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[T]he job of a ‘measure’ or an ‘index’ is to distill
what is particularly relevant for our purpose, and
then to focus specifically on that. … The central
issues in devising an index relate to systematic
assessment of importance. Measurement has to
be integrated with evaluation. This is not an easy
task.

−Amartya Sen (1989)



Background: to axiomatic measures
Axiomatic approaches to multidimensional poverty

began to gain momentum in the late 1990s

Brandolini, A., D’Alessio, G., 1998. Measuring

Well-being in the Functioning Space. Mimeo. Rome.

Banco d’Italia Research Department.

Chakravarty, S.R., Mukherjee, D., Renade,
R.R., 1998. On the Family of Subgroup and
Factor Decomposable Measures of
Multidimensional Poverty. Research on Economic
Inequality, 8, 175-194.



Key papers
• Anand, S., Sen, A.K., 1997. Concepts of Human

Development and Poverty: A Multidimensional
Perspective. New York, UNDP.

• Tsui, K. 2002., Multidimensional Poverty Indices.
Social Choice and Welfare, vol. 19, pp. 69-93.

• Atkinson, A.B., 2003. Multidimensional
Deprivation. Contrasting Social Welfare and
Counting Approaches. Journal of Economic Inequality.
1, 51-65

• Bourguignon, F., Chakravarty, S. R., 2003. The
Measurement of Multidimensional Poverty. Journal of
Economic Inequality. 1, 25-49.



Collections of articles (axiomatic,
information theory, fuzzy)

• Kakwani, N., Silber, J., 2008a. The Many
Dimensions of Poverty. Palgrave MacMillan

• Kakwani, N., Silber, J., 2008b. Quantitative
Approaches to Multidimensional Poverty
Measurement. Palgrave Macmillan.

• World Development June 2008



Background: to counting measures

• Much larger and longer history; far more
empirical applications; wide policy use.

• From 1968: Scandinavian level of living.

• Mack, J., Lansley S., 1985. Poor Britain.

• Smeeding et al. 1993. Review of Income & Wealth

• Jayaraj & Subramanian~on Child Labor India

• 2005 UNICEF Child Poverty Report.

• 2006: Chakravarty & D’Ambrosio



What is not covered:
• We will focus on one of several new multidimensional

poverty measures (AF), teach it and do exercises on it so that
you are confident using it.

• However there are other axiomatic measures. Some are
summarised in Chakravarty & Silber 2008. “Measuring
Multidimensional Poverty: The Axiomatic Approach,” in
Kakwani & Silber, Eds., Quantitative Approaches... p 192-209.

• There are also interesting nonaxiomatic approaches
(Info theory, fuzzy set, Multiple Correspondence analysis).
For a review of some of these see Deutsch, J., Silber, J.,
2005. Measuring Multidimensional Poverty. An Empirical
Comparison of Various Approaches. The Review of Income and
Wealth. 51, 145-174 ; also Asselin on MCA 2008.



Focus of this class

• Alkire, S., Foster, J.E., 2011. “Counting and
Multidimensional Poverty Measurement.”
Journal of Public Economics

• See also Alkire, S., Foster, J.E., 2011.
Understandings and Misunderstandings of
Multidimensional Poverty Measurement



Multidimensional Poverty- our challenge:
• A government would like to create an official

multidimensional poverty indicator

• Desiderata
– It must understandable and easy to describe

– It must conform to “common sense” notions of poverty

– It must be able to target the poor, track changes, and guide
policy.

– It must be technically solid

– It must be operationally viable

– It must be easily replicable

• What would you advise?



Multidimensional Poverty
Comparisons

• There are many steps to creating index:
– Choice of purpose for the index (monitor, target, etc)
– Choice of Unit of Analysis (indy, hh, cty)
– Choice of Dimensions
– Choice of Variables/Indicator(s) for dimensions
– Choice of Poverty Lines for each indicator/dimension
– Choice of Weights for indicators within dimensions
– If more than one indicator per dimension, aggregation
– Choice of Weights across dimensions
– Identification method
– Aggregation method – within /across dimensions.



This morning’s focus:

• Identification – Dual cutoffs

• Aggregation – Adjusted FGT

• Purpose, Variables, Dimensional Cutoffs,
Weights and all other steps – Assume given



Key methodological points:

Multidimensional poverty methodology
comprises identification and aggregation, as
well as the choice of space. (Sen 1976)

• Identification is critically important

• Axioms for MD poverty are joint restrictions
on identification and aggregation.

• Ordinal data are common.

• Decomposability by sub-group, and (post
identification) by factor, is key for policy.



Review: Unidimensional Poverty

Variable – income

Identification – poverty line

Aggregation – Foster-Greer-Thorbecke ’84

Example Incomes = (7,3,4,8) poverty line z = 5

Deprivation vector g0 = (0,1,1,0)

Headcount ratio P0 = m(g0) = 2/4

Normalized gap vector g1 = (0, 2/5, 1/5, 0)

Poverty gap = P1 = m(g1) = 3/20

Squared gap vector g2 = (0, 4/25, 1/25, 0)

FGT Measure = P2 = m(g2) = 5/100



• All components must be cardinally meaningful
• Aggregate reflects achievements and tradeoffs
• All components can be merged/freely traded.
• Empirical evidence for weights, functional form
• A shortfall in any component is not of concern

Unidimensional Methods: Challenges



Examples
Welfare aggregation
Construct each person’s welfare function
Set cutoff and apply unidimensional poverty index
Myriad assumptions needed

Alkire and Foster (2010) “Designing the Inequality-
Adjusted Human Development Index”

Ordinal variables problematic
Suggests dominance

Poverty Measurement:



Examples
Price aggregation
Construct each person’s expenditure level
Set cutoff and apply unidimensional poverty index
Myriad assumptions needed

Alkire and Foster (2010) “Designing the Inequality-

Adjusted Human Development Index”
Ordinal and nonmarket variables
Link to welfare (local, unidirectional)
Foster, Majumdar, Mitra (1990) “Inequality and Welfare
in Market Economies” JPubE

Poverty Measurement:



Suppose
Many variables that cannot be meaningfully
aggregated into some overall resource or
achievement variable. How to measure poverty?

Poverty Measurement:



Multidimensional Data

Matrix of well-being scores for n persons in d domains

Domains

Personsy =
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Multidimensional Data

Matrix of well-being scores for n persons in d domains

Domains

Persons

z ( 13 12 3 1) Cutoffs

y =

13.1 14 4 1

15.2 7 5 0

12.5 10 1 0

20 11 3 1
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z vector = Deprivation Cutoffs

• Schooling: “How many years of schooling have you completed?”
– 6 or more (bold is non-poor)
– 1-5 years (non-bold is poor)

• Drinking Water: “What is the main water source for drinking for this household?”
– 9. Piped Water
– 8. Well/Pump (electric, hand)
– 7. Well Water
– 6. Spring Water / Rain Water / River/Creek Water / Pond/Fishpond
– 5. Other

• Sanitation: “Where do the majority of householders go to the toilet?”
– 11. Own toilet with septic tank
– 10. Own toilet without septic tank
– 9. Shared toilet
– 8. Public toilet
– 7. Creek/river/ditch (without toilet)
– 6. Yard/field (without toilet)
– 5. Sewer
– 4. Pond/fishpond
– 3. Animal stable
– 2. Sea/lake
– 1. Other



Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

Domains

Personsy =

13.1 14 4 1

15.2 7 5 0

12.5 10 1 0

20 11 3 1
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Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

Domains

Personsg0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0
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Normalized Gap Matrix

Normalized gap = (zj - yji)/zj if deprived, 0 if not deprived

Domains

Persons

z ( 13 12 3 1) Cutoffs

These entries fall below cutoffs

y =

13.1 14 4 1

15.2 7 5 0

12.5 10 1 0

20 11 3 1
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Normalized Gap Matrix

Normalized gap = (zj - yji)/zj if deprived, 0 if not deprived

Domains

Personsg1 =

0 0 0 0

0 0.42 0 1

0.04 0.17 0.67 1

0 0.08 0 0
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Squared Gap Matrix

Squared gap = [(zj - yji)/zj]
2 if deprived, 0 if not deprived

Domains

Personsg1 =

0 0 0 0

0 0.42 0 1

0.04 0.17 0.67 1

0 0.08 0 0
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Squared Gap Matrix

Squared gap = [(zj - yji)/zj]
2 if deprived, 0 if not deprived

Domains

Personsg2 =

0 0 0 0

0 0.176 0 1

0.002 0.029 0.449 1

0 0.006 0 0
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Identification

Domains

Persons

Matrix of deprivations

g0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0
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Identification – Counting Deprivations

Domains c

Personsg0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0
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Identification – Counting Deprivations

Q/ Who is poor?

Domains c

Personsg0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0

 

 

 
 
 
 
 

 

 

 
 
 
 
 

0

2

4

1



Identification – Union Approach

Q/ Who is poor?

A1/ Poor if deprived in any dimension ci ≥ 1

Domains c

Personsg0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0
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Identification – Union Approach

Q/ Who is poor?
A1/ Poor if deprived in any dimension ci ≥ 1

Domains c

Persons

Observations
Union approach often predicts high numbers.

Charavarty et al ’98, Tsui ‘02, Bourguignon & Chakravarty
2003 etc use the union approach

g0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0
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Identification – Intersection Approach

Q/ Who is poor?

A2/ Poor if deprived in all dimensions ci = d

Domains c

Personsg0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0
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Identification – Intersection Approach

Q/ Who is poor?

A2/ Poor if deprived in all dimensions ci = d

Domains c

Persons

Observations
Demanding requirement (especially if d large)

Often identifies a very narrow slice of population
Atkinson 2003 first to apply these terms.

g0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0
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Identification – Dual Cutoff Approach

Q/ Who is poor?

A/ Fix cutoff k, identify as poor if ci > k

Domains c

Personsg0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0
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Identification – Dual Cutoff Approach

Q/ Who is poor?

A/ Fix cutoff k, identify as poor if ci > k (Ex: k = 2)

Domains c

Personsg0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0
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Identification – Dual Cutoff Approach

Q/ Who is poor?

A/ Fix cutoff k, identify as poor if ci > k (Ex: k = 2)

Domains c

Persons

Note
Includes both union (k = 1) and intersection (k = d)

g0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0
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Identification – The problem empirically

k = H
Union 1 91.2%

2 75.5%
3 54.4%

4 33.3%
5 16.5%

6 6.3%
7 1.5%

8 0.2%
9 0.0%

Inters. 10 0.0%

Poverty in India for
10 dimensions:
91% of population
would be targeted
using union,
0% using intersection
Need something in
the middle.
(Alkire and Seth 2009)



Aggregation

Censor data of nonpoor

Domains c

Personsg0 =
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Aggregation

Censor data of nonpoor

Domains c(k)

Personsg0(k) =

0 0 0 0

0 1 0 1

1 1 1 1

0 0 0 0
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Aggregation

Censor data of nonpoor

Domains c(k)

Persons

Similarly for g1(k), etc

g0(k) =

0 0 0 0

0 1 0 1

1 1 1 1

0 0 0 0
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Aggregation – Headcount Ratio

Domains c(k)

Personsg0(k) =

0 0 0 0

0 1 0 1

1 1 1 1

0 0 0 0
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Aggregation – Headcount Ratio

Domains c(k)

Persons

Two poor persons out of four: H = 1/2

g0(k) =

0 0 0 0

0 1 0 1

1 1 1 1

0 0 0 0
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Critique

Suppose the number of deprivations rises for person 2

Domains c(k)

Persons

Two poor persons out of four: H = 1/2

g0(k) =

0 0 0 0

0 1 0 1

1 1 1 1
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Critique

Suppose the number of deprivations rises for person 2

Domains c(k)

Persons

Two poor persons out of four: H = 1/2
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Critique

Suppose the number of deprivations rises for person 2

Domains c(k)

Persons

Two poor persons out of four: H = 1/2

No change!
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Critique

Suppose the number of deprivations rises for person 2

Domains c(k)

Persons

Two poor persons out of four: H = 1/2

No change!

Violates ‘dimensional monotonicity’
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Aggregation

Return to the original matrix

Domains c(k)

Persons
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Aggregation

Return to the original matrix

Domains c(k)

Personsg0(k) =

0 0 0 0

0 1 0 1

1 1 1 1

0 0 0 0

 

 

 
 
 
 
 

 

 

 
 
 
 
 

0

2

4

0



Aggregation

Need to augment information deprivation shares among poor

Domains c(k) c(k)/d

Personsg0(k) =

0 0 0 0

0 1 0 1
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Aggregation

Need to augment information deprivation shares among poor

Domains c(k) c(k)/d

Persons

A = average deprivation share among poor = 3/4

g0(k) =

0 0 0 0

0 1 0 1

1 1 1 1

0 0 0 0

 

 

 
 
 
 
 

 

 

 
 
 
 
 

0

2

4

0

2 / 4

4 / 4



Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = M0 = HA

Domains c(k) c(k)/d

Persons

A = average deprivation share among poor = 3/4

g0(k) =

0 0 0 0

0 1 0 1

1 1 1 1

0 0 0 0
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Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = M0 = HA = m(g0(k))

Domains c(k) c(k)/d

Persons

A = average deprivation share among poor = 3/4

g0(k) =

0 0 0 0

0 1 0 1

1 1 1 1

0 0 0 0
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Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = M0 = HA = m(g0(k)) = 6/16 = .375

Domains c(k) c(k)/d

Persons

A = average deprivation share among poor = 3/4

g0(k) =

0 0 0 0

0 1 0 1

1 1 1 1

0 0 0 0
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Aggregation – Adjusted Headcount Ratio

Adjusted Headcount Ratio = M0 = HA = m(g0(k)) = 7/16 = 0.44

Domains c(k) c(k)/d

Persons

A = average deprivation share among poor = 3/4

Note: if person 2 has an additional deprivation, M0 rises

Satisfies dimensional monotonicity

4/4....

4/3....
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

=kg



Adjusted Headcount Ratio Mk0=(ρk,M0)

Valid for ordinal data (identification &
aggregation) – robust to monotonic
transformations of data.

Similar to traditional gap P1 = HI ; this = HA

Easy to calculate, easy to interpret

Can be broken down by dimension – policy

Dominance Results (mentioned later)

Characterization via freedom – P&X 1990

Note: If cardinal variables,
can go further



Pattanaik and Xu 1990 and M0

- Freedom = the number of elements in a set.

- But does not consider the *value* of elements

- If dimensions are of intrinsic value and are
usually valued, then every deprivation can be
interpreted as a shortfall of intrinsic concern.

- the (weighted) sum of deprivations can be
interpreted as the unfreedoms of each person

- Adjusted Headcount can be interpreted as a
measure of unfreedoms across a population.



Aggregation: Adjusted Poverty Gap

Need to augment information of M0 Use normalized gaps

Domains

Persons

Average gap across all deprived dimensions of the poor:
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Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap = M1 = M0G = HAG

Domains

Persons

Average gap across all deprived dimensions of the poor:

G = /

g1 (k) =

0 0 0 0

0 0.42 0 1

0.04 0.17 0.67 1

0 0 0 0
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Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap = M1 = M0G = HAG = m(g1(k))

Domains

Persons

Average gap across all deprived dimensions of the poor:

G = /
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Aggregation: Adjusted Poverty Gap

Adjusted Poverty Gap = M1 = M0G = HAG = m(g1(k))

Domains

Persons

Obviously, if in a deprived dimension, a poor person becomes
even more deprived, then M1 will rise.

Satisfies monotonicity

g1 (k) =

0 0 0 0
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Aggregation: Adjusted FGT

Consider the matrix of squared gaps

Domains

Personsg2(k) =

0 0 0 0

0 0.422 0 12

0.042 0.172 0.672 12

0 0 0 0
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Aggregation: Adjusted FGT

Adjusted FGT is M2 = m(g2(k))

Domains

Personsg2(k) =

0 0 0 0
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Aggregation: Adjusted FGT

Adjusted FGT is M2 = m(g2(k))

Domains

Persons

Satisfies transfer axiom

g2(k) =

0 0 0 0
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0 0 0 0
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Aggregation: Adjusted FGT Family

Adjusted FGT is Ma = m(ga(t)) for a > 0

Domains

Persons

Theorem 1 For any given weighting vector and cutoffs, the
methodology Mka =(ρk,M) satisfies: decomposability,
replication invariance, symmetry, poverty and deprivation
focus, weak and dimensional monotonicity, nontriviality,
normalisation, and weak rearrangement for >0;

monotonicity for >0; and weak transfer

for >1.

g (k) =

0 0 0 0

0 0.42 0 1

0.04 0.17 0.67 1

0 0 0 0
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 
 
 



Setting cutoff k: normative or policy

• Depends on: purpose of exercise, data, and weights

– “In the final analysis, how reasonable the identification rule is
depends, inter alia, on the attributes included and how
imperative these attributes are to leading a meaningful life.”
(Tsui 2002 p. 74).

• E.g. a measure of Human Rights; data good = union

• Targeting: according to category (poorest 5%). Or budget
(we can cover 18% - who are they?)

• Poor data, or people do not value all dimensions: k<d

• Some particular combination (e.g. the intersection of
income deprived and deprived in any other dimension)



Robustness tests for k

• Theorem 2 Where a and a' are the respective attainment
vectors for y and y' in Y (ai=d-ci), we have:

• (i) y H y'  a FD a'

• (ii) a FD a'  y M0 y'  a SD a', and the converse
does not hold.

(i) akin to Foster Shorrocks: first order dominance over
attainment vectors ensures that multidimensional
headcount is lower (or no higher) for all possible values
of k – and the converse is also true.

(ii) shows that M0 is implied by first order dominance, and
implies second order, in turn



Properties for Multidimensional
Poverty Methodologies

• axioms are joint restrictions on M = (ρ, M)

• Identification is vital for some axioms (poverty
focus).

• Previously defined axioms used union approach

• Our axioms are applicable to 0 < k < d



Example:
• Unidimensional Focus Axiom: requires a

poverty measure to be independent of the data of
the non-poor (incomes at/above z)

• In a multidimensional setting:

– a non-poor person might be deprived in several
dimensions

– a poor person might not be deprived in all
dimensions.

• How do we adapt the focus axiom?



Example:
• Poverty Focus: If x is obtained from y by a simple

increment among the non-poor, then M(x;z)=M(y;z).

• Deprivation Focus: If x is obtained from y by a simple
increment among the nondeprived, then M(x;z)=M(y;z).

Union: deprivation focus implies poverty focus

Intersection: poverty focus implies deprivation

Bourguignon and Chakravarty (2003) assume the
deprivation focus axiom (their ‘strong focus axiom’)
along with union identification, so their methodology
automatically satisfies the poverty focus axiom.



Another Example:
• deprived increment (still below cutoff, deprived)

• dimensional increment (now non-deprived)

• Weak Monotonicity: If x is obtained from y by a
simple increment, then M(x;z)<M(y;z).

• Monotonicity: M satisfies weak monotonicity
and the following: if x is obtained from y by a
deprived increment among the poor then
M(x;z)<M(y;z).

• Dimensional Monotonicity: If x is obtained
from y by a dimensional increment among the
poor, then M(x;z)<M(y;z).



Properties
• Our methodology satisfies a number of typical properties of

multidimensional poverty measures (suitably extended):

• Symmetry, Scale invariance
Normalization Replication invariance
Poverty Focus Weak Monotonicity
Deprivation Focus Weak Re-arrangement

• M0 , M1 and M2 satisfy Dimensional Monotonicity, Decomposability

• M1 and M2 satisfy Monotonicity (for  > 0) – that is, they are
sensitive to changes in the depth of deprivation in all domains with
cardinal data.

• M2 satisfies Weak Transfer (for  > 1).



Extension: General Weights

Modifying for weights at two points:

1) Identification (k is now a cutoff of the
weighted sum of dimensions)

2) Aggregation (simply weight matrix prior to
taking the mean)



Extension – General Weights

Modifying for weights: identification and aggregation
(technically weights need not be the same, but
conceptually probably should be)

• Use the g0 or g1 matrix

• Choose relative weights for each dimension wd

• Important: weights must add up to the number of dimensions

• Apply the weights (sum = d) to the matrix

• ck now reflects the weighted sum of the dimensions.

• Set cutoff k across the weighted sum.

• Censor data as before to create g0 (k) or g1 (k)

• Measures are still the mean of the matrix.



Example: Weights

Domains

Persons

Matrix of deprivations

Weighting vector ω = (.5 2 1 .5)

g0 =

0 0 0 0

0 1 0 1

1 1 1 1

0 1 0 0
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Example: Weights

Domains

Persons

Matrix of deprivations

Weighting vector ω = (.5 2 1 .5)
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Example: Weights - Identification

Domains

0

2.5

4 Persons

2

Matrix of deprivations

Weighting vector ω = (.5 2 1 .5) k = 2

Identification changed!
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Example: Weights - Identification

Domains

0

2.5

4 Persons

2

Weighting vector ω = (.5 2 1 .5) k = 2.5

Original Identification for k=2.5
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Example: Weights – Aggregation
k = 2.5

Domains

0

2.5

4 Persons

0

M0 still HA = mean of matrix = 6.5/16

H = 2/4

A = weighted = 6.5/8
etc.



















=
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5.020
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Illustration: USA
• Data Source: National Health Interview Survey, 2004, United States

Department of Health and Human Services. National Center for Health
Statistics - ICPSR 4349.

• Tables Generated By: Suman Seth.

• Unit of Analysis: Individual.

• Number of Observations: 46009.

• Variables:
– (1) income measured in poverty line increments and grouped into 15

categories

– (2) self-reported health

– (3) health insurance

– (4) years of schooling.



Illustration: USA



Illustration: USA



Illustration: USA – all values of k
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Indonesia: Deprivation by dimension

Deprivation
Percentage of
Population

Expenditure 30.1%

Health (BMI) 17.5%

Schooling 36.4%

Drinking Water 43.9%

Sanitation 33.8%



Indonesia: Breadth of Deprivation

Number of
Deprivations

Percentage of
Population

One 26%

Two 23%

Three 17%

Four 8%

Five 2%



Identification as k varies

Cutoff k
Percentage of
Population

1 74.9%

2 49.2%

3 26.4%

4 9.7%

5 1.7%



And interpretation?
Equal Weights

Measure
k=1
(Union)

k=2
k=3
(Intersection)

H 0.577 0.225 0.039

M0 0.280 0.163 0.039

M1 0.123 0.071 0.016

M2 0.088 0.051 0.011

General Weights

Measure
k = 0.75
(Union)

k = 1.5 k = 2.25
k = 3
(Intersection)

H 0.577 0.346 0.180 0.039

M0
0.285 0.228 0.145 0.039

M1
0.114 0.084 0.058 0.015

M2
0.075 0.051 0.036 0.010



And interpretation?

Equal Weights

Measure
k=1
(Union)

k=2
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(Intersection)
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M0 0.280 0.163 0.039

M1 0.123 0.071 0.016

M2 0.088 0.051 0.011

General Weights

Measure
k = 0.75
(Union)

k = 1.5 k = 2.25
k = 3
(Intersection)

H 0.577 0.346 0.180 0.039

M0
0.285 0.228 0.145 0.039

M1
0.114 0.084 0.058 0.015

M2
0.075 0.051 0.036 0.010

M0 = H for
intersection



And interpretation?

Equal Weights

Measure
k=1
(Union)

k=2
k=3
(Intersection)

H 0.577 0.225 0.039

M0 0.280 0.163 0.039

M1 0.123 0.071 0.016

M2 0.088 0.051 0.011

General Weights

Measure
k = 0.75
(Union)

k = 1.5 k = 2.25
k = 3
(Intersection)

H 0.577 0.346 0.180 0.039

M0
0.285 0.228 0.145 0.039

M1
0.114 0.084 0.058 0.015

M2
0.075 0.051 0.036 0.010

M0 = H for
intersection

If all persons have
maximal deprivation,
then G=1, so M0 =
M1. Low gap if M0

is higher than M1.



And interpretation?

Equal Weights

Measure
k=1
(Union)

k=2
k=3
(Intersection)

H 0.577 0.225 0.039

M0 0.280 0.163 0.039

M1 0.123 0.071 0.016

M2 0.088 0.051 0.011

General Weights

Measure
k = 0.75
(Union)

k = 1.5 k = 2.25
k = 3
(Intersection)

H 0.577 0.346 0.180 0.039

M0
0.285 0.228 0.145 0.039

M1
0.114 0.084 0.058 0.015

M2
0.075 0.051 0.036 0.010

M0 = H for
intersection

If all persons have
maximal deprivation,
then G=1, so M0 =
M1. Good if M0 is
different from M1.

Weights
affect
relevant k
values.



Empirical Examples

Sub-Saharan Africa (14): Assets, Education, BMI,

Empowerment

Latin America (6) Income, Child in School, hhh Education,

Water, Sanitation, Housing

China Income, Education, BMI, Water, Sanitation, Electricity

India Assets, Education, BMI, Water, Sanitation, Housing, Electricity,

Cooking Fuel, Livelihood, Child status, Empowerment.

Pakistan Expenditure, Assets, Education, Water, Sanitation,

Electricity, Housing, Land, Empowerment

Bhutan I Income, Education, Rooms, Electricity, Water (land, roads

used in rural areas only)

MPI – for 104 countries (10 indicators; 3 dimensions)



Empirical Applications
We can also choose a unit of analysis other than the

individual (Bhutan) or Household (other), and use the
same methodology with indicators of institutions, and z
cutoffs representing quality, standards, or benchmarks.

Gross National Happiness (Bhutan)

Quality of Education (Mexico, Argentina)

Governance (Ibrahim Index)

Targeting (India BPL, Mexico Oportunidades)

Child Poverty (Afghanistan, Bangladesh)

Social Responsibility/Fair Trade (Altereco)

Human Rights (Benetech)



- Use a deprivation cutoff for each dimension
{Bourguignon and Chakravarty (2003)}

- Hence each shortfall can be seen and may
contribute independently to poverty.

- Ordinal data can be used.

These can be divided broadly into two types:
Marginal Measures
Measures that reflect Joint Distribution

Joint Distribution vs Marginal



Marginal Measures:
- Apply a deprivation cutoff for each vector of

achievements.
- Construct an aggregate
- Inadequate idenfication (if at all, union)
- Ignores joint distribution
- Examples:

- HPI

Multidimensional Methods:



Our Proposal: Joint Measures
- Apply a deprivation cutoff for each vector of

achievements.
- Identify who is poor – e.g. with dual-cutoff
- Aggregate across poor people
- Examples:

- MPI
- Counting
- Basic Needs

Multidimensional Methods:



Why do Joint Distribution methods add value?

Matrix 1 Matrix 2
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Why do Joint Distribution methods add value?

Matrix 1 Matrix 2
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Marginal Measures ONLY
use this vector to create their
measures. So according to
ANY marginal measure, the
poverty of Matrix 1 = the
poverty of Matrix 2.



M0 if k=1: 0.25;
H=.25; A=1 H=1; A=.25

Matrix 1 Matrix 2
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M0 if k=1: 0.25 0.25
M0 if k=2: 0.25 0

Matrix 1 Matrix 2
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Informal Note: order of operations

Unidim. Marginal
MD

(Joint)

Identify Deprivations n/a 1 1

Aggregate Across
Dimensions (‘count’)

1 3 2

Identify Who is Poor 2 n/a 3

Aggregate across
People

3 2 4

Alkire MD Pov & Discontents



Key point: Deprivation and Censored Matrix

Deprivation Matrix Censored Deprivation Matrix, k=2

g0 =
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0 1 0 1

1 1 1 1
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By Population Subgroup
Mα Poverty
H Headcount
A Intensity

Post-identification: By Dimension
Censored Headcount
Percentage Contribution

All draw on censored matrix
*misunderstood*

AF Method: Decompositions



Deprivation: if yid < z person i is deprived in yd

Poverty: if ci < k person i is poor.
Deprivation cutoffs: the z cutoffs for each dimension
Poverty cutoff: the overall cutoff k
Dimension: for AF – a column in the matrix having its
own deprivation cutoff (sometimes called an ‘indicator’)
Joint distribution: showing the simultaneous or
coupled deprivations a person/hh has

Informal Glossary of Terms


