Summary of Useful Formulas of the AF Method Maria Emma Santos CONICET-UNS \& OPHI

Achievement Matrix

Cutoff vector \& Weights vector
 Dimensions

- Where $x_{i j}$ is the achievement of individual i of attribute or dimension j.
- $z j$ is the deprivation cutoff of attribute or dimension j.
- w_{j} is the weight of attribute or dimension j such that:

$$
\mathrm{w}_{1}+\mathrm{w}_{2}+\ldots+\mathrm{w}_{\mathrm{d}}=\mathbf{d}
$$

$$
\begin{aligned}
\mathrm{X} & =\left[\begin{array}{ccc}
\mathrm{x}_{11} & \ldots & \mathrm{x}_{1 \mathrm{~d}} \\
\mathrm{X}_{21} & \ldots & \mathrm{x}_{2 \mathrm{~d}} \\
\ldots & & \\
& & \ldots \\
\mathrm{x}_{\mathrm{n} 1} & \ldots & \mathrm{x}_{\mathrm{nd}}
\end{array}\right] \begin{array}{c}
\mathrm{p} \\
\mathrm{e} \\
\mathrm{o} \\
\mathrm{p} \\
\mathrm{p} \\
\mathrm{e}
\end{array} \\
\mathrm{Z} & =\left(\mathrm{z}_{1}, \mathrm{Z}_{2}, \ldots \ldots, \mathrm{Z}_{\mathrm{d}}\right) \\
w & =\left(w_{1}, w_{2}, \ldots \ldots ., w_{d}\right)
\end{aligned}
$$

Deprivation Matrix

Dimensions

Where

- $\mathrm{g}_{\mathrm{ij}}{ }^{0}=1$ if $\mathrm{x}_{\mathrm{ij}}<\mathrm{z}_{\mathrm{j}}$ (deprived)
- $\mathrm{g}_{\mathrm{ij}}^{0}=0$ if $\mathrm{x}_{\mathrm{ij}} \geq z_{\mathrm{j}}$ (non-deprived)
- Or equivalently:

$$
g_{i j}^{0}=\left(\frac{z_{j}-x_{i j}}{z_{j}}\right)^{0}
$$

$$
\begin{aligned}
& g^{0}=\left[\begin{array}{ccc}
g_{11}^{0} & \ldots & g_{1 d}^{0} \\
g_{21}^{0} & \ldots & g_{2 d}^{0} \\
\ldots & & \\
& & \ldots \\
g_{n 1}^{0} & \ldots & g_{n d}^{0}
\end{array}\right] \begin{array}{c}
\mathrm{p} \\
\mathrm{e} \\
\mathrm{o} \\
\mathrm{p} \\
\mathrm{l} \\
\mathrm{e}
\end{array} \\
& \mathrm{Z}=\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}, \ldots \ldots, \mathrm{Z}_{\mathrm{d}}\right)
\end{aligned}
$$

Raw Dimensional Headcount Ratios

- These are the deprivation rates by dimension, ie. the proportion of people who are deprived in that dimension.
- It is simply the mean of each column of the deprivation matrix:

$$
H_{j}=\left(g_{1 j}^{0}+g_{2 j}^{0}+\ldots+g_{n j}^{0}\right) / n
$$

Weighted Deprivation Matrix

 Note that we use the same notation as for the deprivation matrix on purpose.Where

- $\mathrm{g}_{\mathrm{ij}}^{0}=\mathrm{w}_{\mathrm{j}}$ if $\mathrm{x}_{\mathrm{ij}}<\mathrm{z}_{\mathrm{j}}$ (deprived)
- $\mathrm{g}_{\mathrm{ij}}^{0}=0$ if $\mathrm{x}_{\mathrm{ij}} \geq z_{\mathrm{j}}$ (non-deprived)
- Or equivalently:

$$
g_{i j}^{0}=w_{j}\left(\frac{z_{j}-x_{i j}}{z_{j}}\right)^{0}
$$

$$
\begin{aligned}
& g^{0}=\left[\begin{array}{ccc}
g_{11}^{0} & \ldots & g_{1 d}^{0} \\
g_{21}^{0} & \ldots & g_{2 d}^{0} \\
\ldots & & \\
& & \ldots \\
g_{n 1}^{0} & \ldots & g_{n d}^{0}
\end{array}\right] \\
& \mathrm{Z}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots \ldots, \mathrm{z}_{\mathrm{d}}\right) \\
& w=\left(w_{1}, w_{2}, \ldots \ldots, w_{d}\right)
\end{aligned}
$$

Deprivation Count Vector

Where the 'deprivation count' or score for each person is the sum of her weighted deprivations

- $c_{i}=g_{i 1}+\ldots .+g_{i d}$

$$
c=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
\\
c_{n}
\end{array}\right]
$$

Identify the poor

Given a poverty cut-off k , we compare the deprivation count with the k cutoff and then censor the deprivations of those who were not identified as poor.

$$
\begin{array}{llll}
\rho_{k}\left(x_{i} ; z\right)=1 & \text { if } & c_{i} \geq k & \text { poor } \\
\rho_{k}\left(x_{i} ; z\right)=0 & \text { if } & c_{i}<k & \text { non }- \text { poor }
\end{array}
$$

$$
c=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
\\
c_{n}
\end{array}\right]
$$

Censored Weighted Deprivation Matrix

and Deprivation Count Vector

This is the key matrix (and vector, alternatively) over which we compute the set of AF indicators for $\mathbf{M}_{\mathbf{0}}$

$$
g^{0}(k)=\left[\begin{array}{ccc}
g_{11}^{0}(k) & \cdots & g_{1 d}^{0}(k) \\
g_{21}^{0}(k) & \cdots & g_{2 d}^{0}(k) \\
\cdots & & \\
& & \ldots \\
g_{n 1}^{0}(k) & \cdots & g_{n d}^{0}(k)
\end{array}\right] \quad c(k)=\left[\begin{array}{c}
c_{1}(k) \\
c_{2}(k) \\
\\
c_{n}(k)
\end{array}\right]
$$

Where

- $\mathrm{g}_{\mathrm{ij}}{ }^{0}(\mathrm{k})=\mathrm{g}_{0}$ (that is $=\left(\mathrm{w}_{\mathrm{j}}\right)$) if $\mathrm{c}_{\mathrm{i}} \geq \mathrm{k}$ (deprived \& poor)
- $\mathrm{g}_{\mathrm{ij}}{ }^{0}(\mathrm{k})=0$ if $\mathrm{c}_{\mathrm{i}}<\mathrm{k}$ (deprived or not but non-poor)
- Similarly: $\mathrm{c}_{\mathrm{i}}(\mathrm{k})=$ ci if $\mathrm{c}_{\mathrm{i}} \geq \mathrm{k}$ and $\mathrm{c}_{\mathrm{i}}(\mathrm{k})=0$ if $\mathrm{c}_{\mathrm{i}}<\mathrm{k}$

First we focus on the M_{0} measure and all its related indicators

Headcount Ratio of MD Poverty

It is the proportion of people who have been identified as poor. Thus:

$$
H=\frac{\sum_{i=1}^{n} \rho_{k}\left(x_{i} ; z\right)}{n}=\frac{q}{n}
$$

Where q is the number of poor people.
Headcount Ratio is sometimes called the incidence of poverty, or the poverty rate.

Intensity (or breadth) of MD Poverty

- It is the average proportion of deprivations in which the poor are deprived.

$$
A=\frac{\sum_{i=1}^{n} c_{i}(k)}{d q}
$$

Note that it is simple to compute:

1) You compute the proportion of total deprivations each poor person has $\left(c_{i}(\mathrm{k}) / \mathrm{d}\right)$. Note we need to use the censored deprivation count vector, ie: we ignore the deprivations of the non-poor.
2) You take the average of those proportions (that's why we divide by q , the number of the poor)

Multidimensional Poverty: M_{0}

(Adjusted Headcount Ratio)

- It is the product of incidence and intensity.

$$
M_{0}=H * A
$$

- Or equivalently, it is the mean of the censored (weighted) deprivation matrix:n

$$
M_{0}=\mu\left(g^{0}(k)\right)=\frac{\sum_{i=1}^{n} \sum_{j=1}^{d} g_{i j}^{0}}{n d}
$$

How do we interpret M_{0} ?

- M_{0} is the mean of the (weighted) censored deprivation matrix, ie: the sum of all the nonzero entries (each weighted by the corresponding indicator weight) divided by the total number of entries (people x indicators).

How do we interpret $\mathrm{M}_{0 \text { ? }}$

- Weighted Censored Deprivation Matrix:
(1) Its total number of entries provides the total number of deprivations a society can experience (considered indicators x people).
(2) Its total number of non-zero weighted entries provides the total number of weighted deprivations that the poor actually experience in that society.

How do we interpret $\mathrm{M}_{0 \text { ? }}$

- M_{0} Interpretation
M_{0} is the ratio of (2)/(1), ie. the mean of the weighted censored deprivation matrix.
Thus, it gives the proportion of weighted deprivations that the poor experience in a society of all the total potential deprivations that the society could experience.

How do we decompose M_{0} by Indicators and Dimensions?

Visually...

Peo	$\begin{aligned} & \text { Ye. } \\ & \text { Ed } \end{aligned}$	Child Attend	Nutr	Mor	lec	Wat	Sani	Floor	Cook Fuel	Assets
1	1.67	1.67	0	0	0	0.56	0	0.56	0	0
2	0	0	1.67	1.67	0	0	0	0	0	0
3	0	0	0	0	0.56	0.56	0.56	0.56	0.56	0.56
4	1.67	0	0	1.67	0.56	0.00	0.56	0	0.56	0
5	0	0	0	0	0	0	0	0	0	0

What is the contribution of deprivation in health to overall poverty? And in nutrition in particular?

How do we decompose M_{0} by Indicators and Dimensions?

There are two useful but distinct indicators to look at:

1) Censored headcount ratios
2) Contributions by indicators and dimensions.

Censored Headcount Ratios

- How do they differ from 'raw' headcount ratios?
- Raw headcount ratios are the $\%$ of people who are deprived in a certain indicator.
- Censored headcount ratios are the \% of people who are poor and deprived in a certain indicator.
- Careful! Censored headcounts are not the \% of the poor deprived in a certain indicator.

Censored Headcount Ratios

- They are simply the mean of each column of the (weighted) censored deprivation matrix divided by the indicator's weight.

$$
H_{j}^{C}=\frac{\sum_{i=1}^{n} g_{i j}^{0}(k)}{w_{j} n}
$$

- Note that M0 is the weighted sum of the censored headcount ratios.

$$
M_{0}=\sum_{j=1}^{d}\left(\frac{w_{j}}{d}\right) H_{j}^{C}
$$

Contribution by Indicator and Dimension

- It is the proportion of total poverty which arises from a particular deprivation.
- Recall from the previous slide:

$$
M_{0}=\sum_{j=1}^{d}\left(\frac{w_{j}}{d}\right) H_{j}^{C}
$$

- Thus, the contribution of indicator j to overall poverty is given by:

$$
C_{j}=\frac{\left(w_{j} / d\right) H_{j}^{C}}{M_{0}}
$$

Contribution by Indicator and Dimension

- Note: The sum of the contributions of all d indicators needs to add up to 1 (or 100%).
- Whenever the contribution to poverty of a certain indicator widely exceeds its weight, this suggests that there is a relative high deprivation in this indicator in the country. The poor are more deprived in this indicator than in others.
- If there are more than one indicators in a dimension, the dimensional contribution is simply the sum of the indicators' contribution.

How do we decompose M_{0} by population subgroups?

Visually...

GROUP A

Peo	Ye. Ed	Child Attend .	Nutr	Mor	Elec	Wat	Sani	Floor	Cook. Fuel	Assets
1	1.07	1.07	0	0	0	0.50	0	0.50	0	0
2	0	0	1.67	1.67	0	0	0	0	0	0
3	0	0	0	0	0.56	0.56	0.56	0.56	0.56	0.56
4	1.07	0	0	1.0	0.50	0.00	0.50	0	0.50	0
5	0	0	0	0	0	0	0	0	0	0

Depr. Count
4.44
3.33
3.33
5
0

GROUP B

Decomposition by Population Subgroups

If the entire population X (of size n) is divided into two subgroups X_{1} (of size n_{1}) and X_{2} (of size n_{2}), then overall M_{0} is the weighted sum of M_{0} in each subgroup:

$$
M_{0}(X ; z)=\left(\frac{n_{1}}{n}\right) M_{0}\left(X_{1} ; z\right)+\left(\frac{n_{2}}{n}\right) M_{0}\left(X_{2} ; z\right)
$$

Thus, the contribution of subgroup i to overall poverty is

$$
C_{G i}=\frac{\left(n_{i} / n\right) M_{0}\left(X_{i} ; z\right)}{M_{0}(X ; z)}
$$

Decomposition by Population Subgroups

- Note that the sum of the contributions of all groups needs to add up to 1 (or 100%).
- Whenever the contribution to poverty of a region or some other group widely exceeds its population share, this suggests that there is a seriously unequal distribution of poverty in the country, with some regions or groups bearing a disproportionate share of poverty.

Generalising the formulas so that they also apply to M_{1} and M_{2}

g^{α} Matrix

$$
g^{\alpha}=\left[\begin{array}{ccc}
g_{11}^{\alpha} & \ldots & g_{1 d}^{\alpha} \\
g_{21}^{\alpha} & \ldots & g_{2 d}^{\alpha} \\
\ldots & & \\
& & \ldots \\
g_{n 1}^{\alpha} & \ldots & g_{n d}^{\alpha}
\end{array}\right]
$$

Where

$$
\begin{aligned}
& g_{i j}^{\alpha}=w_{j}\left(\frac{z_{j}-x_{i j}}{z_{j}}\right)^{\alpha} \quad \text { if } \quad x_{i j}<z_{j} \\
& g_{i j}^{\alpha}=0 \quad \text { if } \quad x_{i j} \geq z_{j}
\end{aligned}
$$

Censored g^{α} Matrix

(after identification, done exactly the same as with M_{0})

$$
g^{\alpha}(k)=\left[\begin{array}{ccc}
g_{11}^{\alpha}(k) & \ldots & g_{1 d}^{\alpha}(k) \\
g_{21}^{\alpha}(k) & \ldots & g_{2 d}^{\alpha}(k) \\
\ldots & & \\
& & \ldots \\
g_{n 1}^{\alpha}(k) & \ldots & g_{n d}^{\alpha}(k)
\end{array}\right]
$$

Where

$$
\begin{aligned}
& g_{i j}^{\alpha}(k)=g_{i j}^{\alpha} \quad \text { if } \\
& g_{i j}^{\alpha}(k)=0 \quad c_{i} \geq k \\
& \text { if }
\end{aligned} \quad c_{i}<k
$$

Multidimensional Poverty in general
M_{1} : Adjusted Poverty Gap M_{2} : Adjusted FGT

$$
M_{\alpha}=\mu\left(g^{\alpha}(k)\right)=\frac{\sum_{i=1}^{n} \sum_{j=1}^{d} g_{i j}^{\alpha}}{n d}
$$

Note that M_{1} : Adjusted Poverty Gap

$$
M_{1}=H^{*} A^{*} G
$$

Where G is the average poverty gap across all instances in which poor people are deprived

$$
G=\frac{\sum_{i=1}^{n} \sum_{j=1}^{d} g_{i j}}{\sum_{i=1}^{n} \sum_{j=1}^{d} g_{i j}^{0}}
$$

Note that M_{2} : Adjusted FGT

$$
M_{2}=H * A * S
$$

Where S is the average squared poverty gap (average severity of deprivations) across all instances in which poor people are deprived

$$
S=\frac{\sum_{i=1}^{n} \sum_{j=1}^{d} g_{i j}^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{d} g_{i j}^{0}}
$$

Contribution by Indicator

- It is the proportion of total poverty which arises from a particular deprivation.
- In general:

$$
M_{\alpha}=\sum_{j=1}^{d} \mu\left(g_{*_{j}}^{\alpha}(k)\right) / d
$$

- Where:

$$
\mu\left(g_{*_{j}}^{\alpha}(k)\right)=\sum_{i=1}^{n} g_{i j}^{\alpha}(k) / n
$$

- Thus, the contribution of indicator j to overall poverty is given by:

$$
C_{j}=\frac{\mu\left(g_{*_{j}}^{\alpha}(k)\right)}{d M_{\alpha}}
$$

Contribution by Population Subgroup

- It is the proportion of total poverty which arises from a particular group.
- In general: $\quad M_{\alpha}=\sum_{i=1}^{n} \mu\left(g_{i}^{\alpha}(k)\right) / n$
- For groups: If the entire population X (of size n) is divided into two subgroups $\mathrm{X}_{1}\left(\right.$ of size $\left.\mathrm{n}_{1}\right)$ and X_{2} (of size n_{2}), then overall M_{0} is the weighted sum of M_{0} in each subgroup

$$
M_{\alpha}(X ; z)=\left(\frac{n_{1}}{n}\right) M_{\alpha}\left(X_{1} ; z\right)+\left(\frac{n_{2}}{n}\right) M_{\alpha}\left(X_{2} ; z\right)
$$

- Thus, the contribution of subgroup i to overall poverty is

$$
C_{G i}=\frac{\left(n_{i} / n\right) M_{\alpha}\left(X_{i} ; z\right)}{M_{\alpha}(X ; z)}
$$

