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MULTIDIMENSIONAL POVERTY: MEASUREMENT,
ESTIMATION, AND INFERENCE

CHRISTOPHER J. BENNETT† AND SHABANA MITRA

Abstract. Multidimensional poverty measures give rise to a host of statistical
hypotheses which are of interest to applied economists and policy-makers alike. In
the specific context of the generalized Alkire-Foster (Alkire and Foster 2008) class
of measures, we show that many of these hypotheses can be treated in a unified
manner and also tested simultaneously using the minimum p-value methodology
of Bennett (2010). When applied to study the relative state of poverty among
Hindus and Muslims in India, these tests reveal novel insights into the plight of
the poor which are not otherwise captured by traditional univariate approaches.

1. Introduction

Multidimensional poverty measures give rise to a rich set of testable hypotheses.

In this paper, we formulate a variety of these hypotheses—in the specific context of

the Alkire and Foster (2008) measure—which are likely to be of particular interest

to applied economists and policy-makers alike. More importantly, we introduce a

unified framework for developing statistical tests of these and other related hypothe-

ses.

Governments of several nations, including those of India and Mexico, as well

as numerous non-governmental agencies are in the process of adopting multidimen-

sional measures of poverty to complement their traditional income (or consumption)

analysis. The adoption of a multidimensional approach is largely in response to ar-

guments that income alone does not completely identify the poor, and that there

are other dimensions which are relevant to the well-being of individuals. The goal

of a multidimensional approach to poverty analysis, therefore, is to move beyond

the traditional univariate approach to incorporate additional relevant indicators of

well-being.

Following Sen (1976), poverty measurement has been viewed as a two step proce-

dure involving both an identification and an aggregation step. Identification grapples
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2 C. BENNETT AND S. MITRA

with the question Who is poor? This involves the notion of poverty lines, whereby

the individuals below a poverty line are identified as poor. In the multidimensional

case, however, two cutoffs must be considered for identification. First, for each

dimension, a dimension-specific poverty line identifies the individuals deprived in

that particular dimension. The second cutoff determines the number of dimensions,

k, in which one must be deprived before they are considered (multidimensionally)

poor. The measures of Bourguingnon and Chakravarty (2005) and Tsui (2002), for

example, adopt a union approach to identification whereby any individual who is

deprived in at least one dimension is considered poor. In other words, their second

cutoff is simply one dimension of deprivation. In practice, however, the union ap-

proach often identifies substantially high proportions of various populations as poor.

In some instances, the union approach has been found to identify more than 90% of

a population as poor (Singh 2009).

Alkire and Foster (2008) have recently proposed a new class of multidimensional

poverty measures based on the FGT (Foster, Greer and Thorbecke 1984) class of

unidimensional poverty meaures. The AF measure is remarkably simple, both con-

ceptually and computationally. In the identification stage, the AF measure involves

selecting the second cutoff k to be any value between one (the union approach) and

the maximum number of dimensions d (the intersection approach). The aggregation

stage is then based on the FGT framework and thus retains many of the desirable

properties of the FGT class of measures. Among these properties is decomposability

of the overall poverty measures among sub-groups of the population. This property

is essential, for example, when one wishes to compare poverty across sub-regions or

ethnic groups.

The Alkire-Foster methodology has also recently been applied in several empirical

studies; see, e.g., Alkire and Seth (2008), Santos and Ura (2008), and Batana (2008).

However, these papers are primarily descriptive in nature due, largely, to a lack

of available statistical testing procedures.1 The present paper fills this void not

only by formulating a variety of novel and interesting statistical hypotheses in this

context, but also by contributing to the literature a general framework for developing

statistical tests of these and related hypotheses. A distinguishing feature of our work

is our emphasis on multiple testing procedures which enable users to identify from

within a collection of hypotheses those which are not supported by the data. It is our

contention that multiple testing procedures are of particular relevance in the context

of multidimensional poverty analysis. Inferring, for instance, the specific range of

poverty lines over which a poverty ordering holds, the sub-collection of measures

1In contrast, statistical tests relating to the univariate approach to poverty analysis are well es-
tablished; see, for example, Anderson (1996), Davidson and Duclos (2000), Barrett and Donald
(2003), and Linton, Maasoumi and Whang (2005).



MULTIDIMENSIONAL POVERTY 3

over which a poverty ordering holds, or the specific dimensions (e.g. income, health,

education) in which a country or region is underperforming, are of greater policy

relevance than whether the ordering fails for some (possibly unidentified) poverty

line, measure, or dimension. In contrast, most procedures currently applied in the

context of poverty analysis are joint tests which permit us to draw less informative

inferences. Batana (2008), for example, tests whether a poverty ordering based

on the headcount ratio is consistent over a collection of poverty lines. Batana’s

(2008) approach, which is based on the empirical likelihood ratio test developed in

Davidson and Duclos (2006), allows him to infer only that the hypothesized ordering

is violated without necessarily providing any compelling evidence concerning which

poverty line(s) might suggest a reversal in the hypothesized ordering.

In contrast, we show that the recently introduced multiple testing procedures

of Bennett (2010) are particularly well-suited to simultaneous testing of the hy-

potheses which arise naturally in the context of multidimensional measures.2 The

principle advantage of adopting multiple testing procedures is that, unlike the pop-

ular Wald-type tests (e.g., Wolak 1989, Kodde and Palm 1986), for example, they

offer compelling evidence concerning the source(s) of rejection whenever rejection

of the joint intersection hypothesis occurs. The advantage of adopting the MinP

procedure of Bennett (2010), in particular, is that this test is shown capable of

correctly identifying more false hypotheses (sources of rejection) than competing

multiple testing procedures. Specific examples treated in this paper include (though

are not limited to) simultaneous tests of the poverty orderings for various parame-

terizations of the Alkire-Foster measure (e.g. robustness to choice to poverty lines

and/or k), simultaneous tests of poverty orderings of various populations relative to

a benchmark population, and simultaneous tests of dimension-specific (e.g., health,

income, education) poverty orderings.

To illustrate the methodology developed in this paper, we use the National Sam-

ple Survey (NSS) 60th round health and morbidity data to study the differences in

multidimensional poverty among Hindus and Muslims in urban India. Two separate

sets of hypotheses are tested. The first corresponds to a robustness check on the sec-

ond cutoff (k). We find that for lower values of k, Muslims are poorer than Hindus.

This is in accordance with income based poverty comparisons which have generally

found Muslims to be more deprived. Interestingly, for higher values of k our results

suggest that Hindus are, in fact, poorer than Muslims. In other words, a greater

proportion of Hindus suffer from extreme poverty . To further our understanding

2For concreteness, we have chosen to frame our discussion in the context of the Alkire-Foster
measure. However, our methodology may also be extended, for example, to test hypotheses that
arise from the multidimensional orderings of Maasoumi and Lugo (2008) and Duclos, Sahn and
Younger (2006). See also Kakwani and Silber (2008) for an overview of these and other approaches.
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of this reversal, we also investigate which of the dimensions may be responsible.

Thus, our second set of tests correspond to a simultaneous test of the component

orderings for fixed values of k. Our results here suggest that for higher values of k,

the difference in the contribution of income to Hindu and Muslim poverty is small

(sometimes even insignificant), and that the reversal in the poverty ordering among

the two ethnic groups is driven primarily by dimensions other than income. These

results, while interesting in and of themselves, serve to highlight the rich empirical

welfare analysis that can be conducted by coupling our statistical methodology with

a multidimensional approach to poverty.

The remainder of this paper is as follows. In the next section we formulate a

generalized version of the recently proposed Alkire-Foster class of multidimensional

poverty measures. We subsequently discuss the formulation of a variety of statistical

hypotheses and show that they may be treated in a unified manner. Section 4

develops suitable test statistics and the related asymptotics. Section 5 provides a

discussion of the implementation of the minimum p-value methodology, which is

followed by our empirical illustration in Section 6.

2. Formulation

Let X = (X1, . . . , Xd) denote a random draw from a population with joint distri-

bution of achievement F . The components of X may be ordinal or cardinal. Without

loss of generality we assume that the first d1 ≤ d components of the random vector

X are ordinal whereas the remaining d− d1 are cardinal. For a fixed k, 1 ≤ k ≤ d,

a pre-specified vector of poverty lines ` ∈ (0, ¯̀]d, and a d × 1 vector of “weights”

denoted by ω, we formulate the multidimensional headcount ratio and generalized

Alkire-Foster (AF) multidimensional poverty measures as

H(`, k, ω, F ) = EF

1
 d∑
j=1

ωj1(Xj ≤ `j) ≥ k

 , (1)

and

Pα(`, k, ω, F ) =
1
d

EF

1
 d∑
j=1

ωj1(Xj ≤ `j) ≥ k

 d1∑
j=1

ωj1(Xj ≤ `j)


+

1
d

EF

1
 d∑
j=1

ωj1(Xj ≤ `j) ≥ k

 d∑
j=d1+1

ωj

(
`j −Xj

`j

)α
1(Xj ≤ `j)

 .
(2)

For a given choice of k, ω, and `, we see that under either measure an individual

with observed vector of achievement X = (X1, . . . , Xd) is identified as poor only if∑d
j=1 ωj1(Xj ≤ `j) ≥ k. Identification thus involves a dual cut-off approach. In

the first step, deprivation in dimension j is determined by comparing the level of

achievement in dimension j to the corresponding poverty line. In the second stage,
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an individual is identified as being poor only if the weighted (by ω) sum of the

indicators of dimension-specific poverty are at least equal to the multidimensional

poverty threshold k.

When the dimensions are given equal weight (i.e. when ω equals the unit vector

in Rd), H(`, k, ω, F ) is simply the proportion of the population that is deprived in k

or more dimensions; or equivalently the probability that a randomly drawn person

from population F is deprived in k or more dimensions. Alternatively, the measure

Pα(`, k, ω, F ), for α > 0, is a weighted sum of H(`, k, ω;F ) where the individual

weights correspond to FGT -type measures (Foster et al. 1984) of the individual

dimensions, thus allowing for the “depth” of deprivation to enter into the overall

assessment of poverty. Greater values of α correspond to greater emphasis being

placed on the “depth” of deprivation or equivalently greater emphasis being placed

on the poorest of the poor. When α = 0, Pα(`, k, ω, F ) reduces to a weighted sum

of H(`, k, ω, F ) where the weights are simply the probabilities of being deprived in

each of the dimensions under consideration.3

Varying ω away from the unit vector amounts to a rescaling of the importance

attributed to the various dimensions of poverty. For instance, if ω = (2, 0.5, 0.5, 0.5)

and k = 3, then an individual is identified as poor only if they are deprived in the

first dimension along with being deprived in at least two other dimensions. Thus,

deprivation in dimension one becomes a necessary condition for identification under

this weighting scheme. In contrast, we see that under the equally weighted scheme

the same individual would be identified as poor only if they are deprived in at least

any three of the four dimensions. Thus, the choice of ω (and, of course, k) plays a

crucial role in the identification of deprived individuals.

In addition to being intuitive and simple to compute, the Alkire-Foster measure

also possesses the desirable properties of both subgroup and dimension-specific de-

composability. For example, if Z is a discrete random variable with Z = i denoting

membership in subgroup i, then we may write the poverty measure as a weighted

sum of the subgroup contributions to overall poverty, i.e.

Pα(`, k, ω, F ) =
1
d

∑
i

EF

1
 d∑
j=1

ωj1(Xj ≤ `j) ≥ k

×
 d1∑
j=1

ωj1(Xj ≤ `j) +
d∑

j=d1+1

ωj

(
`j −Xj

`j

)α
1(Xj ≤ `j)

 | Z = i

P (Z = i).

(3)

3In some situations, it may be of interest to allow the value of α to be dimension-dependent.
Although we have not formulated Pα(·) to explicitly account for this possibility, we note that such
an extension can easily be accommodated.
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The values of H(`, k, ω, F ) and Pα(`, k, ω, F ) are clearly influenced by the param-

eters `, ω, α, and k, about whose values there may be considerable disagreement.

Consequently, it may be of interest, for example, to test the robustness of a Alkire-

Foster poverty ordering of two populations to changes in these parameter values.

The formulation of such hypotheses is the subject of the next section.

3. Hypotheses

Let G denote the joint distribution of achievement of a population which is to

be compared to that of F . Tests of multidimensional poverty orderings will in-

variably involve hypotheses that are formulated based on the difference between

H(`F , k, ω, F ) and H(`G, k, ω,G), Pα(`F , k, ω, F ) and Pα(`G, k, ω,G), or the differ-

ence between several such population parameters.4 In this section, we outline the

basic structure of the statistical hypotheses which are treated in this paper. We

begin with a number of specific examples that are likely to be of particular interest

to practitioners.

Example 3.1 (Poverty Component Analysis). Due to the composite nature of the

measures, inferring, for example, that Pα(`G, k, ω,G) > Pα(`F , k, ω, F ) invariably

leads to the question: “In which dimensions is the population G worse off?” Con-

sequently, it may be of greater interest to consider both the Pα-ordering and the

dimension specific orderings via a simultaneous test of the d+ 1 hypotheses

H0 : Pα(`G, k, ω,G)− Pα(`F , k, ω, F ) ≤ 0

and

Hs : Pα,s(`G, k, ω,G)− Pα,s(`F , k, ω, F ) ≤ 0 for 1 ≤ s ≤ d,

where the additional subscript “s” on the measure Pα denotes the sth dimension’s

contribution to the the poverty measure.

Example 3.2 (Robustness). In empirical work researchers often observe the poverty

ordering reverse when the value of α or k is adjusted. When this does not occur and

the ordering is consistent for all plausible values of α and k, the ordering is said to

be robust. Along the lines of the previous example, robustness over (say) α may be

tested via a simultaneous test of

Hs : Pαs(`G, k, ω,G)− Pαs(`F , k, ω, F ) ≤ 0 for 1 ≤ s ≤ S.

Clearly, testing for robustness over k is analogous, with the test being over various

values of k as opposed to various values of α.

4The subscript on the poverty line vector highlights the fact that we allow for the pre-specified
(exogenous) poverty lines to differ across any two populations.
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Example 3.3 (Poverty Orderings relative to a Benchmark). For a given poverty

measure, say Pα(·), an analyst may wish to identify those populations which have

less poverty than a benchmark population F0. Letting F1, . . . , FS denote the vari-

ous populations that have been chosen for comparison, the testing problem can be

formulated as a simultaneous test of the S hypotheses

Hs : Pα(`Fs , k, ω, Fs)− Pα(`F0 , k, ω, F0) ≤ 0 for 1 ≤ s ≤ S.

The theme which is common to these (and many other) examples is that the

hypotheses of interest may be written in the general form

EP [m(X; θ)] ≤ 0

where m is a vector-valued function, X is a random vector with distribution P , and

θ is a vector of (known) parameter values. This observation suggests that in our

discussion of statistical testing we may treat these and other seemingly disparate

tests in a unified manner; i.e., as simultaneous tests of multiple inequalities.

4. Estimation and Asymptotics

Fundamental to our testing procedures is the estimation of the multidimensional

headcount ratio and generalized Alkire-Foster (AF) poverty measures for various

configurations of the exogenous parameters α, `, ω, and k. In this section we dis-

cuss our estimation strategy and we also establish the joint asymptotic distribution

of the resulting estimators. Since the specific estimators of interest and the associ-

ated joint distribution will invariably depend upon the particular hypothesis under

consideration, the asymptotic analysis here is most aptly handled by treating the

empirical poverty measures as a stochastic process in the exogenous parameters and

applying techniques from the empirical process literature for their analysis. We

therefore begin this section by introducing an empirical process which nests many

statistics, including for instance those pertinent to examples 1 through 3, as special

cases. Then, by establishing the weak convergence of this process, the joint asymp-

totic normality of the statistics of interest may be obtained as simple corollaries.

In our analysis, we treat both the case of mutually dependent samples as well

as the case of independent samples, the former being relevant in examining the

evolution of poverty of a single group (e.g. changes in poverty over time), whereas the

latter is relevant in comparing poverty across any two groups (e.g. cross-national)

where sampling is done independently within each group. For the sake of exposition

we will assume, without loss of generality, that the number of populations under

consideration in any given hypothesis is less than or equal to three. We begin our

analysis with the dependent case.
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4.1. Dependent Samples. Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be i.i.d. copies of a

3d × 1 random vector with distribution P and d-dimensional marginal cdfs F , G,

and H. We denote by Pn the empirical measure based on a sample of size n from P ,

and we introduce the poverty vector functions mi : (x, y, z) ∈ R3d → Rd+2, i = 1, 2, 3

which we define by

m1(x, y, z; `, k, ω, α) =



1 (A(x))

1 (A(x)) 1
d

[∑d1
j=1 ωj1(xj ≤ `j) +

∑d
j=1+d1

ωj

(
`j−xj

`j

)α
1(xj ≤ `j)

]
1 (A(x))ω11(x1 ≤ `1)

...

1 (A(x))ωd
(
`d−xd

`d

)α
1(xd ≤ `d)


,

(4)

m2(x, y, z; `, k, ω, α) = m1(z, x, y; `, k, ω, α),

and

m3(x, y, z; `, k, ω, α) = m1(y, z, x; `, k, ω, α),

where A(x) =
{∑d

j=1 ωj1(xj ≤ `j) ≥ k
}

. Thus, mi for i = 2, 3 is obtained from

mi−1 through a cyclical permutation of the three d × 1 arguments x, y, and z.

For a fixed choice of parameters (`, k, ω, α) the poverty vectors associated with the

F , G, and H distributions are simple population means which may be estimated

in a straightforward manner as Pnm1(x, y, z; `, k, ω, α), Pnm3(x, y, z; `, k, ω, α), and

Pnm2(x, y, z; `, k, ω, α), respectively.5

In each of the examples considered in the previous section, appropriate test sta-

tistics of the individual hypotheses may be derived from

√
nPn[mi(x, y, z; `i, k, ω, α)−mj(x, y, z; `j, k, ω, α)], (5)

for some i, j ∈ {1, 2, 3} and some configuration of the parameters (k, ω, α). Conse-

quently, a treatment of the asymptotic behaviour of the seemingly disparate cases

may be handled in a uniform manner by viewing (5) as a stochastic process in the

parameters and applying to it results from the empirical process literature. To this

end, we begin by introducing the class of real-valued functions

Fi = {〈mi(x, y, z; `, k, ω, α), h〉 : ` ∈ [0, ¯̀]d,

k ∈ [k, k̄],
∑

ωi = d, ωi ≥ 0, h ∈ [0, 1]d+2}
(6)

where i is a fixed integer belonging to the set {1, 2, 3} and 〈·, ·〉 denotes the scalar

product of two vectors. Our goal is to establish that Fi is a Donsker class and hence

that the empirical process {
√
n(Pn−P )f : f ∈ Fi} converges weakly to a mean-zero

Gaussian process in `∞(Fi). Establishing this result, which we state formally as

5For a given probability measure P , the notation Pf denotes the expectation with repect to P ,
i.e., Pf :=

∫
fdP .
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Theorem 4.1 below, will enable us to obtain as corollaries a number of convergence

results which will prove particularly useful in the development of various statistical

tests of interest.

Theorem 4.1. Suppose (X1, Y1, Z1), . . . , (Xn, Yn, Zn) are i.i.d. copies of a 3d × 1

random vector with distribution P . Then, the class of functions Fi defined in (6) is

P -Donsker for i ∈ {1, 2, 3}.

Theorem 4.1 can be used to derive several important results. First, by defining

the class of functions

F ′i = { − 〈mi(y, x, z; `, k, ω, α), h〉 : z ∈ [0, z̄]d,

k ∈ [k, k̄],
∑

ωi = d, ωi ≥ 0, h ∈ [0, 1]d+2, 1 ≤ α ≤ 3}
(7)

we obtain via Theorem 4.1 and Donsker preservation under addition (Kosorok 2008,

p.173) that the empirical process

{
√
n(Pn − P )f : f ∈ F1 + F ′2}

converges weakly to a tight Gaussian process in `∞(F1 + F ′2). Since finite dimen-

sional convergence is necessary for weak convergence of the empirical process, we

immediately obtain, for example, the convergence of {
√
n(Pn−P )(f1, . . . , fS)} to a

S-dimensional mean-zero normal distribution provided fs ∈ F1+F ′2 for s = 1, . . . , S.

The connection to our testing problem is made upon noticing that an element, say

f , of F1 + F ′2 is of the form

f = 〈m1(x, y, z; `F , k, ω, α), h〉 − 〈m2(x, y, z; `G, k, ω, α), h′〉,

and hence, for h = h′ = (1, 0, . . . , 0) or h = h′ = (0, 1, 0, . . . , 0), the scaled and

centered random quantity
√
n(Pn − P )f is nothing other than the scaled and re-

centered difference between the estimates of H(`F , k, ω, F ) and H(`G, k, ω,G), or

Pα(`F , k, ω, F ) and Pα(`G, k, ω,G), respectively.

Notice that Example 3.3 is a slight variation on the above themes in that it

involves a comparison between several populations. In order to subsume Example

3.3, we introduce the class of functions Gj = F1 + F ′j and denote by H the class of

functions

{〈f, λ〉 : f ∈ G2 × G3, λ ∈ [−1, 1]2}.

which is also P -Donsker under the conditions of Theorem 4.1. The application of

these results to our testing problems are now made explicit by revisiting our earlier

examples:

Example 4.1 (Example 3.1 continued). Let hi denote the ith standard basis vector

in Rd+2, ω ∈ Rd
+ satisfy

∑
ωi = d, `G, `F ∈ (0, ¯̀]d, and α be a fixed positive integer.
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Then each member of the finite collection

{〈m1(x, y, z; `F , k, ω, α), hi〉 − 〈m2(x, y, z; `G, k, ω, α), hi〉 : 2 ≤ i ≤ d+ 2} (8)

belongs to G2. We therefore obtain the convergence of

√
n(Pn − P )


m1,2(x, y, z; `G, k, ω, α)−m2,2(x, y, z; `F , k, ω, α)
m1,2(x, y, z; `G, k, ω, α)−m2,3(x, y, z; `F , k, ω, α)

...
m1,d+2(x, y, z; `G, k, ω, α)−m2,d+2(x, y, z; `F , k, ω, α)


to a mean-zero multivariate normal distribution.

Example 4.2 (Example 3.2 continued). Let h = (0, 1, 0, . . . , 0) ∈ Rd+2, ω ∈ Rd
+

satisfy
∑
ωi = d, `G, `F ∈ (0, ¯̀]d, and α(i) = i for i = 1, 2, 3. Then each member

of the finite collection {〈m2(x, y, z; `G, k, ω, α(i)), h〉 − 〈m1(x, y, z; `F , k, ω, α(i)), h〉 :
1 ≤ i ≤ 3} belongs to G2. We therefore obtain the convergence of

√
n(Pn − P )

 m1,2(x, y, z; `F , k, ω, 1)−m2,2(x, y, z; `G, k, ω, 1)
m1,2(x, y, z; `F , k, ω, 2)−m2,2(x, y, z; `G, k, ω, 2)
m1,2(x, y, z; `F , k, ω, 3)−m2,2(x, y, z; `G, k, ω, 3)


to a mean-zero multivariate normal distribution.

Example 4.3 (Example 3.3 continued). Let h = (0, 1, 0, . . . , 0) ∈ Rd+2, ω ∈ Rd
+ be a

fixed vector satisfying
∑
ωi = d, `G, `F , `H ∈ (0, ¯̀]d, and α be a fixed positive integer.

Then each member of the finite collection {〈f, λ〉 : f ∈ G2 × G3, λ ∈ {(1, 0), (0, 1)}}
belongs to H. We therefore obtain the convergence of

√
n(Pn − P )

(
m1,2(x, y, z; `F , k, ω, α)−m3,2(x, y, z; `H , k, ω, α)
m1,2(x, y, z; `F , k, ω, α)−m2,2(x, y, z; `G, k, ω, α)

)
to a mean-zero bivariate normal distribution..

4.2. Independent Samples. We now specialize the above results to the case where

X = (X1, . . . , Xn1), Y = (Y1, . . . , Yn2), and Z = (Z1, . . . , Zn3) are independent

random samples with respective distributions PX , PY and PZ . To this end, let F
denote the class of functions

{〈m(x; `, k, ω, α), h〉 : ` ∈ [0, ¯̀]d, k ∈ [k, k̄],
∑

ωi = d, ωi ≥ 0, h ∈ [0, 1]d+2}

where m : Rd → Rd+2. Further, denote by Gn1,PX
the signed measure

√
n1(Pn1,X −

PX) with analogous definitions for Gn2,PY
and Gn3,PZ

. For analyzing cases such
as those presented in Examples 3.1 and 3.2 our interest centers on the asymptotic
behaviour of an empirical process of the form{(

n1n2

n1 + n2

)1/2 [
n
−1/2
1 Gn1,PX

f1 − n−1/2
2 Gn2,PY

f2

]
: (f1, f2) ∈ F × F

}
(9)

In order to establish the asymptotic behaviour of the empirical process in (9) we

will require the following assumption:
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Assumption 4.1 (Sampling Process). infi 6=j{ni/nj} → (0, 1) as n→∞.

From the independence assumption together with Assumption 4.1 we obtain the

following important result:

Theorem 4.2. Suppose Assumption 4.1 holds, then the empirical process in (9)

converges to the limit process{
λ

1/2
1 GPX

f1 − (1− λ1)
1/2GPY

f2 : (f1, f2) ∈ F × F
}

for some λ ∈ (0, 1), where {GPX
f : f ∈ F} and {GPY

f : f ∈ F} are independent

zero-mean Gaussian processes.

The applications to our Examples 1 and 2 are immediate:

Example 4.4 (Example 3.1 continued). Let hi denote the ith standard basis vector
in Rd+2, ω ∈ Rd

+ satisfy
∑
ωi = d, `G, `F ∈ (0, ¯̀]d, and α be a fixed positive integer.

Then each member of the finite collection {(〈m(x; `F , k, ω, α), hi〉, 〈m(x; `G, k, ω, α), hi〉) :
2 ≤ i ≤ d + 2} belongs to F × F . We therefore obtain form Theorem 4.2 the con-
vergence of

(
n1n2

n1 + n2

)1/2

Gn2,PY


m2(x; `G, k, ω, α)
m3(x; `G, k, ω, α)

...
m(d+2)(x; `G, k, ω, α)

−Gn1,PX


m2(x; `F , k, ω, α)
m3(x; `F , k, ω, α)

...
md+2(x; `F , k, ω, α)




to a zero-mean multivariate normal distribution.

Example 4.5 (Example 3.2 continued). Let h = (0, 1, 0, . . . , 0) ∈ Rd+2, ω ∈ Rd
+

satisfy
∑
ωi = d, `G, `F ∈ (0, ¯̀]d, and α(i) = i for i = 1, 2, 3. Then each member of

the finite collection {(〈m(x; `F , k, ω, α(i)), h〉, 〈m(x; `G, k, ω, α(i)), h〉) : 1 ≤ i ≤ 3}
belongs to F × F . We therefore obtain the convergence of

(
n1n2

n1 + n2

)1/2

Gn2,PY

 m2(x; `G, k, ω, 1)
m2(x; `G, k, ω, 2)
m2(x; `G, k, ω, 3)

−Gn1,PX

 m2(x; `F , k, ω, 1)
m2(x; `F , k, ω, 2)
m2(x; `F , k, ω, 3)




to a zero-mean multivariate normal distribution.

Again, as in the dependent case, testing problems such as those encountered in
Example 3.3 require a slight modification; namely, consider the process{
η1/2

[
n
−1/2
1 Gn1,PX

f1 − n−1/2
2 Gn2,PY

f2 + (n−1/2
1 Gn1,PX

f3 − n−1/2
3 Gn3,PZ

f4)
]

: (f1, f2, f3, f4) ∈ F4
}

(10)

where η =
(

n1n2n3

n1n2+n1n3+n2n3

)
. In order to establish the asymptotic behaviour of the

empirical process in (10) we require the following assumption:

Assumption 4.2 (Sampling Process). inf(i,j) 6=(k,l){(ninj)/(nknl)} → (0, 1) as n →
∞ whenever i 6= j and k 6= l.
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From the independence assumption together with Assumption 4.2 we are able to

establish the following important result:

Theorem 4.3. Suppose Assumption 4.2 holds, then (10) converges to the limit
process{

λ
1/2
1 GPX

f1 − λ1/2
2 GPY

f2 + λ
1/2
1 GPX

f3 − (1− λ3)1/2GPZ
f4 : (f1, f2, f3, f4) ∈ F4

}
for some λ1, λ2, λ3 ∈ (0, 1) with

∑
λi = 1, where {GPX

f : f ∈ F}, {GPY
f : f ∈ F},

and {GPZ
f : f ∈ F} are independent zero-mean Gaussian processes.

We are now in a position to obtain the convergence result relevant to Example

3.3.

Example 4.6 (Example 3.3 continued). Let h = (0, 1, 0, . . . , 0) ∈ Rd+2, ω ∈ Rd
+ be a

fixed vector satisfying
∑
ωi = d, `G, `F , `H ∈ (0, ¯̀]d, and α be a fixed positive integer.

Then each member of the finite collection {〈f, λ〉 : f ∈ G(2)×G(3), λ ∈ {(1, 0), (0, 1)}}
belongs to H. We therefore obtain the convergence of

√
η(Pn1,n2,n3 − P )

(
m3,2(x, y, z; `H , k, ω, α)−m1,2(x, y, z; `F , k, ω, α)
m2,2(x, y, z; `G, k, ω, α)−m1,2(x, y, z; `F , k, ω, α)

)
to a mean-zero bivariate normal distribution as an immediate consequence of Theo-

rem 4.3.

5. Testing Methodology

For a given collection (f1, . . . , fS) with fs, 1 ≤ s ≤ S, a member of the P -Donsker

class F (c.f. Examples 4.1 through 4.6), our interest centers on a simultaneous test

of the hypotheses

Hs : Pfs ≤ 0 against H ′s : Pfs > 0 1 ≤ s ≤ S.

It is well known that the classical Wald-type tests of Wolak (1989) and Kodde

and Palm (1986), for example, can be applied here to test the joint intersection

hypothesis

H0 : Pfs ≤ 0 for all 1 ≤ s ≤ S against HA : Pfs > 0 for some 1 ≤ s ≤ S

Unfortunately, a rejection of H0 based on the Wald-type test does not necessarily

imply that Hs is rejected for some 1 ≤ s ≤ S; indeed, we may reject the joint

intersection hypothesis H0 without finding compelling evidence against any indi-

vidual hypothesis Hs. Thus, in the context of Example 3.1, for instance, policy

makers who adopt a Wald-type procedure may infer that a country or region is un-

derachieving and yet be unable to infer the specific dimensions (e.g. income, health,

education, etc.) which are responsible for the finding. Clearly this is undesirable
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if policy makers wish to obtain compelling evidence regarding dimension-specific

underachievement and design targeted efforts accordingly.

In contrast to Wald-type tests, minimum p-value (MinP) tests are designed specif-

ically to allow one to identify the source(s) of rejection when rejection occurs. In

order to provide some background on the MinP methodology, we begin first by de-

scribing a suitable procedure for the computation of bootstrap p-values. Towards

this end, it is well known (Kosorok 2008, p. 20) that the Donsker property of F
implies not only that

√
n(Pn − P )(f1, . . . , fS)⇒ NS(0,Ω(P )), (11)

but also that √
n(P̂n − Pn)(f1, . . . , fS)⇒ NS(0,Ω(P )), (12)

in probability, where P̂n denotes the bootstrap empirical measure and NS(0,Ω(P ))

denotes an S-dimensional normal distribution with covariance matrix Ω(P ) (the no-

tation here reflects the dependence of Ω on the underlying probability mechanism

P ). Letting Jn(·,Pn) denote the bootstrap approximation (c.f. equation (12)) to

the sampling distribution in (11) and denoting by Jn,s(·,Pn) the sth marginal dis-

tribution, it is straightforward that the bootstrap p-values associated with each of

the component statistics may be obtained from

p̂s = 1− Jn,s(
√
nPnfs,Pn) (13)

The bootstrap p-value p̂s in (13) provides a measure of the strength of evidence

against Hs, and it is tempting to reject Hs at the nominal level α if p̂s < α. This

testing strategy, however, ignores the multiplicity of the hypotheses under test and

will tend to reject true hypotheses too often in the sense that

ProbP

{
Reject at least one Hs, s ∈ I(P )

}
> α (14)

whenever the collection of true hypotheses I(P ) contains two or more elements. For

instance, if S = 5, Pfs = 0 for every s (all Hs are true), and all tests are mutually

independent, then, at the 5% level of significance

ProbP

{
Reject at least one Hs, s ∈ I(P )

}
= ProbP

{
min

1≤s≤S
p̂s < 0.05

}
n→∞−→ ProbP

{
min

1≤s≤S
Us < 0.05

}
= 1− (1− 0.05)5

= 0.226

(15)

where we have used the fact that the estimated p-values converge to mutually inde-

pendent uniform random variates under the assumed conditions. If the number of
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hypotheses S is increased to 10 or the significance level of the test is increased to

10%, the corresponding error rates jump to 0.401 and 0.409, respectively.6

The essence behind the classical MinP procedure lies in appropriately adjusting

the standard p-values so as to ensure, at least asymptotically, that

ProbP

{
Reject at least one Hs, s ∈ I(P )

}
≤ α (16)

With the bootstrap distribution Jn(·,P) already in hand, obtaining adjusted p-values

satisfying (16) is rather straightforward. Indeed, for a random draw Y from the

known distribution Jn(·,Pn) we may compute

p̂min = min
1≤s≤S

[1− Jn,s(Ys,Pn)]. (17)

The corresponding empirical distribution from B such draws, which we denote by

Qn(·,Pn), constitutes an approximation to the distribution of the minimum p-values

and hence may be used to obtain the MinP adjusted p-values

p̂adjs = Qn(p̂s,Pn). (18)

In contrast to the liberal procedure in which the individual hypotheses are rejected

if their unadjusted p-values fall below the nominal level α, it may be shown (Bennett

2010) that testing the individual hypotheses based on the modified decision rule

Reject Hs if p̂adjs < α

guarantees control of the error rate in (16), at least asymptotically. Bennett (2010)

also demonstrates that the ability of the MinP test to identify false hypotheses can be

greatly enhanced by replacing the random draw Y ∼ Jn(·,Pn) which is subsequently

evaluated in (17) with a random draw from the bootstrap distribution JPCn (·,Pn)

which is defined according to

√
n(P̂n − Pn)(f1, . . . , fS)−

√
n(|Pnf1|1{|Pnf1|>δ1,n}, . . . , |PnfS|1{|PnfS |>δS,,n}) (19)

where the S×1 vector δn is selected by the practitioner in accordance with Assump-

tion 5.1 below:

Assumption 5.1. i. ‖δn‖ = oP (1);7 ii. plimn→∞ inf1≤s≤S n
1/2δn,s →∞.

6The assumption of mutual independence is a worst case scenario with respect to error rate control
and is made here for illustrative purposes. In practice, we can generally expect some degree of
dependence among the hypotheses under test, however it is only in the case of perfect depen-
dence that we can be guaranteed of appropriate error rate control if we adopt the strategy of
independently testing several hypotheses on the basis of individual (unadjusted) p-values.
7‖ · ‖ denotes the standard Euclidean norm.
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Remark 5.1. An example of a sequence δn satisfying the conditions of Assumption

5.1 above is given by

δn,s =

√
2σ̂2

n,s log log n

n
,

where σ̂2
n,s denotes a consistent estimator of the asymptotic variance of

√
nPnfs.

To gain some intuition for the mechanics of this procedure first consider the case

where all of the hypotheses are on the boundary, i.e. Pfs = 0 for every s. In

this case JPCn (·,Pn) and Jn(·,Pn) both converge to NS(0,Ω(P )), and consequently

[1− Jn,s(Ys,Pn)] where Y ∼ JPCn (·,Pn) converges to a uniform random variable

for every s ∈ {1, . . . , S}. Thus, asymptotically, the minimum is over an S × 1

vector random variable with uniform (univariate) marginals, as should be expected

when all of the Pfs = 0. In contrast, when Pfs 6= 0 the sth marginal distribution

JPCn,s (·,Pn) converges in probability to a degenerate distribution at −∞ (the term
√
n(|Pnfs|1{|Pnfs|>δn,s} in (19) tends to −∞ with probability tending to 1 provided

δn is chosen in accordance with Assumption 5.1) in which case

[1− Jn,s(Ys,Pn)]→ 1

in probability as n→∞, and the index set over which the minimum is computed is

effectively reduced. Since the minimum p-value is generally decreasing in the num-

ber of indices over which the minimum is computed, the elimination of any index

for which Pfs 6= 0 generally reduces the adjusted p-values and ultimately enhances

the test’s ability to detect false hypotheses while still allowing us to maintain ap-

propriate control over the error rate (c.f. equation (16)). In fact, not only does this

modification lead to greater power while still maintaining appropriate error rate

control, but it is also shown in Bennett (2010) that this modified MinP procedure

is capable of identifying more false hypotheses than related multiple testing proce-

dures, including the iterative stepdown procedures of Romano and Wolf (2005) and

Hsu, Hsu and Kuan (2010).

The implementation of the MinP testing procedure as described above in the

specific context of Example 3.1 and the case of dependent samples is conveniently

summarized in Algorithm 5.1 below :

Algorithm 5.1 (Example 1 Cont’d: The Dependent Case).

1. Draw a random sample of size n, i.e. {(X∗1 , Y ∗1 , Z∗1), . . . , (X∗n, Y
∗
n , Z

∗
n)}, from

{(X1, Y1, Z1), . . . , (Xn, Yn, Zn)} and compute the difference

n−1

n∑
i=1

[
m(1)(X

∗
i , Y

∗
i , Z

∗
i : `, k, ω, α)−m(2)(X

∗
i , Y

∗
i , Z

∗
i : `, k, ω, α)

]
(20)
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2. Repeat Step 1 B times and compute the empirical bootstrap distribution

Jn(·,Pn) and the B × S matrix of partially recentered bootstrap statistics

using equation (19).

3. Compute the p-values of the S original and B × S partially recentered boot-

strap statistics by evaluating them in the appropriate marginal distributions

Jn,s(·,Pn) of Jn(·,Pn).

4. Compute the empirical distribution of row-minimums from the B×S matrix

of p-values obtained in Step 3.

5. Compute the adjusted p-values corresponding to each test by evaluating the

p-values of the S original statistics (obtained in Step 2) in the empirical

distribution obtained via Step 4.

Aside from substituting for the appropriate statistics (i.e., in equation (20) of Step

1), the algorithms for Examples 3.2 and 3.3 are identical, and are thus omitted. Sim-

ilarly, the modifications necessary for treating the case of independent samples are

also straightforward and we omit the details of the respective bootstrap algorithms.

6. Empirical Illustration

In this section, we apply our proposed testing methodology to data from India’s

National Sample Survey (NSS). We are particularly interested in examining the

relative state of poverty across two ethnic groups, namely Hindus and Muslims. In-

dia has a predominantly Hindu population however it has a sizeable proportion of

Muslims as well. Traditional income poverty analysis has shown that a lesser pro-

portion of Hindus are poor than the corresponding numbers for Muslims. However,

it is of interest to examine whether these findings persist when relevant dimensions

or indicators of poverty other than income (or consumption) are included in the

analysis.

Our data source is the National Sample Survey’s (NSS) 60th round health and

morbidity survey. This survey was conducted in the last 6 months of 2004. For

the purposes of this illustration we restrict attention to urban poverty, for which

there are 26,566 households included. Since we are looking only at Hindu and

Muslim poverty all other households are dropped. In India, these two religious

groups together account for more than 95% of the total population, and so the

resulting sample of 20,243 Hindu households and 3,715 Muslim households consists

of the majority of all urban households.

While the NSS is a multistage stratified random sample, for the purpose of this

illustration we ignore the complications introduced by this particular sampling de-

sign and instead assume the observations to be generated through the process of

simple random sampling. While ignoring the specific sampling design is likely to
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Income Housing Sanitation Drainage Water Cooking Medium
Income 1
Housing 0.2042 1
Sanitation 0.1684 0.3012 1
Drainage 0.3129 0.3841 0.2908 1
Water 0.1160 0.1218 0.0187 0.2243 1
Cooking Medium 0.3031 0.3754 0.3339 0.4270 0.1831 1
Education 0.3786 0.3063 0.2777 0.3330 0.0839 0.4748

Table 1. Correlation between the dimensions

bias our findings,8 a thorough consideration of the sampling design issue (e.g., pro-

viding a detailed discussion of the NSS sampling design, modifying the bootstrap

accordingly, etc.) is beyond the scope of the current paper.

As for the dimensions of deprivation used in our analysis we include the following:

Per capita monthly expenditure (PCME), level of educational attainment, source of

drinking water, type of housing structure, type of sanitation, drainage facilities

available and main cooking medium. Since we are measuring household poverty

and not individual level poverty, we take for the education level the highest level of

education earned by any member of the household. Except per capita expenditure

and education, all variables used in our analysis are ordinal. We also implicitly

treat all households equally in terms of size since the NSS weighs all households in

a village/block equally and therefore does not explicitly account for household size.9

The dimensions are chosen to represent the standard of living and the capabilities

of the households to improve their position. A notable omission is health. Unfor-

tunately, reliable sources of data for health of individuals and households are not

easily available for India. One source for data on health for India is the National

Family Health Survey, however this survey does not ask about income or per capita

expenditure. Researchers have used this data after computing an asset index. How-

ever for the purpose of this analysis we have chosen to use more standard measures

of income at the cost of omitting the dimension of health.

Of the seven dimensions used, one might be concerned about a high degree of

correlation and the inclusion of “redundant” dimensions. Surprisingly, we find cor-

relations between the various dimensions to be rather low. Indeed, as can be seen

in Table 1, no correlation coefficient exceeds 0.5.10 Therefore, by incorporating all

of these dimensions we are able to capture different forms of deprivation in urban

India.

8Bhattacharya (2007), for example, discusses in detail the effect of ignoring the sampling design of
the NSS on inequality measurement.
9As pointed out by one of the referees, this is likely to bias the results since households typically
have different sizes and household size is likely correlated with both poverty and religion.
10We thank an anonymous referee for suggesting that we investigate the correlation among dimen-
sions.
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Dimension Poverty line
Income As given by the Planning Commission
Education Having not obtained at least a primary education
Sanitation No sanitation facility available
Drainage No accessible drainage system
Housing Person does not reside in a pucca∗ structure
Source of Drinking water Person used a river, canal, pond, or well
Primary Cooking Medium Person had no cooking arrangement or used firewood or dung cakes
∗ Pucca refers to brick and mortar structures.

Table 2. Dimension Specific Poverty lines

Table 2 gives the dimension specific poverty lines used. For PCME, we use the

poverty line as established by the Planning Commission of India. The remaining

cut-offs are chosen as to describe a minimum standard of living.

Table 3 summarizes the incidence of deprivation in each of the seven dimensions

for Hindus and Muslims, respectively. We note that in every dimension, except

sanitation and drainage, the incidence of poverty among Muslims is greater than

among Hindus. Further, we note that the largest disparities appear to be in the

dimensions of income, main cooking medium, and education level.

Dimension Incidence(Hindu) Incidence(Muslim)
Income 18.9% 30.8%

Housing 17.9% 19.5%
Sanitation 19.7% 15.8%

Drainage 16.8% 15.3%
Water 5.3% 8.8%

Cooking medium 26.2% 35.9%
Education 10.0% 17.1%

Table 3. Incidence of Deprivation expressed as a percentage

In addition to the dimension-specific poverty lines, the P0 and H measures (or

more generally the AF methodogy) require us to set a second cut-off.11 The second

cutoff is the dimension cutoff k which in our analysis can take any value between 1

and 7. The value of k may be set before the analysis is undertaken by governments

or by the investigator given the objectives of the exercise. Once k is fixed we may

compute the associated level of poverty. When k equals 5, for instance, we see that

Hindus are poorer than Muslims under the P0 measure of multidimensional poverty

(see Table 5). This conclusion depends on both the dimension specific poverty lines

(which we assume here to be exogenously determined) and the value of k (which may

be set by the investigator). So a natural robustness check would entail checking the

11For the sake of brevity we consider only the P0 measure and multidimensional headcount H
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K=3 K=4 K=5 K=6
H for Hindus 0.187 0.113 0.054 0.016

H for Muslims 0.226 0.109 0.044 0.015
Adjusted p-values(Null: M-H≥0) 1.000 0.902 0.061 0.016

Adjusted p-values (Null: H-M≥0) 0.002 0.302 0.987 0.998

Table 4. Level of Poverty: Multidimensional Headcount

levels of poverty for various values for k. For example if we see that Hindus remain

poorer than Muslims for k values ranging from, say, 3 through 6, then we may

infer that the poverty ordering is robust to the choice of k. This robustness check

corresponds to a multiple inequality test where the null hypotheses are given by:

Hk : H(`F , k, ω, F ) ≤ H(`G, k, ω,G), k=3,4,5,6,

and

Hk : Pα(`F , k, ω, F ) ≤ Pα(`G, k, ω,G), k=3,4,5,6.

The p-values from this test in fact suggest a reversal in the levels of poverty for

Hindus and Muslims as k is varied. When k equals 3, for example, we are able to

infer that poverty among Muslims is higher than poverty among Hindus. However

for the higher k values of 5 and 6 we reach the opposite conclusion. At k equals 4

there is no significant difference between the levels of poverty for the two groups. It

is important to emphasize that the reported p-values are adjusted for multiplicity

and thus permit us to draw valid inferences concerning the individual hypotheses

under test. Consulting unadjusted p-values, on the other hand, would not protect

against the multiplicity problem and generally lead one to find “too many” false

positives.

The observed reversal in the poverty ordering raises questions about a plausible

explanation. Perhaps this reversal is the result of the fact that Hindus can be

divided further on the basis of the caste to which they belong. Traditionally, the

lower castes have been found to be more deprived, for instance, being made to

do menial labor for low wages, and at the expense of receiving education. Even

in modern times these castes have lagged behind the rest of the population and

constitute some of the poorest individuals in the society. We therefore offer the

following plausible explanation for the observed reversal: at higher levels of k, we

are primarily capturing the lower castes within the Hindu population. Perhaps what

we are observing then is low caste Hindus facing greater hardships, on average, than

the Indian Muslim population.12 Another plausible explanation for the reversal is

12Regional and religious disaggregation of poverty in India is explored in greater depth in Singh
(2009)
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K=3 K=4 K=5 K=6
M0 for Hindus 0.107 0.075 0.041 0.014

M0 for Muslims 0.121 0.071 0.034 0.013
Adjusted p-values(Null: M-H≥0) 1.000 0.709 0.036 0.008
Adjusted p-values (Null: H-M≥0) 0.000 0.508 0.991 0.998

Table 5. Level of poverty: Multidimensional poverty

that for lower values of k, it may be the case that income contributes relatively more

to multidimensional poverty than it does for higher values of k. In such a case we

will see that for lower k, we have Hindus less poor, simply because they are less

poor by any measure of income poverty. But as k increases the other dimensions

become increasingly important in which case, we may see a reversal. A test of this

second conjecture is pursued next.

For a given value of k, for example k equals 3 we decompose the P0 measure into

the contributions of each of the dimensions. We then test whether there is significant

difference between the contribution of each dimension to Hindu and Muslim poverty.

More precisely, we perform a simultaneous test of the d+ 1 hypotheses

H0 : P0(`G, k, ω,G)− P0(`F , k, ω, F ) ≤ 0

and

Hs : P0,s(`G, k, ω,G)− P0,s(`F , k, ω, F ) ≤ 0 for 1 ≤ s ≤ d,

where the additional subscript “s” on the measure Pα (α = 0) denotes the sth

dimension’s contribution to the poverty measure.

The results of the above test for k ∈ {3, 4, 5, 6} are presented in Table 6. We have

observed that poverty is higher among Muslims at k = 3. We now see from the

decomposition that incidence in income, housing, water, cooking medium, and edu-

cation are all lower for Hindus than for Muslims with k equal to 3. For k equals 4,

there is no significant difference between Hindus and Muslim poverty and we also see

that most of the dimensions do not have significantly different contributions among

Hindus and Muslims. For k equal to 5, we find that Muslims are less poor than

Hindus, and that there is no significant difference in the contribution of income to

Hindu and Muslim poverty levels. The difference in overall poverty can be explained

only by differences in the levels of deprivation in the other dimensions, namely hous-

ing, sanitation and drainage for which we may infer that there is more deprivation

among Hindus than among Muslims. For k equal to 6 we find stronger evidence of

higher poverty among Hindus than among Muslims. We find at this level of k we

have that Hindu households are significantly more deprived in all dimensions.



MULTIDIMENSIONAL POVERTY 21

In summary, we find that as k increases beyond 4, income is no longer enough to

differentiate between Hindu and Muslim poverty, and that only by including other

dimensions are we able to distinguish between Hindu and Muslim households in

extreme poverty. This is an interesting finding which lends empirical support to

arguments advocating the use of a multidimensional approach to poverty analysis.
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7. Concluding Remarks

We have shown that the Alkire and Foster (2008) multidimensional approach to

poverty naturally gives rise to the consideration of multiple hypotheses. Specific ex-

amples include examining the robustness of the AF ordering to the choice of poverty

lines and/or the number of dimensions of deprivation before one is considered poor,

inferring poverty orderings of various populations relative to a benchmark popula-

tion, and inferring the specific dimensions in which a population is underachieving.

Additionally, we have shown how such hypotheses can be treated in a unified manner

and also tested using the minimum p-value (MinP) methodology of Bennett (2010).

In applying our proposed methodology to study Hindu and Muslim poverty in

India, we have illustrated the tremendous scope for examining a wide range of hy-

potheses and for revealing insights into the plight of the poor not otherwise captured

by traditional univariate approaches to poverty analysis. Our use of India’s National

Sample Survey in this illustrative example, however, motivates a thorough consider-

ation of issues raised by the application of our methodology under various sampling

designs. While beyond the scope of the current paper, research into sampling design

related issues is currently in progress.

Finally, our focus in this paper has been on how to formulate and test rather

general hypotheses in the specific context of the Alkire-Foster (Alkire and Foster

2008) multidimensional poverty measure. We note, however, that our proposed tests

can be extended to test hypotheses that arise from alternative multidimensional

poverty or inequality orderings. Obvious examples include the multidimensional

orderings of Maasoumi and Lugo (2008) and Duclos et al. (2006). Further, we note

that our proposed testing procedures can be extended to allow for sample-dependent

measurement parameters—e.g., estimated poverty lines—as opposed to the simpler

case of exogenous parameters as treated herein.
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Appendix A. Proofs

Proof of Theorem 4.1. The proof turns out to be rather straightforward once we

combine the fact that F can be built up from simple Donsker classes together with

well established results on Donsker preservation. Thus, first introduce the classes

G1 =

{
1

(
d∑
j=1

ωj1(xj ≤ `j) ≥ k

)
: ` ∈ Rd

++, k ∈ [k, k̄],
∑

ωi = d, ωi ≥ 0

}
, (21)

G2 =

{
ω

(
`− x
`

)α
1(x ≤ `) : ` ∈ [0, ¯̀], 1 ≤ α ≤ 3, ω ∈ R

}
,

and

G3 =
{
ω1(x ≤ `) : ` ∈ [0, ¯̀], ω ∈ R

}
.

That G2 and G3 are Donsker follows trivially from Theorem 9.23 and Lemma 9.8 of

Kosorok (2008), respectively. By appealing again to Lemma 9.8 Kosorok (2008), it

follows directly that G1 is Donsker if the collection

A = {A(`, ω, k) : k ∈ [k, k̄] ⊂ R++, ` ∈ Rd
++,
∑

ωj = d, ω ∈ Rd
+}, (22)

where A(`, ω, k) = {x ∈ Rd :
∑d

j=1 ωj1(xj ≤ `j) ≥ k}, forms a Vapnik-Červonenkis

(VC) class of sets. Letting D = {1, . . . , d} and recognizing that A ∈ A is always of

the form

A =
∏

j∈S⊆D

(−∞, `j]×
∏

j∈D\S

(−∞,∞)

it follows that A is a subset of the collection of cells in Rd, and thus is VC with

VC-index less than or equal to d+ 1.

Given that G1, G2, and G3 are (uniformly bounded) Donsker classes, the proof is

completed upon repeated application of Corollary 9.32 together with Theorem 9.31

of Kosorok (2008). �

Proof of Theorem 4.2. That F is a uniformly bounded Donsker class follows from

our proof of Theorem 4.1 above. As an immediate consequence we obtain

√
n1(Pn1,X − PX)f  GPX

f, (23)

and
√
n2(Pn2,Y − PY )f  GPY

f, (24)

in `∞(F), where  denotes weak convergence. Then, noting that(
n1n2

n1 + n2

)1/2 [
n
−1/2
1 Gn1,PX

f1 − n−1/2
2 Gn2,PY

f2

]
(25)
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may be written as[(
n2

n1 + n2

)1/2√
n1(Pn1,X − PX)f1 −

(
n1

n1 + n2

)1/2√
n2(Pn2,Y − PY )f2

]
, (26)

where f1, f2 ∈ F , we obtain the desired result as a direct consequence of (23),

(24), the assumed independence of the processes, and the convergence of the pre-

multiplicative ratios as implied by Assumption 4.1. �

Proof of Theorem 4.3. The proof is analogous to that of Theorem 4.2 and is therefore

omitted.
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