefore the indices agree in declaring perfect between-group inequality if and only if

distributions are homogeneous across groups and unanimously react when pairwise equality
of states is restored or broken by MIM. For other e¤ects of MIM, however the indices may
disagree in their sensitivity. That fact along with ful�llment of di¤erent population invariant
axioms and attainments of maximum inequality are the three main di¤erences that are
discussed in the next section.

4 The di¤erences

4.1 Sensitivity to intra-group migrations

Even though both indices react similarly to MIMs that restore (or break) PSBE, they have
di¤erential sensitivity to MIMs that neither restore or break PSBE. In principle, the latter
type of migration ought to have an a priori ambiguous e¤ect on either index because such
migration may increase or decrease the heterogeneity across the group-speci�c probabilities
of being in the departing state as well as increase or decrease the heterogeneity across the
group-speci�c probabilities of being in the receiving state.
In the case of O a MIM�s e¤ect on the index is described by (3). For the e¤ect to be null

it is su¢ cient (but not necessary) that:

9m;n 2 [1; T ] j pmi � p�i � � < p�i ^ pnj � p�j < p�j + �: (4)

Alternatively, if condition (4) is not met, the e¤ect can still be null if and only if:

p�j + � �min
�
p1j ; :::; p

�
j + �; :::; p

T
j

	
= p�i �min

�
p1i ; :::; p

�
i ; :::; p

T
i

	
: (5)

If the left-hand side of (5) is higher than the right-hand side then �O > 0, otherwise
�O < 0. Notice that this sensitivity is independent of wt.
By contrast neither condition (4) nor (5) are necessary or su¢ cient to render the e¤ect

of a MIM on H null. In other words, H is sensitive to several di¤erent MIMs ful�lling either
(4) or (5). This can be shown with counter-examples but eye inspection of the e¤ect of MIM
on H should do:

�H � H
�cM��H (M) = �w�

minfT � 1; A� 1gf[
PT

t=1w
t (pti � p�i )

2

p�i (p
�
i � �w� )

(6)

�
PT

t=1w
t
�
ptj � p�j

�2
p�j
�
p�j + �w

�
� ]

+2[
p�j � p�j
p�j + �w

�
� p�i � p�i
p�i � �w�

] + � (1� w� )
p�i + p

�
j

(p�i � �w� )
�
p�j + �w

�
�g

Condition (6) shows some interesting features. Firstly, that �H 6= 0 is possible with
several combinations of probabilities and MIM�s �, that ful�ll conditions (4) or (5), hence
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�O = 0: In other words, O is either plainly insensitive to those same combinations (ful�ll-
ment of (4)) or their e¤ects cancel out (ful�llment of (5). Secondly it is also possible to �nd
combinations of probabilities and MIM�s � such that �H = 0 and �O 6= 0.6 However, by
comparing (6) to (4) and (5), it is fair to conclude that it is harder to �nd combinatios of
probabilities and MIM�s � in which �H = 0 and �O 6= 0 than to �nd combinations in which
�H 6= 0 and �O = 0. One reason behind this is that �H depends on evaluations of many
more comparisons between the probabilities than �O. In general, considering that a table
of group probabilities has T (A� 1) degrees of freedom, for a �xed number of groups, T ,
and states, A, it should always be easier to �nd cases in which �O = 0 than cases in which
�H = 0:Thereby it should be easier to �nd cases of �H 6= 0 and �O = 0 than the other
way around. In other words, for a given number of degrees of freedom, H is more sensitive
to MIM�s than O.

4.2 Ful�llment of population invariance axioms

If a table cM is obtained from a table M by a replication of the whole population, such

that cN t
� = �N t

�8t 2 [1; T ] ; � 2 [1; A] ^ � > 0, then bpt� = cNt
�cNt
=

cNt
�PA

�=1
cNt
�

= �Nt
�

�
PA
�=1N

t
�
=

pt�;8 (�; t) 2 [1; A]� [1; T ]; and cwt � cNtbN =
�
PA
�=1N

t
�

�
PT
t=1

PA
�=1N

t
�
= wt. Therefore H

�cM� = H (M)
and O

�cM� = O (M); i.e. both indices ful�ll PI.
However if if a table cM is obtained from a table M by di¤erential replications of the

population�s groups, such that cN t
� = �

tN t
�8t 2 [1; T ] ; � 2 [1; A] ^ �t > 0, then it is still the

case that: bpt� = cNt
�cNt
=

cNt
�PA

�=1
cNt
�

= �tNt
�

�t
PA
�=1N

t
�
= pt�;8 (�; t) 2 [1; A]� [1; T ]. Yet nowcwt � cNtbN =

�t
PA
�=1N

t
�PT

t=1 �
tPA

�=1N
t
�
6= wt (unless �i = �j = �8 (i; j) 2 [1; T ]). Therefore O

�cM� = O (M) ; i.e.
the overlap index ful�lls GI because it is insensitive to group weights. By contrast, there is no
guarantee that the value of the Pearson-based index remains una¤ected since it is sensitive
to weights directly and indirectly (through the composition of the average probabilities).
Therefore this index does not ful�ll GI. For instance suppose that �t = 18t 6= � ^ �� = �.
In that case then:

cw� =
�w�

�w� + (1� w� ) (7)

cwt =
wt

�w� + (1� w� )8t 6= � (8)

bp�� =
p�� + (�� 1)w�p��
�w� + (1� w� ) (9)

With equations (7) through (9) it is possible to establish that: lim�!1cw� = 1; lim�!1cwt =
08t 6= � and lim�!1 bp�� = p��. Therefore: lim�!1H = 0; that is to say, H

�cM� 6= H (M)
6Notice also that the last element to the right-hand side of (6) remains positive even when before the

MIM the departing and receiving states, i and j, are homogeneous. That is precisely the proof that a MIM
that breaks PSBE increases the value of H. See Yalonetzky (2009).
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and H does not ful�ll GI.

4.3 Concepts of maximum between-group inequality

Both the Pearson-based dissimiliarity index and the overlap index are bounded between
zero and one. The �rst value is attained if and only if distributions are identical across
groups. The second value, which signals the maximum inequality that the indices attribute,
is attained by each index under similar but not identical circumstances. Both indices measure
inequality as association between the groups (e.g. the columns from 1 to T ) and the states of
wellbeing (e.g. the rows from 1 toA). Is their value of maximum inequality related to a notion
of maximum association? Kendall and Stuart de�ne two notions of extreme high association.
The �rst one, called complete association, occurs if all individuals having an attribute A also
have an attribute B, even though not everyone having attribute B may have attribute A.7

The second one, called absolute association, occurs when all individuals having attribute
A also have attribute B and all those having attribute B also have attribute A (Kendall
and Stuart, 1973, chapter 33). These de�niton are given in the context of contingency
tables with two variables hiavng two states each. More general de�nitions for two variables
and several states/values in each variable, can be proposed. Complete association can be
ascertained when all individuals having a value A of row variable have value B of column
variable although not all those having value B may have value A.8 Absolute association is
likewise said to occur when all individuals having value A of row variable have value B of
column variable and all those having the latter column value have also the former row value.
The overlap index is equal to one if and only if: 8� : 9i�; j� 2 [1; T ] j pi�� = 0 ^ pj

�

� > 0.
Therefore the overlap index attains its maximum value, for instance, when every state of the
multinomial distribution is associated with a subset of groups with strictly fewer elements
than the set of all groups. Di¤erent situations of complete association can ful�ll this criterion
as well as situations of absolute assocation (e.g. equal numbers of states and groups and each
group exclusively associated with one state only). In fact all situations of absolute association
lead to O = 1. Hence the overlap index can be used to test the null hypothesis of absolute
association. By contrast it can not be used as a test of complete association because certain
forms of it can come along with substantial overlap across the distributions. Alternatively,
the condition under which the overlap index is maximal can be proposed as a condition itself
of maximum association. It can be called minimum overlap maximum association (MOMA)
and be de�ned, in reverse of complete association, as a situation in which all individuals
having attribute A do not have attribute B and all those having attribute B do not have
attribute A.
The dissimilarity index is equal to one if and only if:

� T < A and there is complete association (where the row variable of the de�nition has
range [1; A]) ; or

7Of course, attributes A and B are a priori, or in theory, non-exclusive (e.g. A may mean being a woman
and B may mean being healthy).

8The roles of row and column variable may be reversed in a meaningful way as is discussed below when
describing the circumstances under which H = 1.
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� T > A and there is complete association (where now the de�nition must be read
reverting the roles of row and column variables, the latter having a range [1; T ]) ; or

� T = A and there is absolute association.9

Hence the dissimilarit index can be used to test the null hypothesis of complete or absolute
association depending on the relationship between T and A.10

Now, because
PA

�=1 p
t
� = 18t, when T < A with complete association (as de�ned in the

bullet points), then MOMA holds. But the reverse is not true. Therefore when T < A : H =
1 ! O = 1:When T > A with complete association (as de�ned in the bullet points), then
MOMA holds.11 But the reverse is true. Therefore, again, when T > A : H = 1 ! O = 1:
Finally, when T = A with absolute association, MOMA holds but the reverse is not true.
Thereby it is always the case that H = 1! O = 1.

5 Empirical application

The use of the two indices, H and O, is now illustrated with an application to between-
group inequality of educational achievement in India. The pervasiveness of inequality among
di¤erent groups of people in India, and the di¤erent intensity of that inequality across Indian
regions, has long drawn the attention of historians and social scientists. In particular they
have sought to understand the roots of, and �nd solutions to, widespread inequalities based
on gender, caste and religion. 12 Following an inequality-of-opportunity approach, I classify
people into groups de�ned by circumstances beyond their control.13 Thereby I combine two
categories of gender and four categories of caste14 in order to construct eight groups of Indian
citizens. 15 Then I focus on their educational attainment and ask whether there have been
changes in inequality of opportunity across di¤erent cohorts of adults in society. Further
details about the data are in the next subsection, followed by the results. .

9For a discussion of the maximum value of H see Yalonetzky (2009).
10Since the dissimilarity index is based on Pearson�s goodness-of-�t statistic, its asymptotic standard errors

can be derived following Kendall and Stuart (1973, chapter 33). As for the overlap index, its asymptotic
standard errors can be derived by extending the two-group case studied by Anderson, Linton, and Whang
(2009) to multiple groups.

11For this to be true an additional restriction needs to be imposed, namely that 8� : maxfp1�; p2�; :::; pT�g >
0.

12For an historical account in the post-independence period see Chandra, Mukherjee, and Mukherjee
(2008). A classical treatment of these inequalities in the Economics literature is in Dreze and Sen (1995).
Recently Deshpande (2007, and the author�s own work referenced therein) has quantitatively documented
gender and caste inequalities over di¤erent wellbeing dimensions.

13For which, therefore, they can not be held accountable and may be even considered for compensation.
See e.g. Roemer (1998), Fleurbaey (2008).

14The caste categories are: Scheduled tribe; scheduled caste; other backward castes; other castes.
15I could have considered religion as well which usually is "acquired" in the household and, so, originally

beyond the individual�s control during childhood. However religious conversions are possible in adulthood.
Hence I leave it outside to focus on to other categories that are harder to change through autonomous
decisions: gender and caste.
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5.1 Data

The data come from the Indian 2004 NSS. For the cohort analysis the following eight cohorts,
de�ned by age in 2004, are considered: 30 to 34 years old, 35 to 39, 40 to 44, 45 to 49, 50 to
54, 55 to 59, 60 to 64, and 65 years old or older. By focusing on adults 30 years old or older,
the probability of having censored observations, i.e. individuals whose observed educational
attainment is di¤erent from his/her unobserved �nal educational attainment (secured after
2004), becomes negligible. The educational attainment variable is multinomial, composed
of the following seven ordinal categories: not literate (=1); literate without formal schooling
(=2); literate with formal schooling but incomplete primary education (=3); just complete
primary education (=4); just complete middle education (=5); just complete secondary
education (=6); more than complete secondary education (=7).
The distributions of educational attainment by group and cohort are in tables Table 2

through Table 9 in the Appendix. Sample sizes are on Table 10. The main information
drawn from the tables is that numerous aspects of educational attainment have improved
for all groups among the younger cohorts vis-a-vis the old ones. For instance, the per-
centages of illiterate people have steadily declined for all groups while the percentage of
people with higher education has increased. First-order stochastic dominance of younger
people�s distributions over older�s is easily spotted, especially when comparing non-adjacent
cohorts. Between-group inequality manifests in distributions that are more favourable (e.g.
in terms of �rst-order dominance and/or percentages of illiterate people, people with higher
education, average attainment, etc.) to men over women; and more favourable to people
belonging to the category of "other castes" vis-a-vis people belonging to scheduled tribe,
scheduled caste or "other backward castes". Combined, it appears that across all cohorts,
women belonging to the latter three caste categories are the relatively most disadvantaged
in terms of educational opportunities (as measured by probabilities of attaining di¤erent
educational levels).
Has the cross-cohort increase in educational attainment been accompanied by higher or

lower between-group inequality? Even though it is true that the nature of the variable forces
equality if and when all individuals attain the minimum and/or the maximum levels, most
shifts in the distributions are expected to yield a priori ambiguous changes in between-group
inequality. Whether such inequality increases or not depends, in part, on the di¤erent timings
that it takes to di¤erent groups of society to bene�t from phenomena like the expansion of
public (and private) education. In the next sub-section an answer to the question is provided.

5.2 Results

The results appear summarized in table Table 1,16 and illustrated separately for H and O
in �gures Figure 1 and Figure 2, respectively. Both indices tell a remarkably similar story:
From the oldest cohort (65 years old and older) to the cohort born between 1945 and 1949,17

16The numbers in brackets are the lower and upper 95% con�dence intervals estimated using the bias-
corrected percentile method and 500 resamplings for each case.

17The database is from 2004.
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between-group inequality increased, and then younger generations experienced a steady de-
crease. According to a sub-population invariant perspective, i.e. using the Overlap index,
such reduction in inequality was monotonic cohort-by-cohort. By contrast, the dissimilarity
index, which takes into account changes in the composition of the groups�relative popula-
tions, reports an increase in inequality from the second-to-youngest to the youngest cohort.
Yet even in that case, according to H, between-group educational inequality still remains
below the levels corresponding to the cohorts of people 40 years old and older. Therefore,
both indices provide evidence supporting the conclusion that the youngest generations of
India are characterized by lower between-group inequality of educational attainment than
their older peers. Since groups are de�ned by combinations of gender and caste origin, i.e.
characteristics for which people can not be held accountable, these results reveal a partial
reduction in inequality of educational opportunity.18

Table 1: Changes in educational opportunity across cohorts of Indian adults

Cohort Dissimilarity index Overlap index
30-34 0.155 [0.152, 0.159] 0.499 [0.483, 0.514]
35-39 0.149 [0.145, 0.152] 0.503 [0.486, 0.522]
40-44 0.163 [0.159, 0.167] 0.564 [0.543, 0.583]
45-49 0.170[0.165, 0.173 ] 0.591[0.572, 0.612]
50-54 0.185 [0.181, 0.190] 0.620[0.598, 0.641]
55-59 0.195 [0.190, 0.200] 0.657 [0.629, 0.680]
60-64 0.195 [0.189, 0.200] 0.650[0.628, 0.671]
65+ 0.188 [0.183, 0.192] 0.622 [0.602, 0.636]

18Partial, because other characteristics beyond individuals�control, e.g. several dimensions of parental
and family background, are not accounted for in this illustrative application.
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Figure 1: Changes in educational opportunity across cohorts according to H

Figure 2: Changes in educational opportunity across cohorts according to O

6 Concluding remarks
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The Pearson-based dissimilarity index and the multi-group overlap index are suitable for
the comparison of multivariate and multinomial distributions of wellbeing across di¤erent
groups. This paper shows that the two indices share two crucial traits: They attain a
level of minimum between-group inequality if and only if group-speci�c distributions are all
homogeneous, and they respond equally to minimum intra-group migrations (MIMs) that
restore or break pairwise state between-group equality (PSBE). However, the paper shows
that they also di¤er in three important aspects:

� They are sensitive (or insensitive) to MIMs that neither restore nor break PSBE in a
priori di¤erential ways. In fact in many circumstances O may be insensitive, or yield
a null e¤ect, to a MIM while H reacts to that same MIM, and viceversa. In general,
H is more sensitive to MIMs than O.

� They ful�ll di¤erent population invariance axioms. Chie�y, while H is sensitive to
changes in group composition, O is not. The latter compares group�s distributions
without weighting them by group size thereby taking a "representative agent" approach
to the comparison problem. This distinction provides a criterion for the researcher
to choose between the two indices depending on his/her interest to account for (or,
alternatively neutralize) the impact of varying group composition.

� They attain their maximum values in relation to slightly di¤erent concepts of maximum
association. The paper proves that H attains its maximum if and only if there is
complete association between groups and outcome states (or absolute association if
T = A). By contrast, O attains its maximum if and only if a condition termed
minimum overlap maximum association (MOMA) holds. Crucially, the paper shows
that for every combination of T and A, H = 1! O = 1.

Studying the maxima of both indices the paper highlights their usefulness to test null
hypotheses of complete or absolute association.
Finally, the paper uses the two indices to measure changes in between-group inequality

of educational attainment in India across di¤erent cohorts of adults. Because the groups are
de�ned in terms of gender and caste, such analysis documents di¤erences in partial educa-
tional opportunity. Despite some di¤erences in the indices�empirical assessment, which are
explainable by their conceptual di¤erences as discussed in the paper, they provide evidence
in favour of a reduction of between-group inequality of educational attainment among the
youngest cohorts of adult Indian citizens.
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7 Appendix: Descriptive statistics

Table 2: Distributions of educational attainment by gender-caste groups: Adults 30-34 years
old

Groups Educational categories
1 2 3 4 5 6 7

Male scheduled tribe 0.211 0.033 0.102 0.159 0.195 0.111 0.188
Female scheduled tribe 0.407 0.033 0.101 0.132 0.179 0.072 0.076
Male scheduled caste 0.257 0.027 0.096 0.159 0.201 0.096 0.163
Female scheduled caste 0.566 0.022 0.084 0.119 0.104 0.056 0.048

Male other backward castes 0.167 0.021 0.079 0.153 0.219 0.135 0.227
Female other backward castes 0.440 0.022 0.077 0.133 0.150 0.084 0.093

Male other castes 0.106 0.017 0.055 0.114 0.175 0.176 0.357
Female other castes 0.253 0.024 0.075 0.131 0.166 0.125 0.225

Table 3: Distributions of educational attainment by gender-caste groups: Adults 35-39 years
old

Groups Educational categories
1 2 3 4 5 6 7

Male scheduled tribe 0.254 0.035 0.097 0.147 0.189 0.097 0.181
Female scheduled tribe 0.440 0.032 0.098 0.141 0.166 0.060 0.064
Male scheduled caste 0.336 0.028 0.110 0.160 0.162 0.087 0.117
Female scheduled caste 0.621 0.023 0.087 0.106 0.086 0.039 0.038

Male other backward castes 0.224 0.025 0.096 0.157 0.200 0.124 0.174
Female other backward castes 0.485 0.022 0.084 0.139 0.129 0.068 0.073

Male other castes 0.141 0.022 0.065 0.136 0.163 0.157 0.315
Female other castes 0.293 0.024 0.076 0.146 0.161 0.123 0.176
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Table 4: Distributions of educational attainment by gender-caste groups: Adults 40-44 years
old

Groups Educational categories
1 2 3 4 5 6 7

Male scheduled tribe 0.270 0.040 0.110 0.144 0.168 0.089 0.179
Female scheduled tribe 0.501 0.034 0.111 0.121 0.126 0.048 0.059
Male scheduled caste 0.381 0.029 0.112 0.155 0.143 0.076 0.104
Female scheduled caste 0.702 0.021 0.069 0.094 0.059 0.031 0.024

Male other backward castes 0.253 0.028 0.105 0.160 0.180 0.111 0.164
Female other backward castes 0.533 0.021 0.088 0.136 0.115 0.058 0.050

Male other castes 0.144 0.019 0.065 0.134 0.179 0.150 0.309
Female other castes 0.335 0.027 0.080 0.144 0.145 0.113 0.156

Table 5: Distributions of educational attainment by gender-caste groups: Adults 45-49 years
old

Groups Educational categories
1 2 3 4 5 6 7

Male scheduled tribe 0.301 0.047 0.098 0.147 0.149 0.084 0.174
Female scheduled tribe 0.559 0.039 0.101 0.113 0.095 0.0387 0.054
Male scheduled caste 0.405 0.036 0.110 0.155 0.128 0.069 0.097
Female scheduled caste 0.743 0.027 0.056 0.081 0.054 0.021 0.018

Male other backward castes 0.264 0.035 0.114 0.150 0.176 0.110 0.152
Female other backward castes 0.575 0.028 0.086 0.122 0.100 0.049 0.040

Male other castes 0.155 0.024 0.069 0.130 0.177 0.152 0.293
Female other castes 0.381 0.026 0.077 0.133 0.141 0.105 0.137
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Table 6: Distributions of educational attainment by gender-caste groups: Adults 50-54 years
old

Groups Educational categories
1 2 3 4 5 6 7

Male scheduled tribe 0.343 0.044 0.110 0.160 0.131 0.076 0.137
Female scheduled tribe 0.642 0.034 0.098 0.111 0.054 0.029 0.032
Male scheduled caste 0.427 0.034 0.115 0.133 0.125 0.075 0.093
Female scheduled caste 0.774 0.016 0.065 0.069 0.042 0.011 0.022

Male other backward castes 0.304 0.033 0.097 0.145 0.155 0.113 0.153
Female other backward castes 0.661 0.019 0.078 0.095 0.072 0.038 0.036

Male other castes 0.154 0.024 0.070 0.120 0.162 0.160 0.310
Female other castes 0.423 0.031 0.089 0.124 0.119 0.092 0.122

Table 7: Distributions of educational attainment by gender-caste groups: Adults 55-59 years
old

Groups Educational categories
1 2 3 4 5 6 7

Male scheduled tribe 0.395 0.069 0.119 0.147 0.110 0.061 0.098
Female scheduled tribe 0.746 0.031 0.070 0.085 0.042 0.006 0.020
Male scheduled caste 0.481 0.039 0.100 0.119 0.096 0.077 0.089
Female scheduled caste 0.846 0.016 0.045 0.044 0.026 0.010 0.013

Male other backward castes 0.326 0.035 0.132 0.154 0.120 0.097 0.136
Female other backward castes 0.713 0.019 0.080 0.092 0.048 0.023 0.025

Male other castes 0.193 0.029 0.083 0.128 0.142 0.150 0.275
Female other castes 0.488 0.033 0.087 0.136 0.106 0.068 0.082
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Table 8: Distributions of educational attainment by gender-caste groups: Adults 60-64 years
old

Groups Educational categories
1 2 3 4 5 6 7

Male scheduled tribe 0.554 0.053 0.107 0.127 0.068 0.042 0.049
Female scheduled tribe 0.810 0.028 0.064 0.051 0.024 0.007 0.015
Male scheduled caste 0.593 0.037 0.102 0.095 0.073 0.054 0.045
Female scheduled caste 0.907 0.015 0.028 0.026 0.011 0.007 0.007

Male other backward castes 0.435 0.032 0.117 0.149 0.102 0.083 0.081
Female other backward castes 0.796 0.018 0.065 0.064 0.028 0.016 0.012

Male other castes 0.257 0.029 0.083 0.138 0.127 0.154 0.212
Female other castes 0.591 0.027 0.082 0.125 0.071 0.056 0.048

Table 9: Distributions of educational attainment by gender-caste groups: Adults 65+ years
old

Groups Educational categories
1 2 3 4 5 6 7

Male scheduled tribe 0.614 0.055 0.107 0.090 0.077 0.027 0.031
Female scheduled tribe 0.834 0.025 0.069 0.043 0.019 0.007 0.003
Male scheduled caste 0.681 0.038 0.094 0.085 0.051 0.024 0.028
Female scheduled caste 0.936 0.012 0.023 0.016 0.009 0.002 0.002

Male other backward castes 0.500 0.045 0.135 0.147 0.067 0.057 0.049
Female other backward castes 0.836 0.019 0.061 0.054 0.019 0.007 0.005

Male other castes 0.314 0.043 0.115 0.138 0.125 0.131 0.135
Female other castes 0.664 0.033 0.091 0.099 0.053 0.033 0.027
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Table 10: Sample sizes by group and cohort

Groups Cohorts
30-34 35-39 40-44 45-49 50-54 55-59 60-64 65+

Male scheduled tribe 2831 2890 2416 2224 1570 1209 876 1137
Female scheduled tribe 3159 2885 2207 1914 1418 1098 822 1180
Male scheduled caste 3354 3498 2852 2493 1849 1424 1122 1935
Female scheduled caste 3706 3435 2629 2277 1656 1367 1308 1961
Male other backward castes 8150 8040 6649 6103 4613 3612 3022 5208
Female other backward castes 8789 8273 6425 5500 4361 3696 3165 5498
Male other castes 7548 7316 6539 5891 4482 3628 2917 5550
Female other castes 7762 7364 6067 5291 4118 3345 2989 5466
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