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This paper provides a characterization of a frequently used measure of income 
inequality. It has been known for some time that the Theil measure of income 
inequality (1) is consistent with the Lorenz criterion, when it applies, and 
(2) exhibits a simple and empirically useful decomposition by population subgroup 
into within-group and between-group terms. The major theorem establishes the 
converse: the decomposability property defines the Theil measure uniquely (up to a 
positive multiple) among all Lorenz-consistent measures. Journal of Economic 
Literature Classification Number: 024. 

I. INTRODUCTION 

Measures of income inequality are often enlisted in public finance and 
development studies to assess the existing distribution of income in a given 
region, or to evaluate the distributional effects of a particular policy. The 
typical questions addressed in these studies are (i) How has inequality in 
region A changed over time? (ii) Is inequality in region B greater than that 
in region C? (iii) What are the major sources of inequality in region D? 

Atkinson [2] and Sen [24] have stressed that the answers to these 
questions may depend crucially on the choice of inequality measure, and 
suggest basic properties for measures to satisfy. Primary among these is the 
requirement that inequality should increase under a transfer from poor to 
rich, a property that Sen calls the Pigou-Dalton transfers principle after the 
work of Pigou [22] and Dalton [lo]. The intuitive appeal of the Pigou- 
Dalton criterion is further supported by the results of Atkinson [ 21, 
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Dasgupta et al. [ 111 and Rothschild and Stiglitz [ 231, linking it with the 
well-known Lorenz criterion and with the social welfare approach to ine- 
quality. 

In addition to this central property of inequality measures, Atkinson 
suggests that a measure should be symmetric and homogeneous of degree 
zero in all incomes, filling out what Fields and Fei [ 141 call the three “basic 
axioms” for inequality measurement. While several common measures of 
dispersion fail to satisfy the three-for instance, the variance and the 
standard deviation of logarithms-Fields and Fei note that there remains 
quite a range of measures consistent with all three. They conclude that “A 
feasible and desirable direction for future research is to investigate what 
further axioms could be introduced to complete the axiomatic system...” [ 14, 
p. 3151. The present study may be regarded as a step in this direction. 

In this paper it is shown that the addition of a simple decomposability 
property (see condition TD, below) to the three basic properties implies that 
the measure is the Theil measure of inequality (up to a positive multiple). 
The essential justification for using the Theil measure over any other 
“reasonable” measure rests in the usefulness or desirability of this additional 
property. 

Dalton’s population principle (see condition PP, below) is often proposed 
as a fourth property for inequality measures to satisfy. A second theorem 
shows that an alternative decomposability property is sufficient to single out 
the Theil measure from among all measures satisfying the four. Both 
theorems follow from a general uniqueness theorem for the Theil measure, 
which we prove with the aid of a result in information theory by Lee [ 20 1. In 
addition we are able to generalize a recent result by Bourguignon ]5 ], and 
remove his objectionable differentiability assumption. 

2. NOTATION 

Throughout the paper, i, j, k, 1, m, n denote integers, a, /I, ;1, r, s, t, are real 
numbers, and U, w, x, y, z are vectors. The symbol IR represents the set of all 
real numbers, and for n > 1, iR” denotes the set of all vectors having n real 
entries. Three vectors in RR” are singled-out and denoted by special symbols: 
the origin is 0” = (O,..., 0); the vector of ones is un = (I,..., 1); and the first 
usual basis vector is en = (1,0 ,..., 0). 

For x and y in [R”, the expression x > y is defined by xi > yi for i = l,..., n; 
x > y denotes x > y and x # y; and x $ y indicates that xi > yi for i = 
1 ,..., n. Furthermore, for x > 0”, the sum of all coordinates XI= 1 xi is 
denoted by the symbol 1x1, and X 5 ]x]/n denotes the mean. The notation 
(x; z) is used to indicate the “combination” vector (x, ,..., x,, z, ,..., zm), 
where x E iR” and z E IF?“‘. When a given vector y is partitioned into 12 2 
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smaller vectors, the subvectors are denoted by parenthetical superscripts; i.e., 
y = (J’(l);...; y”‘). 

3. INEQUALITY MEASURES AND PROPERTIES 

How does one define an inequality measure? Here we adopt a general 
definition that allows both population size and total income to be variable. 
First, for a given population size n > 1, consider the set D, = (x E R”: 
x > On) of n-distributions. Each n-distribution x fixes a particular scheme 
from among the infinite possible ways of distributing a total amount of 
income (x] among n persons. We use the term inequality index to indicate a 
function I” : D, + iR which gives comparisons of inequality at a given level 
of population.’ In contrast, an inequality measure I offers comparisons 
across population sizes as well, and is defined on Q = l,J,“‘r D,, the set of 
all distributions. Clearly, each inequality measure 1: 9’ + ffi is uniquely 
associated with a family of indices (I”}, one for each population level.’ 

The class of all possible inequality measures is rather large, and contains 
many functions quite clearly unrelated to commonly held notions of 
inequality. A number of properties have come to be accepted as “basic” 
properties of measures of inequality, and as such serve to reduce the number 
of allowable measures. Dalton [lo] was first to propose this “axiomatic” 
approach, so it is quite appropriate that the central property of inequality 
measurement bears his name. In words, the Pigou-Dalton transfers principle 
requires inequality to increase when income is transferred from one person to 
anyone richer (or no less rich). Following Rothschild and Stiglitz 1231, we 
say that y is obtained from x by a regressive transfer if, for some i and j: 
(i) xi < xj, (ii) yj - xj = xi - J’~ > 0. and (iii) -vh = xk for all k # i, j. Hence, 
x and y are identical but for a positive transfer of income from the “poorer” 
person i to the “richer” personj. 

PIGOU-DALTON TRANSFERS PRINCIPLE (PD). IfyE 9’ is obtained from 
x E 9’ by a regressive transfer, then Z(J)) > 1(x). 

Thus, condition PD implies that a regressive transfer increases inequality. 
A second property ensures that the identities of income receivers are not 

relevant to the question of income inequality. We say that y is obtained from 
x by a permutation of incomes if .v = XP for some permutation matrix P of 
order n.’ 

’ Some formulas admit the possibility of infinite inequality at some distribution, e.g.. see 126. 
p, 1261. In this case, one would have to use the extended reals n = R U (k co ) as the range. 

’ This usage corresponds with Donaldson and Weymark 1121, although instead of 
considering the function I, they consider the family of indices {1”\. 

’ A permutation matrix is a square matrix each of whose rows and columns contains a 
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SYMMETRY (S). If y E Q is obtained from x E @ by a permutation of 
incomes, then I(y) = I(x). 

Thus, condition S implies that inequality remains unchanged when 
individuals trade places. 

The third property usually adopted is homogeneity of degree zero in all 
incomes: so long as the proportional shares of income are maintained, a 
change in the total income leaves inequality fixed. We say that a distribution 
y is obtained from another distribution x by a proportionate change in 
incomes if y = ax for some a > 0. 

HOMOGENEITY (H). If y E g is obtained from x E 69 by a proportionate 
change in incomes, then I(y) = I(x). 

Condition H says that a proportionate change in incomes leaves inequality 
unchanged.4 

Fields and Fei (14) take PD, S, and H as the defining characteristics of 
“relative” measures of inequality, and stress that the three leave much room 
for choice among existing and possible measures of inequality. In fact, since 
each property is a restriction on I” in isolation without reference to cross- 
population comparisons, PD, S, and H admit even more measures than 
Fields and Fei indicate. Consider the measure that takes the Gini coefficient 
index at even sized populations, and the coefficient of variation index at odd. 
This absurd measure quite clearly satisfies all three properties. 

The above example serves to point out the desirability of a property which 
would coordinate the indices into one cohesive measure. Another property 
suggested by Dalton [lo] does this in a particularly natural way. We say 
that y is a replication of x if y, x E Q and for some m > 2 we have j1 = 
(#‘);...; ycm’), where each y(‘) = x. 

POPULATION PRINCIPLE (PP). If y is a replication of x, then Z(y) = I(x). 

Thus, under condition PP a distribution and its replications have the same 
level of inequality. 

In addition to assuring a degree of conformity among the indices, the 
population principle acts as a “population homogeneity” property: given that 
the proportion of the population receiving each income is fixed, changing 
(e.g., doubling) the population size has no effect on the measured level of 
inequality. This property leads 3s to view inequality in per capita terms. 

Finally, a measure is nontrivial if I(x) #I(y) for some x, y E V, it is 

single “one” and the rest “zeros.” The effect of multiplying a vector (.v,,..., y,) by such a 
matrix is to reorder the components. 

4 Sen 1241 and Kolm [ 191 discuss condition H in greater detail. 
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directed (D) if for each n > 1, I(y) > I(ju”) for all y E D,, and it is 
normalized (N) if 1(pu’) = 0 for all n > 1 and /I > 0.5 

4. THE THEIL MEASURE AND THEIL DECOMPOSABILITY 

In 1967, Theil [26] introduced an inequality measure T: G? + R whose 
indices are given by 

, YED,, 

for each n > 1, where 0 In(O) is always taken to be 0.6 It is clear that each 
index T” is largest at Y’(e”) = In(n); potential inequality increases unboun- 
dedly with the population size. Note that T is nontrivial, normalized, and 
directed. Many authors have pointed out that T satisfies PD, S, H, and PP. 

Theil [26, 271 has shown that his measure has an additional, useful 
property. In a population consisting of several groups of income-receivers, 
inequality may be expressed as the sum of two distinct terms: (i) “within- 
group” inequality, as represented by the sum of the inequality levels of each 
group weighted by the share of income it receives as a proportion of the total 
income of the population; and (ii) “between-group” inequality, given by an 
application of the measure to a “smoothed” income distribution wherein 
each income of a group is replaced by the mean income of the group (26, 
p. 951. For example, if y = (1, 3, 5, 7, 3) is broken down into y’” = (1, 3) 
and yC2) = (5, 7, 3), then the decomposability property implies that f(y) = 
(4/i9)I(y”‘) + (15/19) Z(y”‘) + 1(2, 2, 5, 5,5). In precise terms this may be 
formulated as follows: 

THEIL DECOMPOSABILITY (TD). For any m > 2, any n, ,..., n, > 1, and 
any distributions yCi’ E D,, (i = l,..., m), 

I( v) = ;- I Y”’ I -I(y”‘) + I(y”‘~“‘; Jy$p2;**.; j-(rn+pm), 
z IYI 

where y = (y(I);...; y’“‘). (2) 

Due to its additive form, the simple weights in the within-group term, and 

’ Assumptions N and D are often combined into an assumption of nonnegative values for 
the inequality measure, with equality at zero; see, for instance, Kolm ( 191. Nontriviality. N, 
and D are often assumed simultaneously by stating that the nonnegative valued measure is to 
lassume the value zero exactly at points of complete equality; e.g., Shorrocks 1251. 

6 Note that a In(na) tends to zero as OL > 0 approaches zero, which assures that T is 
continuous on D,. See [ 151 for details. As usual, In(.) refers to the natural logarithm. 
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the easily interpreted between-group term, Theil decomposability has 
received widespread use in studies of income inequality, beginning with 
Theil’s [27] own analysis of inequality among the states of the United 
States.’ 

Note that TD requires the income-share decomposition (2) to hold for any 
(ordered) partition of a given distribution y into group distributions 
y (1) ,..., p” in @.’ One may obtain less stringent properties by reducing the 
set of group distributions over which the decomposition is required to hold. 
For instance, the population principle can easily be interpreted as an income- 
share weighted decomposability property that applies only to m-replications 
of identical n-distributions, (y(i);...; y(“)) = (z;...; z). The within-group 
inequality term is C (l/m) 1(y”‘) where l/m is clearly the income share of 

Y (i), while the between-group term is nonexistent since each of the component 
distributions is identical. 

Alternatively, one may wish to consider a decomposability property that 
also applies only when each subgroup has the same population size, but 
allows the group distributions to be different. 

WEAK THEIL DECOMPOSABILITY (WD). For all m>2, n> 1, and any 

Y (1’ ) y(2),..., y(‘“’ E D It? 

I(Y) = F, 9 I( y”‘) + I( p(l), yC2’ ,..., ym)), 

where JJ = (y(l); yc2);...; ycm)). (3) 

In contrast to Theil decomposability, weak Theil decomposability applies 
only to partitions yielding equal-sized groups. Further, the between-group 
term in WD is of a much simpler form: the measure is applied to the m- 
distribution of group means rather than to the larger “smoothed” distribution 
used in TD. Nonetheless, since both properties incorporate an income-share 
weighted decomposition, WD is closely linked with TD. The next three 
results give the relationships among conditions TD, WD, PP, and N. 

PROPOSITION 1. Let an inequality measure I satisjj TD. Then I must 
also satisfy PP and N. 

’ See [ 13) for a discussion of the applications of TD. Interesting comparisons of TD with 
other forms of decomposition may be found in [5, 9. 251. An alternative approach to decom- 
position analysis via social welfare considerations is taken in 141. 

* Requiring the group distributions to lie in P rules out the possibility of group 
distributions that are vectors of zeros. Note also that our characterization of TD covers only 
ordered partitions of the vector y, and not arbitrary partitions of the set of incomes in .v. Of 
course, TD and S together imply the latter property. 
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ProoJ If Z satisfies TD, then where II > 1, p > 0, and y = Pu*“, we have 
Z(y) = I(@“) + Z(y), which yields N. Now let m > 2, n >, 1, and suppose 
z E D,, , Then where y is an m-replication of z, we have Z(y) = Z(z) + Z(C”“), 
where the final term vanishes by N. Hence, PP holds. 

Theil decomposability, then, subsumes the population principle and 
normalization. One interesting implication of this result is that if Z satisfies 
TD, then where 1, m, and n are positive integers such that I+ n = m, and y = 
(x; XU’) for some x E D,, we must have Z(y) = (n/m) Z(x). In words, if a 
population is enlarged from n to m persons by adding I many persons with 
the mean income, then inequality must decrease by a factor of l/m. In 
particular, if we keep on adding persons with the mean income until the 
population size doubles, the resulting distribution will have half the 
inequality of the original distribution.’ 

The next result shows that WD implies neither N nor PP, but renders the 
two equivalent. 

PROPOSITION 2. Let an inequality measure Z satisfy WD. Then PP holds 
if and on1.y if N holds for I. 

Proof. If Z satisfies WD, then where n > 1, z E D,, m 2 2, and .V is a 
replication of z (m times), we have Z(y) = Z(z) + Z(34”‘). 

Propositions 1 and 2 suggest that the distinction between TD and WD is a 
real one. In fact there exist measures which satisfy WD and yet violate TD.‘” 
The next result shows that the combination of WD and PP is quite closely 
related to TD. 

PROPOSITION 3. Let an inequality measure Z satis$jv S. Then TD holds if 
and only IT WD and PP hold for Z. 

ProoJ In the Appendix. 

Hence, for symmetric measures, Theil decomposability is equivalent to 
weak Theil decomposability and the population principle. 

’ It can be seen that TD places constraints on the cardinal form of the inequality measure, 
while PD, S. H, and PP concern only the underlying inequality ordering. See 12, 15, 24 ] for 
discussions of measurability assumptions on inequality measures. 

lo The Shannon entropy measure (see footnote 12) applied to the vector of income shares 
satisfies WD. but not TD or PP. Instead of defining WD we could have defined a property, 
say, WD’, which is in all respects the same as WD except that the between-group term is as 
in TD. Note, though, that unlike WD, the property WD’ would not be independent of PP. In 
fact, the proof of Proposition 3 shows that WD’ is equivalent to TD in the presence of 
symmetry. 
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5. UNIQUENESS THEOREMS 

In the previous sections we have investigated the general properties that a 
measure of inequality is expected to have, and a particular type of decom- 
posability exhibited by the Theil measure that is appealing both in its 
simplicity and in the interpretation of its within- and between-group 
inequality terms. We now present the main results of the paper which 
characterize the Theil measure of income inequality. For clarity of exposition 
the proofs of the next three results, and the more general result that implies 
them all, are presented in Section 7, below. 

THEOREM 1. An inequality measure I satisfies PD, S, H, and TD if and 
only if I is a positive multiple of the Theil measure of inequality. 

We noted before that symmetry, homogeneity, and the Pigou-Dalton 
transfers principle are commonly regarded as the basic requirements for an 
inequality measure to satisfy. Theorem 1 says that the Theil measure is 
essentially the only measure of inequality which satisfies Theil decom- 
posability in addition to the basic properties. An interesting variant of this 
result is immediate if PP is also taken to be a basic requirement. 

THEOREM 2. An inequality measure I satisfies PD, S, H, PP, and WD if 
and only if I is a positive multiple of the Theil measure of inequality. 

We saw by example that the properties PD, S, and H are not sufficient to 
ensure that the measure of inequality gives coherent comparisons of 
inequality across population sizes. To obtain the desired consistency, one 
may take PP as a fourth basic property. Theorem 2 then tells us that the 
Theil measure is essentially the only measure which satisfies these four 
properties and WD as well. 

6. GENERALIZATION OF A THEOREM OF BOURGUIGNON 

Recent papers by Bourguignon [5], Shorrocks 1251, and Cowell and Kuga 
[7, 81 have examined various decomposability properties and their 
implications for the form of inequality measures. In particular, Bourguignon 
has offered an interesting characterization of the Theil measure in terms of 
condition TD, but instead of taking the Pigou-Dalton transfers principle as a 
basic assumption, he takes: 

SECOND-ORDER DIFFERENTIABILITY. For each n > 1, I” has continuous 
second-order partial derivatives. 
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He then shows that the Theil measure is essentially the only second-order 
differentiable measure of inequality that satisfies D, S, H, and TD. I1 

This result represents a significant advance in the axiomatic charac- 
terization of inequality measures. However, the arguments leading to it rely 
crucially on second-order differentiability. While this condition might be 
justified in other areas of economic theory, in the present context it is rather 
suspect. First, many of the standard measures of inequality, most promi- 
nantly the Gini coefftcient, are not differentiable. Second, as a criterion for 
choosing among inequality measures, second-order differentiability carries 
remarkably little economic meaning: “The only justification for this 
requirement is that it is satisfied by all the usual measures except at some 
particular points” [5, p. 9021. 

As a result of the generality of the technique used to prove Theorems 1 
and 2, we can rid Bourguignon’s result of the objectionable differentiability 
assumption, and replace it with the following weaker continuity assumption: 

CONTINUITY (C). For each n > I, I is continuous on D,. 

THEOREM 3. An inequality measure I satisJes nontriviality, S, D, C, H, 
and TD if and only if I is a positive multiple of the Theil measure. 

7. A GENERALTHEOREM AND PROOFS 

The Theil measure of inequality is derived from the Shannon measure of 
entropy in information theory. I2 Since its introduction in 1948, numerous 
axiomatic characterizations of the Shannon measure have been proposed, 
including the well-known development of Khinchin [ 181. A particularly 
general result in this vein is based on the following theorem by Lee (201. 

THEOREM (Lee). If h: (0, l)+ R satisfies: 

(i) h(t) is Lebesgue measurable on (0, l), 

(ii) h(t) = h( 1 - t) on (0, 1), 

” Bourguignon [S, Proposition 51. Note that Bourguignon assumes N as well, which is not 
needed by Proposition 1. Additionally, he omits nontriviality and D: his results are not quite 
true unless assumptions such as these are included. Shorrocks 1251 has independently 
established the more general result that second-order differentiability, D, S, H, and a general 
additive form of decomposition (where within-group weights may vary) together yield a 
general class of decomposable measures (including the Theil measure). For alternative charac- 
terizations of the Theil measure see Cowell and Kuga (7,8]. 

” The Shannon measure H is defined by H(x) = -C;=, xi In(x,) (and 0 In(O) = 0), where 
x = (x,,...,~,) is any probability vector. The Theil measure T(y) is simply the difference 
between In(n) and the Shannon measure applied to the vector v/i y ] of income shares. 
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(iii) h(s) + (1 - s) h(t/(l - s)) = h(t) + (1 - t) h(s/(l - t)) for all 
s,r>Osuch thats+t< 1, 

then h(t) is a multipie oft In(t) + (1 - t) ln( 1 - t). 

We shall exploit this theorem and the relationship between the Theil and 
Shannon measures to prove the following general uniqueness theorem for the 
Theil measure. 

THEOREM 4. Let I be a nontrivial inequality measure such that for 
f: [0, l] + IR dej?ned byf(t) = I(t, 1 - t): 

(i) f(t) is Lebesgue measurable on (0, f), 

(ii) f(t) =f(l - t) on [0, f), 

(iii) f(t) = 1(art, a( I - t)) on [0,4 1 for all a > 0, 

(iv> fW>f(f>. 
If I satisjies TD, then I is a positive multiple of the Theil measure of 

inequality. 

Theorem 4 states that under rather minimal assumptions, Theil decom- 
posability characterizes the Theil measure of inequality (up to a positive 
multiple). The proof of Theorem 4 uses the following two lemmas. (Their 
proofs are in the Appendix.) 

LEMMA 1. Suppose an inequality measure I satisfies TD, and 
I(y,, y2) = I(y,, y,) for all (yl, yJ E D,. Then for all n > 2 we have 
I(y) = I(yP) for each y + 0” in D, and every permutation matrix P of 
order n. 

LEMMA 2. Suppose an inequality measure I satisfies TD, I(y, , yJ = 
I(y,, y,) for all (y,, yJ E D,, and I is continuous on D,. Then I satisfies C 
and S. 

In words, Lemma 1 indicates that TD extends symmetry for two-person 
distributions to symmetry over all positive distributions of arbitrary 
population size. We do not necessarily obtain symmetry over all 
distributions, though, because TD does not apply to partitions where some 
y”’ is a vector of zeros. Lemma 2 shows that TD transforms the two-person 
analogs of continuity and symmetry into conditions C and S, which hold for 
all distributions in 69. We now prove Theorem 4. 

Proof: Let I: a--t R satisfy TD and (i)-(iv). Define h :̂ [0, l] + R by 
6(t) = f (0) -f(t) and let h: (0, 1) + R be its restriction to the open interval 
(0, 1). We shall show that h(t) satisfies the hypothesis of Lee’s Theorem. 
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Assumptions (i) and (ii) on f(t) immediately imply that h(t) satisfies (i) 
and (ii) of Lee’s Theorem; only (iii) remains to be verified. Let s, t > 0 be 
such that r = 1 - s - t > 0, and consider the distributions u = (s, 0, r, t) and 
w = (t, 0, r, s). TD implies that Z(u) = Z(w), since Z(s, r/2, r/2, t) = 
Z(t, r/2, r/2, s) by Lemma 1. Furthermore, by an additional application 
of TD, 

Z(u)=sZ(s,O)+(l-s)Z(r,t)+Z 
c 

l-s l-s 
$,+-,--2--,--2- . 

1 
(4) 

Now Z(s, 0) = f(0) and I(r, t) = f(r/( 1 - s)) by assumptions (ii) and (iii), 
while Z(s/2, s/2, (1 - s)/2, (1 - s)/2) =f(s) by Lemma- 1, Proposition 1, 
and (iii). Thus Z(v) = sf(0) + (1 - s)f(t/(l - s)) + f(s). By definition of 
h(t), then, h(s) + (1 - s) h(t/( 1 - s)) = 2f(O) - Z(v). Similar arguments lead 
to Z(w) = tf(0) + (1 - t)f(s/( 1 - t)) + f(t) and h(t) + (1 - t) h(s/( 1 - t)) = 
2f(O) - Z(w). Therefore, h(t) satisfies all requirements of Lee’s Theorem, and 
it follows that h(t) is a multiple of t In(t) + (1 - t) ln(1 - t), say h(t) = 
--A[ t In(t) + (1 - t) ln( 1 - t)] for some A E R. 

Clearly h(O) = 0, and so 6(l) = 0 as well by assumption (ii). Thus, 6(t) = 
-l(t In(t) + (1 - t) ln(1 - t)] for all t E [0, 11. Note that 6(i) = A ln(2). 
Since Proposition 3 implies f(f) = 0, we know that f(0) =f(l) = L In 2 by 
the definition of 6(t). Therefore,f(t) = A ln(2) + A[t In(t) + (1 - t) ln(1 - t)] 
= A[t ln(2t) f (1 - t) ln(2( 1 - t))]. Hence, by assumption (iii), 

for some A E R. An immediate implication of this result and Lemma 2 is 
that Z satisfies C and S. 

Now suppose that for a given m > 1 we have 

x E D,zk, 1 

for every k = l,..., m. We shall show that this holds for k = m + 1 as well. 
Denote n = 2”’ and n’ = 2” “. Let y E D,, have only strictly positive entries, 
and let x, z E D, be such that y = (x; z). By Proposition 3. Z(y) = (ix\/\ y 1) 
I(x) + (I z l/l Y I> Z(z) + I( -3 33 x z so that by the induction hypothesis 

z(y)=~lxJ + /X’Iln piJ +J4<- hIIn JzJ 
IYI I-51 /xl c i /xl 14’1 ,Y, lzl c 1 Izl 

Iki 
/xl Izl IZI +;l--ln 2- +A----In 2-, 

c 1 IYl IYI i i IYI 
(7) 
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where we have used the identities f/(2 + Z) = )x//l y 1 and F/(2 + Y) = / z //I y I. 
However, since In(nxJx I) = ln(n’xJJ y I) - ln(2 Jx l/l y I) and ln(nz,/l z I) = 
WfzJlvl) - 142 IzIIIylh we have 

Z(y)=1 ;- X’ln n’X’ +A ;- Aln n,Z’ 
iZ IYI ( 1 IYI 1% IYI c i IYI 

=A ;: y,ln ,,yi 
,e, IYI ( 1 IYI * 

as desired. By C, this result holds for arbitrary y E D,,, and hence we have 
shown that 

for every positive integer k. 
Now to complete the proof, let x be an arbitrary element of D, for n > 1. 

Clearly, there exists some integer I > 1 such that n + I = m, where m = 2k for 
some k > 2. Define y = (x; 3~‘) and note that Z(y) = (n/m) Z(x) by TD and 
Proposition 1. Since y E D, we know that 

and so 

The identity I y ( = rnx = m jxl/n yields 

Hence, Z is of the form 

n 
Z(X) = 1 iF, 5 In , xED,,, 

(12) 

for some A E I?. The nontriviality of Z and assumption (iv) imply that 1 > 0, 
which concludes the proof. 

Remark. There is no attempt made here to justify the assumptions of 
Theorem 4 in economic terms. For iestance, Lebesgue measurability of./(t), 
per se, may be of little direct economic interest; but the fact that the class of 
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such functions is so large as to include, say, all monotonic functions and all 
continuous functions, will lead to results that are clearly economically 
meaningful. The above theorem is to be seen as a technical result of interest 
mainly for its generality. We shall now use it to prove Theorems 1 and 3. 
Theorem 2 follows from Proposition 3 and Theorem 1. 

Proof of Theorem 1. Suppose I: B -+ R satisfies PD, S, H, and TD. As 
in Theorem 1 define f: [0, 1 ] --) R by f(t) = Z(t, 1 - r) on [0, 11. Property S 
implies that f(t) =f(l - t) on [0, 11, while property H implies f(t) = 
I(t, 1 - t) = I(&, a( 1 - t)) for any t E [O, l] and a > 0. Hence, requirements 
(ii) and (iii) of Theorem 4 are satisfied, leaving nontriviality, (i), and (iv) to 
be verified. 

To this end, note that f(t) is strictly decreasing on [0, i] and strictly 
increasing on [t, l] by PD. Nontriviality and (iv) follow directly from this 
observation. Additionally, (i) is obtained, since for each p E R the set 
itE (03 1): f(f) < PI is either empty, a single point, or an interval, all 
Lebesgue measurable sets. Thus, I is the Theil measure by Theorem 4. The 
converse is immediate. 

Proof of Theorem 3. Let I: B -+ R be nontrivial and satisfy S, D, C, H, 
and TD. Then (i), (ii), (iii), and (iv) of Theorem 4 are implied by C, S, H, 
and D, respectively, and so I is the Theil measure. The converse is 
immediate. 

Remark. It is important to note that Theorems 1 and 2 are logically 
independent of Theorem 3: Since conditions PD, S, and H do not imply 
continuity, it does not follow from Theorem 3 that T is the only measure 
satisfying PD, S, H, and TD. Similarly, Theorem 1 does not imply 
Theorem 3. Furthermore, any attempt to extend Bourguignon’s result 
directly to Theorem 3 by approximation methods is not likely to be 
successful. In order to show the nonexistence of an alternative to the Theil 
measure among all measures satisfying the assumptions of Theorem 3, one 
would typically assume that such a function exists, construct a sequence of 
(second-order) differentiable functions converging to it, and then try to arrive 
at a contradiction using Bourguignon’s theorem. The problem is that, while 
this theorem would tell us that each approximating function cannot satisfy 
the six properties, we are unable to draw the same conclusion for the limit 
function. The negation of the TD property is not preserved by the limiting 
process: a sequence of functions that violate TD may very well converge to a 
function which satisfies TD. 
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8. CONCLUDING REMARKS 

The results of Atkinson (21, Dasgupta ef al. [ 1 I], Rothschild and Stiglitz 
[23], and Fields and Fei [ 141 allow interesting interpretations of Theorems 1 
and 2 in terms of the familar Lorenz criterion. I3 To every distribution x 
there corresponds a Lorenz curve, depicting the percentage of income 
received by the poorest t percent (0 < t < 100) of the population in x. (See 
Gastwirth [ 161 for a rigorous definition.) A distribution x is said to Lorenz 
(weakly) dominate a distribution y, written xLy, if the Lorenz curve of x lies 
nowhere below that of y. 

It seems quite natural to require measures of inequality to be consistent 
with the Lorenz criterion when it applies; i.e., for every x, ~1 E r(; we have 
(i) xLy and yLx imply Z(x) = Z(y) and (ii) xLy and not yLx imply 
Z(x) < Z(y). A still weaker property is to demand consistency within each 
population size; i.e., for each n and every X, y E D, we have (i) and (ii). It 
follows from the results of Atkinson et al., that the class of Lorenz consistent 
measures comprises exactly those measures satisfying the Pigou-Dalton 
condition, symmetry, homogeneity, and the population principle. while the 
first three of these identify all measures consistent with the Lorenz criterion 
at each population size. (See [ 15 ] for details.) 

Given these results, our first theorem says that “Lorenz consistency at 
each population size” and “Theil decomposability” completely characterize 
the Theil measure of income inequality. Our second theorem shows how the 
consistency requirement may be strengthened and the decomposability 
property weakened to obtain another characterization: “weak Theil decom- 
posability” uniquely determines the Theil measure from among all “Lorenz 
consistent” measures of inequality. 

APPENDIX 

Proof of Proposition 3. Let I: 2 + m satisfy S. Suppose first that Z 
exhibits property TD. Then Z satisfies PP by Proposition 1. Let y = 
(y(l);...; ycm)), where m > 2, n > 1, and y(” E D, for i = l,..., m. Clearly, 
Z(~“u”;...; y(*W> =Z(Y”‘,..., ~7~“‘)) by S and PP, hence Z satisfies WD as 
well. 

Now suppose that Z satisfies WD and PP. Consider any m > 2 and 
n, ,..., n, > 1. Let y = (-v(i);...; y’“‘)), where y”’ E D,i for i = l,..., m, and 
denote I= n, . n2 . . . n, and li = l/n,. Let x(‘) be an Z-replication of y”’ for 
i = l,..., m, and let x = (x”‘;...: xcm)); further, let zci) be an Ii-replication of 

” A particularly clear exposition of the .key result may be found in Marshall and 
Olkin 121 I. 
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the n,-distribution y”‘. Then zci’ E D, and x(j) is an n,-replication of zti’ for 
each i. We may apply WD to x partitioned into the subdistributions zci’: 

Z(x) = c- lZ(i’I 

lcl 
n. -Z(z”‘) 

* Ix1 I 

+ Z($“u”l;...; y(m’Ur’m). (A.1) 

Note that Z(zci’) = Z(y”‘) and Z(x) = Z(y) by S and PP. while Iz’~‘I/~x/ = 
( ~1’~’ I/(ni / yl), and fci’ = yti’ for each i. Thus, 

Z(y) = ;“- @&p) + z(pu”,;...; yq/hn), 
iZ 14’1 

G4.2) 

from which TD follows. 

Proof of Lemma 1. Let I: @ -+ R be such that Z(y,, y2) = Z(y,, y,) for 
all ( y,, y2) E D,. The proof consists of showing that inequality is the same 
for any two strictly positive n-distributions that can be derived from one 
another by a transposition of adjacent entries. Once this has been verified, 
the result follows immediately from the fact that every permutation may be 
broken down into a sequence of such transpositions.” 

Let n > 3, and consider any y $ 0” in D,. Choose any k = 1, 2 ,..., n - 1, 
anddefinexED,by~,=~‘~+,,x~+~=~~,andx~=y~forallj#k,k+l. 
Then where $=(yk, yk+i) and ~=(xk,xk+,), we have Z(y)-Z(x)= 
(I ?;I/] y l)[Z(y^) - Z(a)] by TD. Since I($) = Z(a), we obtain Z(y) = Z(x). 

Proof of Lemma 2. Let I: G’ + R satisfy the conditions specified in 
Lemma 2. It is clear that Z is continuous on D, . Now let m > 3, and suppose 
that Z is continuous on Dj for j = 1, 2,.... m - 1. We are to show that Z is 
continuous on D, as well. 

Let z(” E D, and let (z(I)} be a sequence in D, converging to z(O). For 
I = 0, 1, 2 ,..., define: 

y (0 _ - (z(‘); ,-0’) 

= (,-CO; ,W) 

= @‘/I; ,(/I; ,-CO) 

if m is odd and zk”’ > 0 for some k < (m + 1)/2; 

if m is odd and ZIP’ = 0 for all k < (m + 1)/2; 

if m is even. (A.3 1 

Let m’ be the number of entries in y (” Note that by construction m’ is even . 
and qzm’/2<m- 1. 

Let w(” and xt” be the vectors of length q such that y”’ = (w(“; xc”). 
Surely w(O) and x(O) are nonnull, and since w(” + w(O) and x(” + x(O) it 

” For instance, see Herstein [ 17, p. 671. Strictly speaking, his result concerns 
transpositions of coordinates that are not necessarily adjacent. However, it is a trivial matter 
indeed to see that any transposition may be broken down into a sequence of ‘&adjacent Coors 
dinate” transpositions. 
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follows that for 1 large enough, IV(‘) and x(‘) are nonnull as well. Thus, for 
I = 0 or I large enough we have w(I), x(l) E D, so that we may apply TD to 
obtain: 

I I++‘) I ( Z(y”‘) = (y(,), Z(w”‘) + , y([), Z(x”‘) + z(w”‘uq; l”‘zP). 64.4) 

By Proposition I and Lemma 1, I(@(“, f(‘)) = Z(Wcr)uq; jffr)uq) for I= 0 or 
large 1. Therefore, by the induction hypothesis Z(y”‘) --) Z(y”‘). 

An additional application of TD and Proposition 1 yields Z(y”‘) = 
(1~“) l/l y”) I) Z(z(“) for I = 0, 1, 2 ,..., where 1 z(‘) [/I y”’ ) = m/m' > 0. Thus, 
Z(zcr)) + Z(z”‘) and so Z is continuous on D,. 

To see that S holds, let n > 1 and note that by Lemma 1, Z(y) = Z(yP) for 
all y p 0” in D, and every permutation matrix P of order n. Clearly, C 
extends this results to all distributions y in D,, and hence Z satisfies S. 
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