Summer School on Capability and Multidimensional Poverty

Sabina Alkire August 2011, Netherlands
[T]he job of a ‘measure’ or an ‘index’ is to distill what is particularly relevant for our purpose, and then to focus specifically on that. … The central issues in devising an index relate to systematic assessment of importance. Measurement has to be integrated with evaluation. This is not an easy task.

—Amartya Sen (1989)
Background: to *axiomatic measures*

Axiomatic approaches to multidimensional poverty began to gain momentum in the late 1990s

Key papers

Collections of articles (*axiomatic, information theory, fuzzy*)

- *World Development* June 2008
Background: to counting measures

- Much larger and longer history; far more empirical applications; wide policy use.
- From 1968: Scandinavian level of living.
- Smeeding *et al.* 1993. *Review of Income & Wealth*
- Jayaraj & Subramanian~on Child Labor India
- 2006: Chakravarty & D’Ambrosio
What is not covered:

- We will focus on one of several new multidimensional poverty measures (AF), teach it and do exercises on it so that you are confident using it.
Focus of this class

• See also Alkire, S., Foster, J.E., 2011. *Understandings and Misunderstandings of Multidimensional Poverty Measurement*
Multidimensional Poverty- our challenge:

• A government would like to create an official multidimensional poverty indicator

• Desiderata
 – It must understandable and easy to describe
 – It must conform to “common sense” notions of poverty
 – It must be able to target the poor, track changes, and guide policy.
 – It must be technically solid
 – It must be operationally viable
 – It must be easily replicable

• What would you advise?
Multidimensional Poverty Comparisons

• There are many steps to creating index:
 – Choice of purpose for the index (monitor, target, etc)
 – Choice of Unit of Analysis (indy, hh, cty)
 – Choice of Dimensions
 – Choice of Variables/Indicator(s) for dimensions
 – Choice of Poverty Lines for each indicator/dimension
 – Choice of Weights for indicators within dimensions
 – If more than one indicator per dimension, aggregation
 – Choice of Weights across dimensions
 – Identification method
 – Aggregation method – within / across dimensions.
This morning’s focus:

- **Identification** — Dual cutoffs
- **Aggregation** — Adjusted FGT

- Purpose, Variables, Dimensional Cutoffs, Weights and all other steps — Assume given
Key methodological points:

Multidimensional poverty methodology comprises **identification** and **aggregation**, as well as the choice of **space**. (Sen 1976)

- **Identification** is critically important
- **Axioms** for MD poverty are joint restrictions on identification **and** aggregation.
- **Ordinal data** are common.
- **Decomposability** by sub-group, and (post identification) by factor, is key for policy.
Review: Unidimensional Poverty

Variable – income
Identification – poverty line
Aggregation – Foster-Greer-Thorbecke ’84

Example Incomes = (7,3,4,8) poverty line z = 5

Deprivation vector $g^0 = (0,1,1,0)$
Headcount ratio $P_0 = \mu(g^0) = 2/4$

Normalized gap vector $g^1 = (0, 2/5, 1/5, 0)$
Poverty gap $= P_1 = \mu(g^1) = 3/20$

Squared gap vector $g^2 = (0, 4/25, 1/25, 0)$
FGT Measure $= P_2 = \mu(g^2) = 5/100$
Unidimensional Methods: Challenges

- All components must be cardinally meaningful
- Aggregate reflects achievements and tradeoffs
- All components can be merged/freely traded.
- Empirical evidence for weights, functional form
- A shortfall in any component is not of concern
Poverty Measurement:

Examples
Welfare aggregation
Construct each person’s welfare function
Set cutoff and apply unidimensional poverty index

Myriad assumptions needed

Alkire and Foster (2010) “Designing the Inequality-Adjusted Human Development Index”
Ordinal variables problematic
Suggests dominance
Poverty Measurement:

Examples

Price aggregation
Construct each person’s expenditure level
Set cutoff and apply unidimensional poverty index

Myriad assumptions needed

Alkire and Foster (2010) “Designing the Inequality-Adjusted Human Development Index”
Ordinal and nonmarket variables
Link to welfare (local, unidirectional)
Foster, Majumdar, Mitra (1990) “Inequality and Welfare in Market Economies” *J*Pub*E*
Suppose Many variables that cannot be meaningfully aggregated into some overall resource or achievement variable. How to measure poverty?
Multidimensional Data

Matrix of well-being scores for n persons in d domains

$$y = \begin{bmatrix}
13.1 & 14 & 4 & 1 \\
15.2 & 7 & 5 & 0 \\
12.5 & 10 & 1 & 0 \\
20 & 11 & 3 & 1
\end{bmatrix}$$
Multidimensional Data

Matrix of well-being scores for \(n \) persons in \(d \) domains

\[
y = \begin{bmatrix}
13.1 & 14 & 4 & 1 \\
15.2 & 7 & 5 & 0 \\
12.5 & 10 & 1 & 0 \\
20 & 11 & 3 & 1
\end{bmatrix}
\]

\[
z = (13 \ 12 \ 3 \ 1)
\]
z vector = Deprivation Cutoffs

- **Schooling:** “How many years of schooling have you completed?”
 - 6 or more (bold is non-poor)
 - 1-5 years (non-bold is poor)

- **Drinking Water:** “What is the main water source for drinking for this household?”
 - 9. Piped Water
 - 8. Well/Pump (electric, hand)
 - 7. Well Water
 - 6. Spring Water / Rain Water / River/Creek Water / Pond/Fishpond
 - 5. Other

- **Sanitation:** “Where do the majority of householders go to the toilet?”
 - 11. Own toilet with septic tank
 - 10. Own toilet without septic tank
 - 9. Shared toilet
 - 8. Public toilet
 - 7. Creek/river/ditch (without toilet)
 - 6. Yard/field (without toilet)
 - 5. Sewer
 - 4. Pond/fishpond
 - 3. Animal stable
 - 2. Sea/lake
 - 1. Other
Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

\[
y = \begin{bmatrix}
13.1 & 14 & 4 & 1 \\
15.2 & 7 & 5 & 0 \\
12.5 & 10 & 1 & 0 \\
20 & 11 & 3 & 1 \\
\end{bmatrix}
\]
Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

\[
g^0 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{bmatrix}
\]
Normalized Gap Matrix

Normalized gap = \((z_j - y_{ji})/z_j\) if deprived, 0 if not deprived

\[
\begin{align*}
\text{Domains} & \\
\mathbf{y} &= \begin{bmatrix} 13.1 & 14 & 4 & 1 \\
15.2 & 7 & 5 & 0 \\
12.5 & 10 & 1 & 0 \\
20 & 11 & 3 & 1 \end{bmatrix} \\
\text{Persons} \\
\text{Cutoffs} & \\
\mathbf{z} &= \begin{bmatrix} 13 & 12 & 3 & 1 \end{bmatrix}
\end{align*}
\]

These entries fall below cutoffs
Normalized Gap Matrix

Normalized gap = \((z_j - y_{ji})/z_j \) if deprived, 0 if not deprived

\[
g^1 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0.42 & 0 & 1 \\
0.04 & 0.17 & 0.67 & 1 \\
0 & 0.08 & 0 & 0 \\
\end{bmatrix}
\]
Squared Gap Matrix

Squared gap = \[(z_j - y_{ij})/z_j\]^2 if deprived, 0 if not deprived

\[
g^1 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0.42 & 0 & 1 \\
0.04 & 0.17 & 0.67 & 1 \\
0 & 0.08 & 0 & 0 \\
\end{bmatrix}
\]
Squared Gap Matrix

Squared gap = \[(z_j - y_{ji})/z_j\]^2 if deprived, 0 if not deprived

\[g^2 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0.176 & 0 & 1 \\
0.002 & 0.029 & 0.449 & 1 \\
0 & 0.006 & 0 & 0
\end{bmatrix} \]
Identification

\[g^0 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{bmatrix} \]

Matrix of deprivations
Identification – Counting Deprivations

\[g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \]

\[\begin{align*} \text{Domains} & \quad \text{Persons} \\ 0 & \quad 0 \\ 2 & \quad 4 \\ 1 & \quad 1 \end{align*} \]
Identification – Counting Deprivations

Q/ Who is poor?

<table>
<thead>
<tr>
<th>Domains</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>2</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>4</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>1</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>1</td>
</tr>
</tbody>
</table>
Identification – Union Approach

Q/ Who is poor?
A1/ Poor if deprived in any dimension $c_i \geq 1$

\[
g^0 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

Domains

\[
\begin{array}{c}
\begin{aligned}
\lambda &= 0 \\
\lambda &= 2 \\
\lambda &= 4 \\
\lambda &= 1 \\
\end{aligned}
\end{array}
\]

Persons
Identification – Union Approach

Q/ Who is poor?
A1/ Poor if deprived in any dimension $c_i \geq 1$

$g^0 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 \\
2 \\
4 \\
1
\end{bmatrix}$

Observations
Union approach often predicts high numbers.
Charavarty et al ’98, Tsui ‘02, Bourguignon & Chakravarty 2003 etc use the union approach
Identification – Intersection Approach

Q/ Who is poor?
A2/ Poor if deprived in all dimensions $c_i = d$

<table>
<thead>
<tr>
<th>Domains</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>2</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>4</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>1</td>
</tr>
</tbody>
</table>
Identification – Intersection Approach

Q/ Who is poor?
A2/ Poor if deprived in all dimensions \(c_i = d \)

<table>
<thead>
<tr>
<th>Domains</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations
Demanding requirement (especially if \(d \) large)
Often identifies a very narrow slice of population
Atkinson 2003 first to apply these terms.
Identification – Dual Cutoff Approach

Q/ Who is poor?
A/ Fix cutoff \(k \), identify as poor if \(c_i \geq k \)

\[
\begin{array}{cccc}
\text{Domains} & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 2 \\
1 & 1 & 1 & 1 & 4 \\
0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

Persons
Q/ Who is poor?
A/ Fix cutoff k, identify as poor if \(c_i \geq k \) (Ex: \(k = 2 \))

<table>
<thead>
<tr>
<th>Domains</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>2</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>4</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>1</td>
</tr>
</tbody>
</table>
Identification – Dual Cutoff Approach

Q/ Who is poor?
A/ Fix cutoff k, identify as poor if $c_i \geq k$ (Ex: $k = 2$)

Domains

\[
g^0 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{bmatrix}
\]

\[\begin{array}{cccc}
c_i & 0 & 2 & 4 & 1 \\
\end{array}\]

Persons

Note
Includes both union ($k = 1$) and intersection ($k = d$)
Identification – The problem empirically

<table>
<thead>
<tr>
<th>(k =) Union 1</th>
<th>(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>75.5%</td>
</tr>
<tr>
<td>3</td>
<td>54.4%</td>
</tr>
<tr>
<td>4</td>
<td>33.3%</td>
</tr>
<tr>
<td>5</td>
<td>16.5%</td>
</tr>
<tr>
<td>6</td>
<td>6.3%</td>
</tr>
<tr>
<td>7</td>
<td>1.5%</td>
</tr>
<tr>
<td>8</td>
<td>0.2%</td>
</tr>
<tr>
<td>9</td>
<td>0.0%</td>
</tr>
<tr>
<td>Inters. 10</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Poverty in India for 10 dimensions:
91% of population would be targeted using union,
0% using intersection

Need something in the middle.

(Alkire and Seth 2009)
Aggregation

Censor data of nonpoor

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{bmatrix}
\]

\[
g^0 = \begin{bmatrix}
0 \\
2 \\
4 \\
1
\end{bmatrix}
\]
Aggregation

Censor data of nonpoor

\[
g^0(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>Domains</th>
<th>(c(k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>2</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>4</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0</td>
</tr>
</tbody>
</table>

Persons
Aggregation

Censor data of nonpoor

\[g^0(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} \]

\[c(k) = \begin{bmatrix}
0 \\
2 \\
4 \\
0
\end{bmatrix} \]

Similarly for \(g^1(k) \), etc
Aggregation – Headcount Ratio

\[g^0(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} \]

<table>
<thead>
<tr>
<th>Domains</th>
<th>c(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>2</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>4</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0</td>
</tr>
</tbody>
</table>

Persons
Aggregation – Headcount Ratio

\[g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

<table>
<thead>
<tr>
<th>Domains</th>
<th>(c(k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Two poor persons out of four: \(H = 1/2 \)
Critique

Suppose the number of deprivations rises for person 2

\[g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

Two poor persons out of four: \(H = 1/2 \)
Critique

Suppose the number of deprivations rises for person 2

\[
g^0(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 \\
3 \\
4 \\
0 \\
\end{bmatrix}
\]

Two poor persons out of four: \(H = 1/2 \)
Critique

Suppose the number of deprivations rises for person 2

\[g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \ \hline 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

Domains \(c(k) \) Persons

\[0 \ \ 3 \ \ 4 \ \ 0 \]

Two poor persons out of four: \(H = 1/2 \)

No change!
Critique

Suppose the number of deprivations rises for person 2

\[g^0(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} \]

Two poor persons out of four: \(H = \frac{1}{2} \)

No change!

Violates ‘dimensional monotonicity’
Aggregation

Return to the original matrix

\[
g^0(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{array}{c}
\text{Domains} \\
\text{c(k)}
\end{array}
\]

\begin{align*}
\text{Persons} & \quad 0 \\
0 & \quad 3 \\
4 & \quad 0
\end{align*}
Aggregation

Return to the original matrix

\[g^0(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} \]

Domains \quad c(k)

\begin{align*}
0 & \quad 0 \\
2 & \quad 4 \\
0 & \quad 0
\end{align*}

Persons
Aggregation

Need to augment information deprivation shares among poor

<table>
<thead>
<tr>
<th>Domains</th>
<th>$c(k)$</th>
<th>$c(k)/d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>2 2/4</td>
<td>2/4</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>4 4/4</td>
<td>4/4</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
Aggregation

Need to augment information

domain shares among poor

\[g^0(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} \]

\[c(k) \quad c(k)/d \]

\[\begin{array}{cccc}
0 & 2 & 4 & 0 \\
2/4 & 2/4 & 4/4 &
\end{array} \]

Persons

A = average deprivation share among poor = 3/4
Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = $M_0 = HA$

$$g^0(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$c(k) \quad c(k)/d$$

0 \quad 0
2 \quad 2/4
4 \quad 4/4
0

A = average deprivation share among poor = 3/4
Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = $M_0 = HA = \mu(g^0(k))$

\[g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

\begin{align*}
\text{Domains} & \quad c(k) & \quad c(k)/d \\
0 & 0 & 0 & 0 & 0 & 2 & 2/4 \\
0 & 1 & 0 & 1 & 4 & 4/4 & \text{Persons} \\
1 & 1 & 1 & 1 & 4 & 4/4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{align*}

\[A = \text{average deprivation share among poor} = 3/4 \]
Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = \(M_0 = HA = \mu(g^0(k)) = 6/16 = .375 \)

\[
g^0(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>Domains</th>
<th>(c(k))</th>
<th>(c(k)/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>2</td>
<td>2 / 4</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>4</td>
<td>4 / 4</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

\(A = \text{average deprivation share among poor} = 3/4 \)
Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = $M_0 = HA = \mu(g^0(k)) = \frac{7}{16} = 0.44$

<table>
<thead>
<tr>
<th>Domains</th>
<th>$c(k)$</th>
<th>$c(k)/d$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>1 1 0 1</td>
<td>3 3/4 3/4</td>
</tr>
<tr>
<td></td>
<td>1 1 1 1</td>
<td>4 4/4 4/4</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>

$g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

$A = \text{average deprivation share among poor} = \frac{3}{4}$

Note: if person 2 has an additional deprivation, M_0 rises

Satisfies dimensional monotonicity
Adjusted Headcount Ratio $M_{k0} = (q_k, M_0)$

Valid for ordinal data (identification & aggregation) – robust to monotonic transformations of data.
Similar to traditional gap $P_1 = HI$; this = HA
Easy to calculate, easy to interpret
Can be broken down by dimension – policy
Dominance Results (mentioned later)
Characterization via freedom – P&X 1990

Note: If cardinal variables, can go further
Pattanaik and Xu 1990 and M_0

- Freedom = the number of elements in a set.
- But does not consider the *value* of elements
- If dimensions are of intrinsic value and are usually valued, then every deprivation can be interpreted as a shortfall of intrinsic concern.
- The (weighted) sum of deprivations can be interpreted as the unfreedoms of each person.
- Adjusted Headcount can be interpreted as a measure of unfreedoms across a population.
Aggregation: Adjusted Poverty Gap

Need to augment information of M_0

Use normalized gaps

$$g^1(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Domains

Persons

Average **gap** across all deprived dimensions of the poor:

$$G = (0.04+0.42+0.17+0.67+1+1)/6$$
Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap = $M_1 = M_0 G = HAG$

Domains

$$g^1(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0.42 & 0 & 1 \\
0.04 & 0.17 & 0.67 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Persons

Average gap across all deprived dimensions of the poor:

$$G = (0.04 + 0.42 + 0.17 + 0.67 + 1 + 1)/6$$
Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap = $M_1 = M_0G = HAG = \mu(g^1(k))$

Domains

$$g^1(k) = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.42 & 0 & 1 \\
0.04 & 0.17 & 0.67 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Persons

Average gap across all deprived dimensions of the poor:

$$G = (0.04 + 0.42 + 0.17 + 0.67 + 1 + 1)/6$$
Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap = $M_1 = M_0 G = HAG = \mu(g^1(k))$

$$g^1(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0.42 & 0 & 1 \\
0.04 & 0.17 & 0.67 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Obviously, if in a deprived dimension, a poor person becomes even more deprived, then M_1 will rise.

Satisfies monotonicity
Aggregation: Adjusted FGT

Consider the matrix of squared gaps

\[
g^2(k) = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.42^2 & 0 & 1^2 \\
0.04^2 & 0.17^2 & 0.67^2 & 1^2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
Aggregation: Adjusted FGT

Adjusted FGT is $M_2 = \mu(g^2(k))$

\[
g^2(k) = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.42^2 & 0 & 1^2 \\
0.04^2 & 0.17^2 & 0.67^2 & 1^2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
Aggregation: Adjusted FGT

Adjusted FGT is $M_2 = \mu(g^2(k))$

$$g^2(k) = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.42^2 & 0 & 1^2 \\
0.04^2 & 0.17^2 & 0.67^2 & 1^2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Satisfies transfer axiom
Aggregation: Adjusted FGT Family

Adjusted FGT is \(M_\alpha = \mu(g^\alpha(\tau)) \) for \(\alpha \geq 0 \)

\[
g^\alpha(k) = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.42^\alpha & 0 & 1^\alpha \\
0.04^\alpha & 0.17^\alpha & 0.67^\alpha & 1^\alpha \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Theorem 1 For any given weighting vector and cutoffs, the methodology \(M_{k\alpha} = (\xi_k, M_\alpha) \) satisfies: decomposability, replication invariance, symmetry, poverty and deprivation focus, weak and dimensional monotonicity, nontriviality, normalisation, and weak rearrangement for \(\alpha \geq 0 \); monotonicity for \(\alpha > 0 \); and weak transfer for \(\alpha \geq 1 \).
Setting cutoff k: normative or policy

• Depends on: purpose of exercise, data, and weights
 – “In the final analysis, how reasonable the identification rule is depends, *inter alia*, on the attributes included and how imperative these attributes are to leading a meaningful life.” (Tsui 2002 p. 74).

• E.g. a measure of Human Rights; data good = union

• Targeting: according to category (poorest 5%). Or budget (we can cover 18% - who are they?)

• Poor data, or people do not value all dimensions: $k<d$

• Some particular combination (e.g. the intersection of income deprived *and* deprived in any other dimension)
Robustness tests for \(k \)

- **Theorem 2** Where \(a \) and \(a' \) are the respective attainment vectors for \(y \) and \(y' \) in \(Y \) \((a_i=d-c_i)\), we have:
 - (i) \(y \ H \ y' \iff a \ FD \ a' \)
 - (ii) \(a \ FD \ a' \implies y \ M_0 y' \implies a \ SD \ a' \), and the converse does not hold.

(i) akin to Foster Shorrocks: first order dominance over attainment vectors ensures that multidimensional headcount is lower (or no higher) for all possible values of \(k \) – and the converse is also true.

(ii) shows that \(M_0 \) is implied by first order dominance, and implies second order, in turn.
Properties for Multidimensional Poverty Methodologies

- axioms are *joint restrictions* on $\mathcal{M} = (\varrho, M)$

- Identification is vital for some axioms (poverty focus).

- Previously defined axioms used union approach

- Our axioms are applicable to $0 < k \leq d$
Example:

- **Unidimensional Focus Axiom**: requires a poverty measure to be independent of the data of the non-poor (incomes at/above z)

- In a multidimensional setting:
 - A non-poor person might be deprived in several dimensions
 - A poor person might not be deprived in all dimensions.

- How do we adapt the focus axiom?
Example:

- **Poverty Focus**: If x is obtained from y by a simple increment among the non-poor, then $M(x;z) = M(y;z)$.
- **Deprivation Focus**: If x is obtained from y by a simple increment among the nondeprived, then $M(x;z) = M(y;z)$.

Union: deprivation focus implies poverty focus

Intersection: poverty focus implies deprivation

Bourguignon and Chakravarty (2003) assume the deprivation focus axiom (their ‘strong focus axiom’) along with union identification, so their methodology automatically satisfies the poverty focus axiom.
Another Example:

- deprived increment (still below cutoff, deprived)
- dimensional increment (now non-deprived)
- **Weak Monotonicity:** If x is obtained from y by a simple increment, then $M(x;z) \leq M(y;z)$.
- **Monotonicity:** M satisfies weak monotonicity and the following: if x is obtained from y by a deprived increment among the poor then $M(x;z) < M(y;z)$.
- **Dimensional Monotonicity:** If x is obtained from y by a dimensional increment among the poor then $M(x;z) < M(y;z)$.
Properties

- Our methodology satisfies a number of typical properties of multidimensional poverty measures (suitably extended):
 - Symmetry, Scale invariance
 - Normalization, Replication invariance
 - Poverty Focus, Weak Monotonicity
 - Deprivation Focus, Weak Re-arrangement

- M_0, M_1 and M_2 satisfy Dimensional Monotonicity, Decomposability

- M_1 and M_2 satisfy Monotonicity (for $\alpha > 0$) – that is, they are sensitive to changes in the depth of deprivation in all domains with cardinal data.

- M_2 satisfies Weak Transfer (for $\alpha > 1$).
Extension: General Weights

Modifying for weights at two points:

1) Identification (k is now a cutoff of the weighted sum of dimensions)
2) Aggregation (simply weight matrix prior to taking the mean)
Extension – General Weights

Modifying for weights: identification and aggregation
(technically weights need not be the same, but conceptually probably should be)

- Use the g_0 or g_1 matrix
- Choose relative weights for each dimension w_d
- Important: weights must add up to the number of dimensions
- Apply the weights (sum = d) to the matrix
- c_k now reflects the weighted sum of the dimensions.
- Set cutoff k across the weighted sum.
- Censor data as before to create $g_0 (k)$ or $g_1 (k)$
- Measures are still the mean of the matrix.
Example: Weights

Matrix of deprivations
Weighting vector $\omega = (0.5 \ 2 \ 1 \ 0.5)$
Example: Weights

Matrix of deprivations

Weighting vector $\omega = (0.5, 2, 1, 0.5)$
Example: Weights - Identification

<table>
<thead>
<tr>
<th>Domains</th>
<th>0</th>
<th>2.5</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domains</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>.5</td>
<td>2.5</td>
</tr>
<tr>
<td>.5</td>
<td>2</td>
<td>1</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Matrix of deprivations

Weighting vector $\omega = (0.5, 2, 1, 0.5)$

$k = 2$

Identification changed!
Example: Weights - Identification

<table>
<thead>
<tr>
<th>Domains</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>.5</td>
<td>2.5</td>
</tr>
<tr>
<td>.5</td>
<td>2</td>
<td>1</td>
<td>.5</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Weighting vector $\omega = (.5 \ 2 \ 1 \ .5)$

Original Identification for $k = 2.5$
Example: Weights – Aggregation

\[k = 2.5 \]

\[
g^0(k) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 2 & 0 & .5 \\
.5 & 2 & 1 & .5 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Domains

\[
\begin{cases}
0 & \\
2.5 & \\
4 & \\
0 &
\end{cases}
\]

Persons

\[
M_0 \text{ still HA} = \text{mean of matrix} = 6.5/16
\]

\[
H = 2/4
\]

A = weighted = 6.5/8
Illustration: USA

- **Tables Generated By:** Suman Seth.

- **Unit of Analysis:** Individual.

- **Number of Observations:** 46009.

- **Variables:**
 - (1) income measured in poverty line increments and grouped into 15 categories
 - (2) self-reported health
 - (3) health insurance
 - (4) years of schooling.
Illustration: USA

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Population</th>
<th>Percentage Contributn</th>
<th>Income Poverty Headcount Ratio</th>
<th>Percentage Contributn</th>
<th>H</th>
<th>Percentage Contributn</th>
<th>M_0</th>
<th>Percentage Contributn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic</td>
<td>9100</td>
<td>19.8%</td>
<td>0.23</td>
<td>37.5%</td>
<td>0.39</td>
<td>46.6%</td>
<td>0.229</td>
<td>47.8%</td>
</tr>
<tr>
<td>White</td>
<td>29184</td>
<td>63.6%</td>
<td>0.07</td>
<td>39.1%</td>
<td>0.09</td>
<td>34.4%</td>
<td>0.050</td>
<td>33.3%</td>
</tr>
<tr>
<td>Black</td>
<td>5742</td>
<td>12.5%</td>
<td>0.19</td>
<td>20.0%</td>
<td>0.21</td>
<td>16.0%</td>
<td>0.122</td>
<td>16.1%</td>
</tr>
<tr>
<td>Others</td>
<td>1858</td>
<td>4.1%</td>
<td>0.10</td>
<td>3.5%</td>
<td>0.12</td>
<td>3.0%</td>
<td>0.067</td>
<td>2.8%</td>
</tr>
<tr>
<td>Total</td>
<td>45884</td>
<td>100.0%</td>
<td>0.12</td>
<td>100.0%</td>
<td>0.16</td>
<td>100.0%</td>
<td>0.09</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Illustration: USA

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(H_1) Income</td>
<td>(H_2) Health</td>
<td>(H_3) H. Insurance</td>
<td>(H_4) Schooling</td>
<td>(M_0)</td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
<td>0.200</td>
<td>0.116</td>
<td>0.274</td>
<td>0.324</td>
<td>0.229</td>
</tr>
<tr>
<td>Percentage Contribution</td>
<td></td>
<td>21.8%</td>
<td>12.7%</td>
<td>30.0%</td>
<td>35.5%</td>
<td>100%</td>
</tr>
<tr>
<td>White</td>
<td></td>
<td>0.045</td>
<td>0.053</td>
<td>0.043</td>
<td>0.057</td>
<td>0.050</td>
</tr>
<tr>
<td>Percentage Contribution</td>
<td></td>
<td>22.9%</td>
<td>26.9%</td>
<td>21.5%</td>
<td>28.7%</td>
<td>100%</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td>0.142</td>
<td>0.112</td>
<td>0.095</td>
<td>0.138</td>
<td>0.122</td>
</tr>
<tr>
<td>Percentage Contribution</td>
<td></td>
<td>29.1%</td>
<td>23.0%</td>
<td>19.5%</td>
<td>28.4%</td>
<td>100%</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>0.065</td>
<td>0.053</td>
<td>0.071</td>
<td>0.078</td>
<td>0.067</td>
</tr>
<tr>
<td>Percentage Contribution</td>
<td></td>
<td>24.2%</td>
<td>20.0%</td>
<td>26.5%</td>
<td>29.3%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Illustration: USA – all values of k

M_0 Dominance

- Hispanic
- White
- Black
- Others

value of k

value of M_0
Indonesia: Deprivation by dimension

<table>
<thead>
<tr>
<th>Deprivation</th>
<th>Percentage of Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenditure</td>
<td>30.1%</td>
</tr>
<tr>
<td>Health (BMI)</td>
<td>17.5%</td>
</tr>
<tr>
<td>Schooling</td>
<td>36.4%</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>43.9%</td>
</tr>
<tr>
<td>Sanitation</td>
<td>33.8%</td>
</tr>
</tbody>
</table>
Indonesia: Breadth of Deprivation

<table>
<thead>
<tr>
<th>Number of Deprivations</th>
<th>Percentage of Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>26%</td>
</tr>
<tr>
<td>Two</td>
<td>23%</td>
</tr>
<tr>
<td>Three</td>
<td>17%</td>
</tr>
<tr>
<td>Four</td>
<td>8%</td>
</tr>
<tr>
<td>Five</td>
<td>2%</td>
</tr>
</tbody>
</table>
Identification as k varies

<table>
<thead>
<tr>
<th>Cutoff k</th>
<th>Percentage of Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74.9%</td>
</tr>
<tr>
<td>2</td>
<td>49.2%</td>
</tr>
<tr>
<td>3</td>
<td>26.4%</td>
</tr>
<tr>
<td>4</td>
<td>9.7%</td>
</tr>
<tr>
<td>5</td>
<td>1.7%</td>
</tr>
</tbody>
</table>
And interpretation?

Equal Weights

<table>
<thead>
<tr>
<th>Measure</th>
<th>$k=1$ (Union)</th>
<th>$k=2$</th>
<th>$k=3$ (Intersection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.577</td>
<td>0.225</td>
<td>0.039</td>
</tr>
<tr>
<td>M_0</td>
<td>0.280</td>
<td>0.163</td>
<td>0.039</td>
</tr>
<tr>
<td>M_1</td>
<td>0.123</td>
<td>0.071</td>
<td>0.016</td>
</tr>
<tr>
<td>M_2</td>
<td>0.088</td>
<td>0.051</td>
<td>0.011</td>
</tr>
</tbody>
</table>

General Weights

<table>
<thead>
<tr>
<th>Measure</th>
<th>$k = 0.75$ (Union)</th>
<th>$k = 1.5$</th>
<th>$k = 2.25$</th>
<th>$k = 3$ (Intersection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.577</td>
<td>0.346</td>
<td>0.180</td>
<td>0.039</td>
</tr>
<tr>
<td>M_0</td>
<td>0.285</td>
<td>0.228</td>
<td>0.145</td>
<td>0.039</td>
</tr>
<tr>
<td>M_1</td>
<td>0.114</td>
<td>0.084</td>
<td>0.058</td>
<td>0.015</td>
</tr>
<tr>
<td>M_2</td>
<td>0.075</td>
<td>0.051</td>
<td>0.036</td>
<td>0.010</td>
</tr>
</tbody>
</table>
And interpretation?

<table>
<thead>
<tr>
<th>Measure</th>
<th>$k=1$ (Union)</th>
<th>$k=2$</th>
<th>$k=3$ (Intersection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.577</td>
<td>0.225</td>
<td>0.039</td>
</tr>
<tr>
<td>M_0</td>
<td>0.280</td>
<td>0.163</td>
<td>0.039</td>
</tr>
<tr>
<td>M_1</td>
<td>0.123</td>
<td>0.071</td>
<td>0.016</td>
</tr>
<tr>
<td>M_2</td>
<td>0.088</td>
<td>0.051</td>
<td>0.011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure</th>
<th>$k = 0.75$ (Union)</th>
<th>$k = 1.5$</th>
<th>$k = 2.25$</th>
<th>$k = 3$ (Intersection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.577</td>
<td>0.346</td>
<td>0.180</td>
<td>0.039</td>
</tr>
<tr>
<td>M_0</td>
<td>0.285</td>
<td>0.228</td>
<td>0.145</td>
<td>0.039</td>
</tr>
<tr>
<td>M_1</td>
<td>0.114</td>
<td>0.084</td>
<td>0.058</td>
<td>0.015</td>
</tr>
<tr>
<td>M_2</td>
<td>0.075</td>
<td>0.051</td>
<td>0.036</td>
<td>0.010</td>
</tr>
</tbody>
</table>

$M_0 = H$ for intersection
And interpretation?

If all persons have **maximal** deprivation, then \(G = 1 \), so \(M_0 = M_1 \). **Low gap** if \(M_0 \) is **higher than** \(M_1 \).

Equal Weights

<table>
<thead>
<tr>
<th>Measure</th>
<th>(k = 1) (Union)</th>
<th>(k = 2)</th>
<th>(k = 3) (Intersection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>0.577</td>
<td>0.225</td>
<td>0.039</td>
</tr>
<tr>
<td>(M_0)</td>
<td>0.280</td>
<td>0.163</td>
<td>0.039</td>
</tr>
<tr>
<td>(M_1)</td>
<td>0.123</td>
<td>0.071</td>
<td>0.016</td>
</tr>
<tr>
<td>(M_2)</td>
<td>0.088</td>
<td>0.051</td>
<td>0.011</td>
</tr>
</tbody>
</table>

General Weights

<table>
<thead>
<tr>
<th>Measure</th>
<th>(k = 0.75) (Union)</th>
<th>(k = 1.5)</th>
<th>(k = 2.25)</th>
<th>(k = 3) (Intersection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>0.577</td>
<td>0.346</td>
<td>0.180</td>
<td>0.039</td>
</tr>
<tr>
<td>(M_0)</td>
<td>0.285</td>
<td>0.228</td>
<td>0.145</td>
<td>0.039</td>
</tr>
<tr>
<td>(M_1)</td>
<td>0.114</td>
<td>0.084</td>
<td>0.058</td>
<td>0.015</td>
</tr>
<tr>
<td>(M_2)</td>
<td>0.075</td>
<td>0.051</td>
<td>0.036</td>
<td>0.010</td>
</tr>
</tbody>
</table>
And interpretation?

If all persons have maximal deprivation, then $G=1$, so $M_0 = M_1$. Good if M_0 is different from M_1.

Weights affect relevant k values.

$M_0 = H$ for intersection

Equal Weights

<table>
<thead>
<tr>
<th>$k=1$ (Union)</th>
<th>$k=2$</th>
<th>$k=3$ (Intersection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>0.577</td>
<td>0.225</td>
</tr>
<tr>
<td>M_1</td>
<td>0.280</td>
<td>0.163</td>
</tr>
<tr>
<td>M_2</td>
<td>0.123</td>
<td>0.071</td>
</tr>
</tbody>
</table>

General Weights

<table>
<thead>
<tr>
<th>Measure</th>
<th>$k = 0.75$ (Union)</th>
<th>$k = 1.5$</th>
<th>$k = 2.25$ (Intersection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.577</td>
<td>0.346</td>
<td>0.180</td>
</tr>
<tr>
<td>M_0</td>
<td>0.285</td>
<td>0.228</td>
<td>0.145</td>
</tr>
<tr>
<td>M_1</td>
<td>0.114</td>
<td>0.084</td>
<td>0.058</td>
</tr>
<tr>
<td>M_2</td>
<td>0.075</td>
<td>0.051</td>
<td>0.036</td>
</tr>
</tbody>
</table>
Empirical Examples

Sub-Saharan Africa (14): Assets, Education, BMI, Empowerment

Latin America (6) Income, Child in School, hhh Education, Water, Sanitation, Housing

China Income, Education, BMI, Water, Sanitation, Electricity

Pakistan Expenditure, Assets, Education, Water, Sanitation, Electricity, Housing, Land, Empowerment

Bhutan I Income, Education, Rooms, Electricity, Water (land, roads used in rural areas only)

MPI – for 104 countries (10 indicators; 3 dimensions)
Empirical Applications

We can also choose a **unit of analysis** other than the individual (Bhutan) or Household (other), and use the same methodology with indicators of institutions, and γ **cutoffs** representing quality, standards, or benchmarks.

Gross National Happiness (Bhutan)

Quality of Education (Mexico, Argentina)

Governance (Ibrahim Index)

Targeting (India BPL, Mexico Oportunidades)

Child Poverty (Afghanistan, Bangladesh)

Social Responsibility/Fair Trade (Altereco)

Human Rights (Benetech)
Joint Distribution vs Marginal

- Use a deprivation cutoff for each dimension (Bourguignon and Chakravarty (2003))
- Hence each shortfall can be seen and may contribute independently to poverty.
- Ordinal data can be used.

These can be divided broadly into two types:

Marginal Measures

Measures that reflect Joint Distribution
Multidimensional Methods:

Marginal Measures:
- Apply a deprivation cutoff for each vector of achievements.
- Construct an aggregate
- Inadequate identification (if at all, union)
- Ignores joint distribution
- Examples:
 - HPI
Multidimensional Methods:

Our Proposal: Joint Measures
- Apply a deprivation cutoff for each vector of achievements.
- Identify *who is poor* – e.g. with dual-cutoff
- Aggregate across poor people
- Examples:
 - MPI
 - Counting
 - Basic Needs
Why do Joint Distribution methods add value?

Matrix 1

\[
g^0 = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
4 \\
\end{bmatrix}
\]

Matrix 2

\[
g^0 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
\end{bmatrix}
\]
Why do Joint Distribution methods add value?

Marginal Measures ONLY use this vector to create their measures. So according to ANY marginal measure, the poverty of Matrix 1 = the poverty of Matrix 2.
\(M_0 \) if \(k=1: 0.25; \)

\(H=.25; A=1 \)

Matrix 1

\[
g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \ldots \begin{bmatrix} 0 \\ 0 \\ 0 \\ 4 \end{bmatrix}
\]

\[
\begin{bmatrix} .25 \\ .25 \\ .25 \\ .25 \end{bmatrix}
\]

Matrix 2

\[
g^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \ldots \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
\]

\[
\begin{bmatrix} .25 \\ .25 \\ .25 \\ .25 \end{bmatrix}
\]

\(H=1; A=.25 \)
\[M_0 \text{ if } k=1: \begin{bmatrix} 0.25 & 0.25 \\ 0.25 & 0 \end{bmatrix} \]

\[M_0 \text{ if } k=2: \begin{bmatrix} 0.25 & 0 \end{bmatrix} \]

Matrix 1

\[g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 4 \end{bmatrix} \]

Matrix 2

\[g^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \]

\[\begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} \]
Informal Note: order of operations

<table>
<thead>
<tr>
<th></th>
<th>Unidim.</th>
<th>Marginal</th>
<th>MD (Joint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify Deprivations</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aggregate Across Dimensions ('count')</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Identify Who is Poor</td>
<td>2</td>
<td>n/a</td>
<td>3</td>
</tr>
<tr>
<td>Aggregate across People</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Alkire MD Pov & Discontents
Key point: Deprivation and Censored Matrix

Deprivation Matrix

\[g^0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \]

Censored Deprivation Matrix, \(k=2 \)

\[g^0(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
AF Method: Decompositions

By Population Subgroup

\[M_\alpha \] Poverty

H Headcount

A Intensity

Post-identification: By Dimension

Censored Headcount

Percentage Contribution

All draw on censored matrix

misunderstood
Informal Glossary of Terms

Deprivation: if \(y_{id} < z \) person \(i \) is deprived in \(y_d \)

Poverty: if \(c_i \leq k \) person \(i \) is poor.

Deprivation cutoffs: the \(z \) cutoffs for each dimension

Poverty cutoff: the overall cutoff \(k \)

Dimension: for AF – a column in the matrix having its own deprivation cutoff (sometimes called an ‘indicator’)

Joint distribution: showing the simultaneous or coupled deprivations a person/hh has