Robustness analysis with the AF measures

Suman Seth Gaston Yalonetzky

Oxford Poverty and Human Development Initiative, University of Oxford

September 2010
Table of contents

Introduction

Stochastic dominance conditions for H and M0

Robustness Results
 Other ways of testing robustness of ranking
Introduction: Robustness versus Dominance

- In general robustness analysis seeks to assess the sensitivity of rankings generated by an indicator to changes in the indicator's key parameters.
Introduction: Robustness versus Dominance

- In general robustness analysis seeks to assess the sensitivity of rankings generated by an indicator to changes in the indicator’s key parameters.
- Stochastic dominance conditions provide an extreme form of robustness: if they are fulfilled a comparison is robust to a broad range of parameter values.
Introduction: Robustness versus Dominance

▶ In general robustness analysis seeks to assess the sensitivity of rankings generated by an indicator to changes in the indicator’s key parameters.

▶ Stochastic dominance conditions provide an extreme form of robustness: if they are fulfilled a comparison is robust to a broad range of parameter values.

$$H^A(k) \leq H^B(k) \forall k \in [1, D] \iff F^A(c) \geq F^B(c) \forall c \in [0, D]$$
Robustness of rankings generated by the AF measures (including the MPI)

The rankings generated by the AF measures can be sensitive to changes in the measures’ key parameters, namely:

1. The dimension-specific poverty lines (i.e. the "first" cut-off): z_d
2. The weights attached to every variable/dimension: w_d
3. The value that the weighted sum of deprivations need to surpass in order to identify someone as poor (i.e. the "second" cut-off): k
Robustness of rankings generated by the AF measures (including the MPI)

The rankings generated by the AF measures can be sensitive to changes in the measures’ key parameters, namely:

1. The dimension-specific poverty lines (i.e. the ”first” cut-off): Z_d
Robustness of rankings generated by the AF measures (including the MPI)

The rankings generated by the AF measures can be sensitive to changes in the measures’ key parameters, namely:

1. The dimension-specific poverty lines (i.e. the ”first” cut-off): Z_d
2. The weights attached to every variable/dimension: w_d
Robustness of rankings generated by the AF measures (including the MPI)

The rankings generated by the AF measures can be sensitive to changes in the measures’ key parameters, namely:

1. The dimension-specific poverty lines (i.e. the ”first” cut-off): Z_d
2. The weights attached to every variable/dimension: w_d
3. The value that the weighted sum of deprivations need to surpass in order to identify someone as poor (i.e. the ”second” cut-off): k
Statistical tools to address the robustness of rankings generated by the AF measures

In principle there are two approaches to assessing the robustness of AF rankings to changes in the key parameters.
Statistical tools to address the robustness of rankings generated by the AF measures

In principle there are two approaches to assessing the robustness of AF rankings to changes in the key parameters

1. To "fix" all parameters and check sensitivity to changes in one set of parameters.
Statistical tools to address the robustness of rankings generated by the AF measures

In principle there are two approaches to assessing the robustness of AF rankings to changes in the key parameters

1. To “fix” all parameters and check sensitivity to changes in one set of parameters.
 - One example: Batana (2008) fixes weights and poverty lines and checks sensitivity of rankings to changes in k
Statistical tools to address the robustness of rankings generated by the AF measures

In principle there are two approaches to assessing the robustness of AF rankings to changes in the key parameters

1. To “fix” all parameters and check sensitivity to changes in one set of parameters.
 ▶ One example: Batana (2008) fixes weights and poverty lines and checks sensitivity of rankings to changes in k
 ▶ Another one: Alkire and Foster (2009) and Lasso de la Vega (2009) derive dominance conditions over k keeping weights and lines fixed
Statistical tools to address the robustness of rankings generated by the AF measures

In principle there are two approaches to assessing the robustness of AF rankings to changes in the key parameters

1. To “fix” all parameters and check sensitivity to changes in one set of parameters.
 - One example: Batana (2008) fixes weights and poverty lines and checks sensitivity of rankings to changes in k
 - Another one: Alkire and Foster (2009) and Lasso de la Vega (2009) derive dominance conditions over k keeping weights and lines fixed

2. To derive conditions under which a ranking is robust regardless of lines, weights and multidimensional counting thresholds (this is harder but still doable)
Statistical tools to address the robustness of rankings generated by the AF measures

In this lecture we are going to review:
Statistical tools to address the robustness of rankings generated by the AF measures

In this lecture we are going to review:

- Some basic (first-order) stochastic dominance conditions for the M0 and H involving multidimensional thresholds, weights and lines.
Statistical tools to address the robustness of rankings generated by the AF measures

In this lecture we are going to review:

- Some basic (first-order) stochastic dominance conditions for the M0 and H involving multidimensional thresholds, weights and lines.
- Some basic robustness tests for weights.
The counting vector: key ingredient for dominance conditions for M0 and H

For individual i define $D - c_i$, where:
The counting vector: key ingredient for dominance conditions for M0 and H

For individual i define $D - c_i$, where:

$$c_i = \sum_{d=1}^{D} w_d I(x_{id} \leq z_d)$$
The counting vector: key ingredient for dominance conditions for M0 and H

For individual i define $D - c_i$, where:

$$
c_i = \sum_{d=1}^{D} w_d I(x_{id} \leq z_d)
$$

Then consider a distribution of deprivations, $D - c$, in the population that can take values from 0 (poor in every dimension) to D (non-poor in every dimension). A typical cumulative distribution is:
Robustness analysis with the AF measures
Stochastic dominance conditions for H and M0

A typical cumulative distribution of D-c

The non-poors in every dimension

The poor by the intersection approach

The poor by the union approach
The dominance condition over k

The key results are the following:
The key results are the following:

\[F^A(D - c) \leq F^B(D - c) \forall (D - c) \in [0, D] \iff H^A \leq H^B \forall (D - c) \in [0, D] \]

\[H^A \leq H^B \forall (D - c) \in [0, D] \rightarrow M^A \leq M^B \forall (D - c) \in [0, D] \]
Robustness analysis with the AF measures

Stochastic dominance conditions for H and M_0

The key dominance result in a pair of graphs: 1

$M_0(1) = M_0(0) = A(0)$

$= \text{sum of uncensored headcounts}$
The key dominance result in a pair of graphs: II
Proof: Alkire and Foster explained

Notice that M_0 can be expressed in terms of H the following way:

$$M_0(k) = \frac{1}{D} [H(D)D + \sum_{j=k}^{D-1} j[H(j) - H(j + 1)]]$$
Proof: Alkire and Foster explained

Notice that M_0 can be expressed in terms of H the following way:

$$M_0(k) = \frac{1}{D}[H(D)D + \sum_{j=k}^{D-1} j[H(j) - H(j + 1)]]$$

Simplifying this expression yields:

$$M_0(k) = \frac{1}{D}[\sum_{j=k+1}^{D} H(j) + kH(k)]$$
Proof: Alkire and Foster explained

Notice that $M0$ can be expressed in terms of H the following way:

$$M0(k) = \frac{1}{D} [H(D)D + \sum_{j=k}^{D-1} j[H(j) - H(j + 1)]$$

Simplifying this expression yields:

$$M0(k) = \frac{1}{D} \left[\sum_{j=k+1}^{D} H(j) + kH(k) \right]$$

Therefore $H^A(k) \leq H^B(k) \forall k \in [1, D] \rightarrow M^A(k) \leq M^B(k) \forall k \in [1, D]$
Robustness analysis with the AF measures

Further dominance results: now incorporating weights and poverty lines

We saw that for $M^A(k) \leq M^B(k) \forall k \in [1, D]$ to hold we need:
$H^A(k) \leq H^B(k) \forall k \in [1, D]$
We saw that for $M^A(k) \leq M^B(k) \forall k \in [1, D]$ to hold we need: $H^A(k) \leq H^B(k) \forall k \in [1, D]$

Are there any conditions that ensure that the latter holds, in turn, for any weights and poverty lines?
Further dominance results: now incorporating weights and poverty lines

We saw that for $M^A(k) \leq M^B(k) \forall k \in [1, D]$ to hold we need:
$H^A(k) \leq H^B(k) \forall k \in [1, D]$

Are there any conditions that ensure that the latter holds, in turn, for any weights and poverty lines?

Yes, it is work in progress, but the condition seems to be the following:

$$F^A(x_1, \ldots, x_D) \geq F^B(x_1, \ldots, x_D) \forall (x_1, \ldots, x_D) \in [x_1, \text{min}, x_1, \text{max}] \times \ldots \times [x_D, \text{min}, x_D, \text{max}]$$

$$F^A(x_1, \ldots, x_D) \leq F^B(x_1, \ldots, x_D) \forall (x_1, \ldots, x_D) \in [x_1, \text{min}, x_1, \text{max}] \times \ldots \times [x_D, \text{min}, x_D, \text{max}]$$
Example: Test of dominance across six African countries by Batana
Robustness analysis with the AF measures

Robustness Results

Other ways of testing robustness of ranking

Why we need other ways

- Stochastic Dominance test are useful for pair-by-pair analysis
Why we need other ways

- Stochastic Dominance test are useful for pair-by-pair analysis
- If one country stochastically dominates another country then the result holds for all parameters (all weights and cut-offs)
Robustness analysis with the AF measures

Robustness Results

Other ways of testing robustness of ranking

Why we need other ways

- Stochastic Dominance test are useful for pair-by-pair analysis
- If one country stochastically dominates another country then the result holds for all parameters (all weights and cut-offs)
- However, stochastic dominance condition may be too stringent and may not hold for the majority of the countries
Why we need other ways

- Stochastic Dominance test are useful for pair-by-pair analysis
- If one country stochastically dominates another country then the result holds for all parameters (all weights and cut-offs)
- However, stochastic dominance condition may be too stringent and may not hold for the majority of the countries
- We need some other ways to understand how robust are the ranking to changes in weights and cut-offs
Why we need other ways

▶ Suppose we have 100 countries
Why we need other ways

- Suppose we have 100 countries
- Which means $C_2^{100} = (100 \times 99) / 2 = 4950$ pairwise comparisons
Why we need other ways

- Suppose we have 100 countries
- Which means $C^2_{100} = (100 \times 99)/2 = 4950$ pairwise comparisons
- However, stochastic dominance condition may be too stringent and may not hold for majority of the countries
Why we need other ways

- Suppose we have 100 countries
- Which means $C_2^{100} = \frac{100 \times 99}{2} = 4950$ pairwise comparisons
- However, stochastic dominance condition may be too stringent and may not hold for majority of the countries
- We need some other ways to understand how robust are the rankings to changes in weights and cut-offs
Why we need other ways

- Suppose we have 100 countries
- Which means $C^2_{100} = (100 \times 99) / 2 = 4950$ pairwise comparisons
- However, stochastic dominance condition may be too stringent and may not hold for majority of the countries
- We need some other ways to understand how robust are the rankings to changes in weights and cut-offs
- We may not always need to check dominance for the entire distribution
Robustness analysis with the AF measures

Robustness Results

Other ways of testing robustness of ranking

Why we need other ways

- Suppose we have 100 countries
- Which means $C_2^{100} = (100 \times 99) / 2 = 4950$ pairwise comparisons
- However, stochastic dominance condition may be too stringent and may not hold for majority of the countries
- We need some other ways to understand how robust are the rankings to changes in weights and cut-offs
- We may not always need to check dominance for the entire distribution
 - Smaller sample size for extreme values of the cut-off
Framework

- There are N countries
Framework

- There are N countries
- Weights for D dimensions are denoted by the vector

$$w = (w_1, w_2, \ldots, w_D)$$
Framework

- There are N countries
- Weights for D dimensions are denoted by the vector
 \[w = (w_1, w_2, \ldots, w_D) \]
- Set of first cut-offs for D dimensions is denoted by the vector
 \[z = (z_1, z_2, \ldots, z_D) \]
Framework

- There are \(N \) countries
- Weights for \(D \) dimensions are denoted by the vector
 \[w = (w_1, w_2, \ldots, w_D) \]
- Set of first cut-offs for \(D \) dimensions is denoted by the vector
 \[z = (z_1, z_2, \ldots, z_D) \]
- Second cut-off is denoted by \(k \in \{1, 2, \ldots, D\} \)
Framework

- There are N countries
- Weights for D dimensions are denoted by the vector $w = (w_1, w_2, \ldots, w_D)$

- Set of first cut-offs for D dimensions is denoted by the vector $z = (z_1, z_2, \ldots, z_D)$

- Second cut-off is denoted by $k \in \{1, 2, \ldots, D\}$
- Let us denote the rank of N countries by the column vector $R = (R_1, R_2, \ldots, R_N)$

We assume $R_1 < R_2 < \ldots < R_N$
Framework

- Now, suppose we need to check the robustness of ranking R with respect to an alternative parametric specification.
Framework

- Now, suppose we need to check the robustness of ranking R with respect to a alternative parametric specification
 - It could be for a different set of weights w'
Now, suppose we need to check the robustness of ranking \(R \) with respect to an alternative parametric specification.

- It could be for a different set of weights \(w' \).
- It could be for a different set of first cut-offs \(z' \).
Now, suppose we need to check the robustness of ranking R with respect to an alternative parametric specification:

- It could be for a different set of weights w'
- It could be for a different set of first cut-offs z'
- It could be for a different second cut-off k'
Robustness analysis with the AF measures

Robustness Results

Other ways of testing robustness of ranking

Framework

- Now, suppose we need to check the robustness of ranking R with respect to an alternative parametric specification:
 - It could be for a different set of weights w'
 - It could be for a different set of first cut-offs z'
 - It could be for a different second cut-off k'
 - It could be that the number of dimensions change to D'
Framework

Now, suppose we need to check the robustness of ranking R with respect to an alternative parametric specification:

- It could be for a different set of weights w'.
- It could be for a different set of first cut-offs z'.
- It could be for a different second cut-off k'.
- It could be that the number of dimensions change to D'.

Let the new ranking under a different specification be denoted by the column vector

$$R' = (R'_1, R'_2, \ldots, R'_N)$$
Framework

Now, suppose we need to check the robustness of ranking R with respect to an alternative parametric specification:

- It could be for a different set of weights w'.
- It could be for a different set of first cut-offs z'.
- It could be for a different second cut-off k'.
- It could be that the number of dimensions change to D'.

Let the new ranking under a different specification be denoted by the column vector

$$ R' = (R'_1, R'_2, \ldots, R'_N) $$

If $R_n = R'_n$ for all $n = 1, \ldots, N$ then the ranking is completely robust with respect to this alternative specification.
Now, suppose we need to check the robustness of ranking R with respect to an alternative parametric specification

- It could be for a different set of weights w'
- It could be for a different set of first cut-offs z'
- It could be for a different second cut-off k'
- It could be that the number of dimensions change to D'

Let the new ranking under a different specification be denoted by the column vector

$$R' = (R'_1, R'_2, \ldots, R'_N)$$

If $R_n = R'_n$ for all $n = 1, \ldots, N$ then the ranking is completely robust with respect to this alternative specification.

However, if it is not then we need to find a method to check the robustness of ranking.
Checking rank correlation

- One useful method is to check the rank correlation between different sets of ranks
Checking rank correlation

- One useful method is to check the rank correlation between different sets of ranks
- Two methods
Checking rank correlation

- One useful method is to check the rank correlation between different sets of ranks
- Two methods
 - Kendall’s Rank Correlation Method (τ)
 - Also called Kendall’s Tau
 - Spearman’s Rank Correlation Method (ρ)
Checking rank correlation

- One useful method is to check the rank correlation between different sets of ranks
- Two methods
 - Kendall’s Rank Correlation Method (τ)
 - Also called Kendall’s Tau
 - Spearman’s Rank Correlation Method (ρ)
 - Also called Spearman’s Rho
Kendall’s Rank Correlation Method

- Kendall’s Tau is based on

Kendall’s Tau is based on

- The total number of concordance pairs \((C) \)
- The total number of discordant pairs \((D) \)

\begin{align*}
\text{Concordant pairs} &: \text{A pair } n \text{ and } \bar{n} \text{ is concordant if } R_n > R_{\bar{n}} \text{ and } R'_n > R'_{\bar{n}} \\
\text{Discordant pairs} &: \text{The pair is discordant if } R_n > R_{\bar{n}} \text{ but } R'_n < R'_{\bar{n}} \\
\end{align*}

Then

\[
\tau = \frac{C - D}{C + D}
\]
Kendall’s Rank Correlation Method

- Kendall’s Tau is based on
 - The total number of concordance pairs (C)
Kendall’s Rank Correlation Method

- Kendall’s Tau is based on
 - The total number of concordance pairs (C)
 - The total number of discordant pairs (D)

- Concordant pairs
 - A pair n and \bar{n} is concordant if
 \[
 R_n > R_{\bar{n}} \quad \text{and} \quad R'_n > R'_{\bar{n}}
 \]
Kendall’s Rank Correlation Method

- Kendall’s Tau is based on
 - The total number of concordance pairs (C)
 - The total number of discordant pairs (D)

- Concordant pairs
 - A pair \(n \) and \(\bar{n} \) is concordant if
 \[
 R_n > R_{\bar{n}} \text{ and } R'_n > R'_{\bar{n}}
 \]
 - The pair is discordant if
 \[
 R_n > R_{\bar{n}} \text{ but } R'_n < R'_{\bar{n}}
 \]
Kendall’s Rank Correlation Method

- Kendall’s Tau is based on
 - The total number of concordance pairs (C)
 - The total number of discordant pairs (D)

- Concordant pairs
 - A pair \(n \) and \(\bar{n} \) is concordant if
 \[R_n > R_{\bar{n}} \text{ and } R'_n > R'_{\bar{n}} \]
 Then
 \[\tau = \frac{C - D}{C + D} \]
Example: Concordant and Discordant Pair

- Consider two countries: India and Pakistan
Example: Concordant and Discordant Pair

- Consider two countries: India and Pakistan
 - Suppose under the initial specification, Pakistan performs better than India
Example: Concordant and Discordant Pair

- Consider two countries: India and Pakistan
 - Suppose under the initial specification, Pakistan performs better than India
 - Rank of India is greater than that of Pakistan
Example: Concordant and Discordant Pair

- Consider two countries: India and Pakistan
 - Suppose under the initial specification, Pakistan performs better than India
 - Rank of India is greater than that of Pakistan
 - If under the alternative specification, Pakistan performs better than India
Example: Concordant and Discordant Pair

Consider two countries: India and Pakistan

- Suppose under the initial specification, Pakistan performs better than India
 - Rank of India is greater than that of Pakistan
- If under the alternative specification, Pakistan performs better than India
 - Then the rank of the pair India and Pakistan is *concordant*
Example: Concordant and Discordant Pair

- Consider two countries: India and Pakistan
 - Suppose under the initial specification, Pakistan performs better than India
 - Rank of India is greater than that of Pakistan
 - If under the alternative specification, Pakistan performs better than India
 - Then the rank of the pair India and Pakistan is *concordant*
 - If under the alternative specification, India performs better than Pakistan
Example: Concordant and Discordant Pair

- Consider two countries: India and Pakistan
 - Suppose under the initial specification, Pakistan performs better than India
 - Rank of India is greater than that of Pakistan
 - If under the alternative specification, Pakistan performs better than India
 - Then the rank of the pair India and Pakistan is *concordant*
 - If under the alternative specification, India performs better than Pakistan
 - Then the rank of the pair India and Pakistan is *discordant*
Exploring Kendall’s Tau

▶ Kendall’s Tau is the normalized difference between the total concordant and discordant pairs
Exploring Kendall’s Tau

- Kendall’s Tau is the normalized difference between the total concordant and discordant pairs
- Note that $C + D$ is the total number of comparisons given that there is not tie of ranks
Exploring Kendall’s Tau

- Kendall’s Tau is the normalized difference between the total concordant and discordant pairs
- Note that \(C + D \) is the total number of comparisons given that there is not tie of ranks
 - Since the value of \(M_0 \) is continuous, we assume no ties
Robustness analysis with the AF measures

Robustness Results

Other ways of testing robustness of ranking

Exploring Kendall’s Tau

- Kendall’s Tau is the normalized difference between the total concordant and discordant pairs
- Note that $C + D$ is the total number of comparisons given that there is not tie of ranks
 - Since the value of M_0 is continuous, we assume no ties
- The maximum value that τ may take is $+1$
Exploring Kendall’s Tau

- Kendall’s Tau is the normalized difference between the total concordant and discordant pairs
- Note that $C + D$ is the total number of comparisons given that there is not tie of ranks
 - Since the value of M_0 is continuous, we assume no ties
- The maximum value that τ may take is $+1$
 - Recall the situation when $R_n = R'_n$ for all n
Exploring Kendall’s Tau

- Kendall’s Tau is the normalized difference between the total concordant and discordant pairs
- Note that $C + D$ is the total number of comparisons given that there is not tie of ranks
 - Since the value of M_0 is continuous, we assume no ties
- The maximum value that τ may take is $+1$
 - Recall the situation when $R_n = R'_n$ for all n
- The minimum value that τ may take is -1
Exploring Kendall’s Tau

- Kendall’s Tau is the normalized difference between the total concordant and discordant pairs.
- Note that $C + D$ is the total number of comparisons given that there is not tie of ranks.
 - Since the value of M_0 is continuous, we assume no ties.
- The maximum value that τ may take is $+1$.
 - Recall the situation when $R_n = R'_n$ for all n.
- The minimum value that τ may take is -1.
- When the number of concordant pairs is equal to the number of discordant pairs, then $\tau = 0$.
Spearman’s Rank Correlation Method

- Spearman’s Rho is based on the difference in ranks under two specifications.
Spearman’s Rank Correlation Method

- Spearman’s Rho is based on the different in ranks under two specifications
- Let us define \(r_n = R_n - R'_n \) for all \(n = 1, \ldots, N \)
Spearman’s Rank Correlation Method

- Spearman’s Rho is based on the different in ranks under two specifications
- Let us define \(r_n = R_n - R'_n \) for all \(n = 1, \ldots, N \)
 - \(r_n \) is the difference of ranks for country \(n \) under two different specifications
Spearman’s Rank Correlation Method

- Spearman’s Rho is based on the different in ranks under two specifications
- Let us define \(r_n = R_n - R'_n \) for all \(n = 1, \ldots, N \)
 - \(r_n \) is the difference of ranks for country \(n \) under two different specifications
- Then Spearman’s Rho may be written as

\[
\rho = 1 - \frac{6 \sum_{n=1}^{N} r_n^2}{n(n^2 - 1)}
\]
Spearman’s Rank Correlation Method

- Spearman’s Rho is based on the different in ranks under two specifications
- Let us define $r_n = R_n - R'_n$ for all $n = 1, \ldots, N$
 - r_n is the difference of ranks for country n under two different specifications
- Then Spearman’s Rho may be written as

$$ \rho = 1 - \frac{6 \sum_{n=1}^{N} r_n^2}{n(n^2 - 1)} $$

- when $R_n = R'_n$, then $r_n = 0$ for all n and $\rho = +1$
Spearman’s Rank Correlation Method

- Spearman’s Rho is based on the different in ranks under two specifications
- Let us define $r_n = R_n - R'_n$ for all $n = 1, \ldots, N$
 - r_n is the difference of ranks for country n under two different specifications
- Then Spearman’s Rho may be written as

$$\rho = 1 - \frac{6 \sum_{n=1}^{N} r_n^2}{n(n^2 - 1)}$$

- when $R_n = R'_n$, then $r_n = 0$ for all n and $\rho = +1$
- when $R_n = R'_{N-n}$ for all n, then $\rho = -1$
Robustness analysis with the AF measures

Robustness Results

Other ways of testing robustness of ranking

Empirical Illustration

▶ Alkire and Seth (2008) - Spearman’s Rank Correlation Table
Empirical Illustration

- Alkire and Seth (2008) - Spearman’s Rank Correlation Table
- Application on 28 Indian states and nine dimensions using the dataset of National Family Health Survey (NFHS) 2005
Empirical Illustration

- Alkire and Seth (2008) - Spearman’s Rank Correlation Table
- Application on 28 Indian states and nine dimensions using the dataset of National Family Health Survey (NFHS) 2005

<table>
<thead>
<tr>
<th>Cut-off (k)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>0.99</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0.97</td>
<td>0.97</td>
<td>0.98</td>
<td>0.98</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.97</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Robustness analysis with the AF measures

- **Robustness Results**
- **Other ways of testing robustness of ranking**

Empirical Illustration: Alkire ans Santos 2010

<table>
<thead>
<tr>
<th></th>
<th>MPI 1 Excluding Enrolment</th>
<th>MPI 2 Using weight-for-age Selected Measure</th>
<th>MPI 3 Using weight-for-height</th>
<th>MPI 4 Using height-for-age</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using weight-for-age (Selected Measure)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson</td>
<td>0.989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spearman</td>
<td>0.988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kendall (Taub)</td>
<td>0.920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPI 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using weight-for-height</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson</td>
<td>0.986</td>
<td></td>
<td>0.996</td>
<td></td>
</tr>
<tr>
<td>Spearman</td>
<td>0.985</td>
<td></td>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td>Kendall (Taub)</td>
<td>0.908</td>
<td></td>
<td>0.984</td>
<td></td>
</tr>
<tr>
<td>MPI 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using Height-for-age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson</td>
<td>0.987</td>
<td></td>
<td>0.998</td>
<td>0.996</td>
</tr>
<tr>
<td>Spearman</td>
<td>0.987</td>
<td></td>
<td>0.998</td>
<td>0.996</td>
</tr>
<tr>
<td>Kendall (Taub)</td>
<td>0.917</td>
<td></td>
<td>0.969</td>
<td>0.962</td>
</tr>
<tr>
<td>MPI 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using under 5 mortality (rather than age non-specific mortality)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson</td>
<td>0.991</td>
<td></td>
<td>0.998</td>
<td>0.997</td>
</tr>
<tr>
<td>Spearman</td>
<td>0.989</td>
<td></td>
<td>0.997</td>
<td>0.995</td>
</tr>
<tr>
<td>Kendall (Taub)</td>
<td>0.920</td>
<td></td>
<td>0.975</td>
<td>0.966</td>
</tr>
</tbody>
</table>

Number of countries: 51 (All DHS and three MICS countries which have Birth History)