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Abstract 

This paper proposes a new methodology for multidimensional poverty measurement consisting of an 
identification method ρk that extends the traditional intersection and union approaches, and a class of 
poverty measures Mα. Our identification step employs two forms of cutoff: one within each dimension 
to determine whether a person is deprived in that dimension, and a second across dimensions that 
identifies the poor by ‘counting’ the dimensions in which a person is deprived. The aggregation step 
employs the FGT measures, appropriately adjusted to account for multidimensionality. The axioms are 
presented as joint restrictions on identification and the measures, and the methodology satisfies a range 
of desirable properties including decomposability. The identification method is particularly well suited 
for use with ordinal data, as is the first of our measures, the adjusted headcount ratio. We present some 
dominance results and an interpretation of the adjusted headcount ratio as a measure of unfreedom. 
Examples from the US and Indonesia illustrate our methodology. 
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1. INTRODUCTION 
 

MULTIDIMENSIONAL POVERTY has captured the attention of researchers and 

policymakers alike due, in part, to the compelling conceptual writings of Amartya Sen 

and the unprecedented availability of relevant data.1 A key direction for research has 

been the development of a coherent framework for measuring poverty in the 

multidimensional environment that is analogous to the set of techniques developed in 

unidimensional space. Recent efforts have identified several classes of 

multidimensional poverty measures, discussed their properties, and raised important 

issues for future work.2  

This literature, however, has two significant challenges that discourage the 

empirical use of these conceptually attractive measures. First, the measurement 

methods are largely dependent on the assumption that variables are cardinal, when, in 

fact, many dimensions of interest are ordinal or categorical.3 Second, the method for 

identifying the poor remains understudied: most presentations either leave 

identification unspecified or select criteria that seem reasonable over two dimensions, 

but become less tenable when additional dimensions are used. These challenges are 

especially pertinent given that many countries are actively seeking multidimensional 

poverty measures to supplement or replace official income poverty measures.   

The goal of this paper is to present a new methodology that addresses these 

substantive issues.  In recent work, Atkinson (2003) discussed an intuitive ‘counting’ 

approach to multidimensional poverty measurement that has a long history of empirical 

                                                 
1 See, for example, Sen 1980, 1985a, 1985b, 1987, 1992, 1993. 
2 Anand and Sen 1997, Brandolini and D’Alessio 1998, Atkinson 2003, Deutch and Silber 2005 and 
Thorbecke 2008 identify cross-cutting issues. The main approaches to multidimensional poverty 
measures are axiomatic (Chakravarty 1998, Tsui 2002, Bourguignon and Chakravarty 2003, Chakravarty 
and Silber 2008); information theoretic (Maasoumi and Lugo 2008), fuzzy set (Cerioli and Zani 1990, 
Chiappero-Martinetti 1994, 2000, Lemmi and Betti 2006) and latent variable (Kakwani and Silber 
2008b).   
3 See Atkinson 2003, Duclos et al 2007 for related discussions.  
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implementation but thus far has largely been disconnected from the aforementioned 

literature.4 Our approach effectively melds these two approaches: We use a ‘counting’ 

based method to identify the poor, and propose ‘adjusted FGT’ measures that reflect the 

breadth, depth and severity of multidimensional poverty.5  

In particular, we introduce an intuitive approach to identifying the poor that uses 

two forms of cutoffs. The first is the traditional dimension-specific line or cutoff, which 

identifies whether a person is deprived with respect to that dimension. The second 

delineates how widely deprived a person must be in order to be considered poor.6 Our 

benchmark procedure uses a counting methodology in which the second cutoff is a 

minimum number of dimensions of deprivation; the procedure readily generalizes to 

situations in which dimensions have differential weights. This ‘dual cutoff’ 

identification system gives clear priority to those suffering multiple deprivations and 

works well in situations with many dimensions.  

Our adjusted FGT measures are easy to interpret and directly generalize the 

traditional FGT measures. The ‘adjusted headcount’ measure applies to ordinal data 

and provides information on the breadth of multiple deprivations of the poor. It has a 

natural interpretation as a measure of ‘unfreedom’ and generates a partial ordering that 

lies between first and second order dominance.  

The overall methodology satisfies useful properties including decomposability. It 

can be readily applied to existing data and can be unpacked to reveal the dimensional 

deprivations contributing most to poverty (a property not available to the standard 

headcount ratio). It embodies Sen’s (1993) view of poverty as capability deprivation 

                                                 
4 Examples from this literature include Mack and Lansley 1985, Erikson 1993, and Gordon 2003. Closely 
related papers include Chakravarty and D’Ambrosio 2006, Bossert et al 2007, Jayaraj and Subramanian 
2007, and Calvo 2008. 
5 The unidimensional FGT poverty measures were introduced in Foster, Greer, and Thorbecke, 1984. 
6 In this paper we use the term ‘deprived’ to indicate that a person’s achievement in a given dimension 
falls below its cutoff. If a person meets the multidimensional identification criterion, then the person is 
considered to be ‘poor’, and the condition is called ‘poverty’.  
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and is motivated by Atkinson’s (2003) discussion of counting methods for measuring 

deprivations.7 

An important consideration in developing a new methodology for measuring 

poverty is that it can be employed using real data to obtain meaningful results. We 

provide illustrative examples using data from the US and Indonesia. Our results suggest 

that the methodology we propose is intuitive, satisfies useful properties, and can be 

applied to good effect with real world data.  

We begin with some basic definitions and notation for multidimensional poverty in 

section 2, and then section 3 introduces our dual cutoff identification approach. The 

adjusted FGT family of poverty measures is presented in section 4, while section 5 

introduces general weights. Section 6 provides a list of axioms satisfied by the 

combined methodology, section 7 focuses on the special properties of the adjusted 

headcount ratio, and section 8 discusses the choice of cutoffs. Empirical applications 

are presented in section 9 while a final section offers some closing observations.  

2. NOTATION 

Let n represent the number of persons and let d>2 be the number of dimensions 

under consideration. Let y=[yij] denote the n×d matrix of achievements, where the 

typical entry yij>0 is the achievement of individual i=1,2,…,n in dimension j=1,2,…,d. 

Each row vector yi lists individual i’s achievements, while each column vector y∗j gives 

the distribution of dimension j achievements across the set of individuals. In what 

follows we assume that d is fixed and given, while n is allowed to range across all 

positive integers; this allows poverty comparisons to be made across populations of 

different sizes. Thus the domain of matrices under consideration is given by Y={y 

ndR+∈ : n>1}. For concreteness, we have assumed that individual achievements can be 

                                                 
7 The question of how to select capabilities or dimensions for evaluation is relevant but not addressed 
here: see Sen 1992, 1993, 2004a, 2004b, Atkinson et al 2002, Robeyns 2005 and Alkire 2008. 
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any non-negative real; our approach can easily accommodate larger or smaller domains 

where appropriate. Let zj>0 denote the cutoff below which a person is considered to be 

deprived in dimension j, and let z be the row vector of dimension-specific cutoffs. For 

any vector or matrix v, we use the expression |v| to denote the sum of all of its elements, 

while μ(v) represents the mean of v, or |v| divided by the total number of elements in v.  

A methodology M for measuring multidimensional poverty is made up of an 

identification method and an aggregate measure (Sen 1976). Following Bourguignon 

and Chakravarty (2003) we represent the former using an identification function 

ρ: dR+ × dR ++ →{0,1}, which maps from person i’s achievement vector d
i Ry +∈ and cutoff 

vector z in dR ++  to an indicator variable in such a way that ρ(yi;z)=1 if person i is poor 

and ρ(yi;z)=0 if person i is not poor.8 Applying ρ to each individual achievement vector 

in y yields the set Z⊆{1,…,n} of persons who are poor in y given z. The aggregation 

step then takes ρ as given and associates with the matrix y and the cutoff vector z an 

overall level M(y;z) of multidimensional poverty. The resulting functional relationship 

M:Y× dR ++ →R is called an index, or measure, of multidimensional poverty.9 A 

methodology is then given by M=(ρ,M). 

In what follows, it will prove useful to express the data in terms of deprivations 

rather than achievements. For any given y, let g0=[ gij
0] denote the 0-1 matrix of 

deprivations associated with y, whose typical element gij
0  is defined by gij

0=1 when 

yij<zj, while gij
0=0 otherwise. Clearly, g0 is an n×d matrix whose ijth entry is 1 when 

person i is deprived in the jth dimension, and 0 when the person is not. The ith row 

                                                 
8 Note that this representation assumes that the underlying identification method is individualistic (in that 
i’s poverty status depends on yi) and symmetric (in that it uses the same criterion for all persons). It 
would be interesting to explore a more general identification function which abstracts from these 
assumptions.  
9  A ‘poverty focus axiom’ ensures coherence between the identification function and the poverty 
measure; see section 6 below. 
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vector of g0, denoted gi
0 , is person i’s deprivation vector. From the matrix g0 we can 

construct a column vector c of deprivation counts, whose ith entry ci=| gi
0 | represents the 

number of deprivations suffered by person i. The vector c will be especially helpful in 

describing our method of identification. Notice that even when the variables in y are 

only ordinally significant, g0 and c are still well defined. In other words, g0 and c are 

identical for all monotonic transformations of yij and zj. 

When all variables in y are cardinal, the associated matrix of (normalised) gaps or 

shortfalls can provide additional information for poverty evaluation. For any y, let g1 be 

the matrix of normalised gaps, where the typical element is defined by gij
1 = gij

0(zj-yij)/zj. 

Clearly, g1 is an n×d matrix whose entries are nonnegative numbers less than or equal 

to 1, with gij
1  being a measure of the extent to which that person i is deprived in 

dimension j. In general, for any α>0, define the matrix gα by raising each entry of g1 to 

the power α; e.g. when α=2, the entry is gij
2=( gij

1 )2. This notation will be useful below 

in defining our generalisation of the FGT measures to the multidimensional 

environment.  

3. IDENTIFYING THE POOR 

Who is poor and who is not? Bourguignon and Chakravarty  (2003) contend that “a 

multidimensional approach to poverty defines poverty as a shortfall from a threshold on 

each dimension of an individual’s well being”.10 Hence a reasonable starting place is to 

compare each individual’s achievements against the respective dimension-specific 

cutoffs, and we follow that general strategy here. But dimension-specific cutoffs alone 

do not suffice to identify who is poor; we must consider additional criteria that look 

across dimensions to arrive at a complete specification of an identification method. We 

                                                 
10 See also Chakravarty et al 1998 and Tsui 2002 on this point.   
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now examine some potential candidates for ρ, using equal weights for clarity of 

presentation. 

The ‘unidimensional’ method aggregates all achievements into a single cardinal 

variable of ‘well-being’ or ‘income’ and uses an aggregate cutoff to determine who is 

poor. So, for example, if yi is a vector of commodities with market price vector p, one 

might define ρp(yi;z)=1 whenever pyi<pz, and ρp(yi;z)=0 otherwise. In this case, a person 

is poor if the monetary value of the achievement bundle is below the cost of the target 

bundle z. More generally, one might invoke a strictly increasing aggregator function u 

such that ρu(yi;z)=1 whenever u(yi)<u(z), and ρu(yi;z)=0 otherwise. However, the 

unidimensional form of identification entails a host of assumptions that restrict its 

applicability in practice, and its desirability in principle.11 From the perspective of the 

capability approach, a key conceptual drawback of viewing multidimensional poverty 

through a unidimensional lens is the loss of information on dimension-specific 

shortfalls: indeed, aggregation before identification converts dimensional achievements 

into one another without regard to dimension-specific cutoffs. If, as argued above, 

dimensions are independently valued and dimensional deprivations are inherently 

undesirable, then there are good reasons to look beyond a unidimensional approach to 

identification methods that focus on dimensional shortfalls. 

The most commonly used identification criterion of this type is called the union 

method of identification.12 In this approach, a person i is said to be multidimensionally 

poor if there is at least one dimension in which the person is deprived (i.e., ρ(yi;z)=1 if 
                                                 
11 One common assumption is that prices exist and are adequate normative weights for the dimensions; 
however, as noted by Tsui 2002, this assumption is questionable. Prices may be adjusted to reflect 
externalities, but exchange values do not and ‘indeed cannot give…interpersonal comparisons of welfare 
or advantage’ (Sen 1997, p.208). Subjective poverty lines cannot replace prices for all attributes, and 
markets may be missing or imperfect (Bourguignon and Chakravarty 2003, Tsui 2002). In practice, 
income may not be translated into basic needs (Ruggeri-Laderchi, Saith and Stewart 2003, Sen 1980). 
Finally, aggregating across dimensions entails strong assumptions regarding cardinality and 
comparability, which are impractical when data are ordinal (Sen 1997).  
12 Atkinson 2003 first applied the terms ‘union’ and ‘intersection’ in the context of multidimensional 
poverty.   
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and only if ci>1). If sufficiency in every dimension were truly essential for avoiding 

poverty, this approach would be quite intuitive and straightforward to apply. However, 

when the number of dimensions is large, the union approach will often identify most of 

the population as being poor, including persons whom many would not consider to be 

poor. For example, deprivation in certain single dimensions may be reflective of 

something other than poverty. Consequently, a union based poverty methodology may 

not be helpful for distinguishing and targeting the most extensively deprived. For these 

reasons, the union method, though commonly used, is not appropriate in all 

circumstances. 

The other multidimensional identification method is the intersection approach, 

which identifies person i as being poor only if the person is deprived in all dimensions 

(i.e., ρ(yi;z)=1 if and only if ci=d). This criterion would accurately identify the poor if 

sufficiency in any single dimension were enough to prevent poverty; indeed, it 

successfully identifies as poor a group of especially deprived persons. However, it 

inevitably misses persons who are experiencing extensive, but not universal, 

deprivation (for example, a person with insufficiency in every other dimension who 

happens to be healthy). This creates a different tension–that of considering persons to 

be non-poor who evidently suffer considerable multiple deprivations. 

A natural alternative is to use an intermediate cutoff level for ci that lies 

somewhere between the two extremes of 1 and d. For k=1,…,d, let ρk be the 

identification method defined by ρk(yi;z)=1 whenever ci>k, and ρk(yi;z)=0 whenever 

ci<k. In other words, ρk identifies person i as poor when the number of dimensions in 

which i is deprived is at least k; otherwise, if the number of deprived dimensions falls 

below the cutoff k, then i is not poor according to ρk. Since ρk is dependent on both the 

within dimension cutoffs zj and the across dimension cutoff k, we will refer to ρk as the 
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dual cutoff method of identification.13 Notice that ρk includes the union and intersection 

methods as special cases where k=1 and k=d. Identification could also be defined using 

a strict inequality (so that ρk(yi;z)=1 if and only if ci>k), yielding the same set Z at a 

slightly smaller k. 

Similar methods of identification can be found in the literature, albeit with 

different motivations. For example, Mack and Lansley Poor Britain (1985) identified 

people as poor if they were poor in 3 or more out of 26 deprivations. The UNICEF 

Child Poverty Report 2003 identified any child who was deprived with respect to two 

or more dimensions as being in extreme poverty (Gordon, et al., 2003). However, as a 

general methodology for identifying the poor, the dual cutoff approach has not been 

explicitly formulated in the literature, nor have its implications for multidimensional 

poverty measures – or their axioms – been explored.14 

The dual cutoff method has a number of characteristics that deserve mention. First, 

it is ‘poverty focused’ in that an increase in an achievement level yij of a non-poor 

person leaves its value unchanged. Second, it is ‘deprivation focused’ in that an 

increase in any non-deprived achievement yij≥zj leaves the value of the identification 

function unchanged; in words, a person’s poverty status is not affected by changes in 

the levels of non-deprived achievements. This latter property separates ρk from the 

unidimensional method ρu, which allows a higher level of a non-deprived achievement 

to compensate for other dimensional deprivations in deciding who is poor or non-poor. 

Finally, the dual cutoff identification method can be meaningfully used with ordinal 

data, since a person’s poverty status is unchanged when a monotonic transformation is 

                                                 
13 See section 8 on the choice of k (and z). 
14 An analogous approach has been used in the measurement of chronic poverty, with duration in that 
context corresponding to breadth in the present case. See Foster 2007. 
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applied to an achievement level and its associated cutoff.15 This rules out the typical 

unidimensional ρu, which aggregates dimensions before identifying the poor, and thus 

can be altered by monotonic transformations.  

In the next section, we introduce multidimensional poverty measures based on the 

FGT class that use the ρk identification method and its associated set Zk={i : ρk(yi;z)=1} 

of poor people. Accordingly, we will make use of some additional notation that censors 

the data of non-poor persons. Let gα(k) be the matrix obtained from gα by replacing its 

ith row gij
α  with a vector of zeros whenever ρk(yi;z)=0, so that gij

α(k) = gij
αρk(yi;z). As the 

cutoff k rises from 1 to d, the number of nonzero entries in the associated matrix gα(k) 

falls, reflecting the progressive censoring of data from persons who are not meeting the 

dimensional poverty requirement presented by ρk. It is clear that the union specification 

k=1 does not alter the original matrix at all; consequently, gα(1)=gα. The intersection 

specification k=d removes the data of any person who is not deprived in all d 

dimensions; in other words, when the matrix gα(d) is used, a person deprived in just a 

single dimension is indistinguishable from a person deprived in d–1 dimensions. When 

k=2,…,d–1, the dual cutoff approach provides an intermediate option between the 

union and intersection methods as reflected in the matrix gα(k). 

4. MEASURING POVERTY 

Suppose, then, that a particular identification function ρk has been selected. Which 

multidimensional poverty measure M(y;z) should be used with it to form a methodology 

M? A natural place to begin is with the percentage of the population that is poor. The 

headcount ratio H=H(y;z) is defined by H=q/n, where q=q(y;z)=   Σi=1
n ρk ( yi, z)  is number 

                                                 
15 In other words, ρk(yi;z)=ρk(yi';z') where for each j=1,…,d we have y'ij=fj(yij) and zj'=fj(zj) for some 
increasing function fj. It would be interesting to characterize the identification methods ρ satisfying the 
above three properties. 
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of persons in the set Zk, and hence the number of the poor identified using the dual 

cutoff approach. The resulting methodology (ρk,H) is entirely analogous to the income 

headcount ratio and inherits the virtue of being easy to compute and understand, and 

the weakness of being a crude, or partial, index of poverty.16 Notice, though, that an 

additional problem emerges in the multidimensional setting. If a poor person becomes 

deprived in a new dimension, H remains unchanged. This violates what we will call 

‘dimensional monotonicity’ below, which says that if poor person i becomes newly 

deprived in an additional dimension, then overall poverty should increase. Also, H 

cannot be broken down to show how much each dimension contributes to poverty.  

To reflect these concerns, we can include additional information on the breadth of 

deprivation experienced by the poor. Define the censored vector of deprivation counts 

c(k) by ci(k)=ρk(yi;z)ci for i=1,…,n. Notice that ci(k)/d represents the share of possible 

deprivations experienced by a poor person i, and hence the average deprivation share 

across the poor is given by A=|c(k)|/(qd). This partial index conveys relevant 

information about multidimensional poverty, namely, the fraction of possible 

dimensions d in which the average poor person endures deprivation. Consider the 

following multidimensional poverty measure M0(y;z) which combines information on 

the prevalence of poverty and the average extent of a poor person’s deprivation. 

DEFINITION 1:  The adjusted headcount ratio is given by M0=HA=μ(g0(k)). 

As a simple product of the two partial indices H and A, the measure M0 is sensitive 

to the frequency and the breadth of multidimensional poverty. In particular, the 

methodology (ρk,M0) clearly satisfies dimensional monotonicity, since if a poor person 

becomes deprived in an additional dimension, then A rises and so does M0. The 

equivalent definition M0=μ(g0(k)) interprets M0 as the total number of deprivations 

                                                 
16 A partial index provides information on only one aspect of poverty. See Foster and Sen 1997. 
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experienced by the poor, or |c(k)|=|g0(k)|, divided by the maximum number of 

deprivations that could possibly be experienced by all people, or nd. The adjusted 

headcount ratio can be used with purely ordinal data, which arises frequently in 

multidimensional approaches based on capabilities. This important characteristic of the 

measure will be discussed at some length in a separate section below. 

The methodology (ρk,M0) is based on a dichotomisation of data into deprived and 

non-deprived states, and so it does not make use of any dimension-specific information 

on the depth of deprivation. Consequently it will not satisfy the traditional 

monotonicity requirement that poverty should increase as a poor person becomes more 

deprived in any given dimension. To develop a methodology that is sensitive to the 

depth of deprivation (when data are cardinal), we return to the censored matrix of 

normalised gaps g1(k). Let G be the average poverty gap across all instances in which 

poor persons are deprived, given by G=|g1(k)|/|g0(k)|. Consider the following 

multidimensional poverty measure M1(y;z) which combines information on the 

prevalence of poverty, the average range of deprivations and the average depth across 

deprived dimensions.  

DEFINITION 2: The adjusted poverty gap is given by M1=HAG=μ(g1(k)). 

The adjusted poverty gap is thus the product of the adjusted headcount ratio M0 

and the average poverty gap G. The equivalent definition M1=μ(g1(k)) says that the 

adjusted poverty gap is the sum of the normalised gaps of the poor, or |g1(k)| divided by 

the highest possible sum of normalised gaps, or nd. Under methodology (ρk,M1) if the 

deprivation of a poor person deepens in any dimension, then the respective gij
1 (k) will 

rise and hence so will M1. Consequently, (ρk,M1) satisfies the monotonicity axiom (as 

defined below). However, it is also true that the increase in a deprivation has the same 
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impact no matter whether the person is very slightly deprived or acutely deprived in 

that dimension. One might argue that the impact should be larger in the latter case. 

Consider the censored matrix g2(k) of squared normalised shortfalls. This matrix 

provides information on the severity of deprivations of the poor (as measured by the 

square of their normalised shortfalls). Rather than using the matrix g1(k) to supplement 

the information of M0 (as was done in M1), we can use the matrix g2(k) which 

suppresses the smaller gaps and emphasises the larger ones. The average severity of 

deprivations, across all instances in which poor persons are deprived, is given by 

S=|g2(k)|/|g0(k)|. The following multidimensional poverty measure M2(y;z) combines 

information on the prevalence of poverty and the range and severity of deprivations. 

DEFINITION 3: The adjusted FGT measure is given by M2=HAS. 

M2 is thus the product of the adjusted headcount ratio M0 and the average severity 

index S. Its alternative definition M2=μ(g2(k)) indicates that M2 is the sum of the 

squared normalised gaps of the poor, or |g2(k)|, divided by the highest possible sum of 

the squared normalised gaps, or nd. Under (ρk,M2), a given-sized increase in a 

deprivation of a poor person will have a greater impact the larger the initial level of 

deprivation. Consequently, the methodology satisfies the transfer property (as defined 

below), and is sensitive to the inequality with which deprivations are distributed among 

the poor, and not just their average level. Indeed, M2=(M1)2 + V, where V is the 

variance across all normalised gaps.17 

We generalise M0, M1, and M2 to a class Mα(y;z) of multidimensional poverty 

measures associated with the unidimensional FGT class.  

                                                 
17 In other words, V=ΣiΣj(μ(g1) - gij

1 )2/(nd). The formula can also be expressed as M2=(M1)2[1 + C2], 
where C2=V/(μ(g1))2 is the squared coefficient of variation inequality measure. This is analogous to a 
well-known formula for the FGT measure P2.  
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DEFINITION 4: The adjusted FGT class of multidimensional poverty measures are 

given by Mα=μ(gα(k)) for α>0.  

In other words, Mα is the sum of the α powers of the normalised gaps of the poor, or 

|gα(k)|, divided by the highest possible value for this sum, or nd. The methodology 

employing the dual cutoff function ρk and an associated FGT measure Mα will be 

denoted by Mkα=(ρk,Mα).18  

5. GENERAL WEIGHTS 

By defining a poverty measurement methodology based on deprivation counts and 

simple averages, we have implicitly assigned an equal weight of wj=1 to each 

dimension j. This is appropriate when the dimensions have been chosen to be of 

relatively equal importance. As Atkinson et al observe, equal weighting has an intuitive 

appeal: “the interpretation of the set of indicators is greatly eased where the individual 

components have degrees of importance that, while not necessarily exactly equal, are 

not grossly different” (2002, p. 25; see also Atkinson 2003 p. 58).  

Yet in other settings there may be good arguments for using general weights. 

Indeed, the choice of dimensional weights may be seen as a value judgement which 

should be open to public debate and scrutiny: “It is not so much a question of holding a 

referendum on the values to be used, but the need to make sure that the weights – or 

ranges of weights – used remain open to criticism and chastisement, and nevertheless 

enjoy reasonable public acceptance” (Foster and Sen, 1997). We now show how 

weighted versions of ρk and Mα can be defined for a given set of dimensional weights.19  

                                                 
18 Note that each choice of ρk gives rise to a potentially different functional form for Mα (or H), and 
hence a more precise notation would be Mkα (or Hk) for the measures and (ρk,Mkα) (or (ρk,Hk)) for the 
methodologies. 
19 Techniques for setting weights across dimensions include statistical, survey-based, normative-
participatory, or frequency-based, or a combination of these. See Sen 1996, Brandolini and D’Alessio 
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Let w be a d dimensional vector of positive numbers summing to d, whose jth 

coordinate wj is viewed as the weight associated with dimension j. Define gα=[ gij
α ] to be 

the n×d matrix whose typical element is gij
α =wj((zj-yij)/zj)α whenever yij<zj, and gij

α =0 

otherwise. The identification step uses the rows gi
0 of the weighted deprivation matrix 

g0 to construct the vector c of weighted deprivation counts, whose ith entry ci=| gi
0 | is the 

sum of weights for the dimensions in which i is deprived. Each ci varies between 0 and 

d, and so the associated dimensional cutoff is taken to be a real number k satisfying 0<k 

≤ d. The dual cutoff identification method ρk associated with w is defined by ρk(yi;z)=1 

whenever ci>k, and ρk(yi;z)=0 otherwise. For k≤minj wj, we obtain the union 

identification case, and for k=d, the intersection; thus ρk includes both of these methods 

given any w.  

Notice that the specification wj=1 for j=1,…,d corresponds to the previous case 

where each dimension has equal weight and the dimensional cutoff k is an integer. The 

alternative specification w1=d/2 and w2=…=wd=d/(2(d-1)) is an example of a nested 

weighting structure, in which the overall weight is first split equally between dimension 

1 and the remaining (d-1) dimensions, and then the weight allotted the second group is 

allocated equally across the (d-1) dimensions. A cutoff of k=d/2, for example, would 

then identify as poor anyone who is either deprived in dimension 1 or in all the 

remaining dimensions, while a slightly higher value of k would require deprivation in 

the first dimension and in one other. 

The weighted multidimensional poverty indices Mα are defined in a similar fashion 

as before. The censored matrices gα(k) are obtained by replacing the entries of non-poor 

persons with 0, and the family of adjusted FGT measures associated with w is defined 

                                                                                                                                              
1998, Decanq and Lugo 2008, and Alkire and Clark 2009. In practical applications involving weights, it 
may be desirable to perform robustness tests. See Foster et al 2009. 
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by Mα=μ(gα(k)) for α>0.20 The overall weighted methodology is then denoted by 

Mkα=(ρk,Mα). The weighted headcount ratio is H=q/n, where q=   Σi=1
n ρk ( yi , z)  is the 

number of poor persons identified by the weighted ρk, and the associated weighted 

methodology is (ρk,H).  

6. PROPERTIES 

We now evaluate our new methodologies using axioms for multidimensional 

poverty measurement.21 The axiomatic framework for multidimensional measurement 

draws heavily upon its unidimensional counterpart. However, there is one key 

distinction: in the multidimensional context, the identification step is no longer 

elementary, and axioms must be viewed as restrictions on the overall methodology 

M=(ρ,M). This is less important for certain axioms such as ‘symmetry’ given below, 

which are satisfied by M=(ρ,M) for any given ρ whenever M has a requisite 

characteristic. However, other axioms such as ‘poverty focus’ given below, make 

explicit use of ρ in their definition, and could be satisfied for M=(ρ,M) and violated for 

an alternative methodology M'=(ρ',M) with the same measure M. This point has not 

been emphasized in the previous measurement literature, which has focused on the 

union identification approach and defined axioms relative to this particular 

specification. In contrast, our axioms can be used to evaluate any methodology, 

including ones that employ a dual cutoff identification approach. 

A key first property for M is ‘decomposability’ which requires overall poverty to 

be the weighted average of subgroup poverty levels, where weights are subgroup 

population shares. In symbols, let x and y be two data matrices and let (x,y) be the 

                                                 
 
21 This discussion builds upon Chakravarty et al 1998, Tsui 2002, Atkinson 2003, Bourguignon and 
Chakravarty 2003, Duclos, Sahn and Younger 2006, Chakravarty and Silber 2008, and Maasoumi and 
Lugo 2008.  
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matrix obtained by merging the two populations. Denote by n(x) the number of persons 

in x (and similarly for n(y) and n(x,y)).  

DECOMPOSABILITY:  For any two data matrices x and y we have 

  M(x,y;z)=
  

n(x)
n(x, y)

M(x;z) +
n(y)

n(x, y)
M(y;z). 

Repeated application of this property shows that the decomposition holds for any 

number of subgroups, making it an extremely useful property for generating profiles of 

poverty and targeting high poverty populations.22 If we apply a decomposable 

methodology to a replication x of y, which has the form x=(y,y,…,y), it follows that x 

has the same poverty level as y, and hence the following axiom must hold. 

REPLICATION INVARIANCE: If x is obtained from y by a replication, then 

M(x;z)=M(y;z). 

This property ensures that poverty is evaluated relative to the population size, so as to 

allow meaningful comparisons across different sized populations.  

Now let x be obtained from y by a permutation, by which it is meant that x=Π y, 

where Π is some n×n permutation matrix.23 This has the effect of reshuffling the 

vectors of achievements across people.  

SYMMETRY: If x is obtained from y by a permutation, then M(x;z)=M(y;z). 

According to symmetry, if two or more persons switch achievements, measured 

poverty is unaffected. This ensures that M does not place greater emphasis on any 

person or group of persons.  

                                                 
22 Any decomposable methodology also satisfies ‘subgroup consistency’ which requires overall poverty 
to increase when poverty rises in the first subgroup and does not fall in the second (given fixed 
population sizes). As discussed in Foster, Greer and Thorbecke 1984 and Foster and Sen 1997, it is this 
property that allows the coordination of local and national poverty alleviation policies. 
23 A permutation matrix Π is square matrix with a single ‘1’ in each row and each column, and the rest 
‘0’s. 
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The traditional focus axiom requires a poverty measure to be independent of the 

data of the non-poor, which in the unidimensional or income poverty case is simply all 

incomes at or above the single poverty line.24 In a multidimensional setting, a non-poor 

person could be deprived in several dimensions while a poor person might not be 

deprived in all dimensions. There are two forms of multidimensional focus axioms, one 

concerning the poor, and the other pertaining to deprived dimensions. We say that x is 

obtained from y by a simple increment if xij>yij for some pair (i, j)=(i', j') and xij=yij for 

every other pair (i, j) ≠ (i', j'). We say it is a simple increment among the non-poor if i' 

is not in Z for y (whether or not i' is deprived in j'); it is a simple increment among the 

nondeprived if yij>zj for (i, j)=(i', j'), whether or not i' happens to be poor. 

POVERTY FOCUS: If x is obtained from y by a simple increment among the non-

poor, then M(x;z)=M(y;z). 

DEPRIVATION FOCUS: If x is obtained from y by a simple increment among the 

nondeprived, then M(x;z)=M(y;z). 

In the poverty focus axiom, the set Z of the poor is identified using ρ, and M is 

required to be unchanged when anyone outside of Z experiences a simple increment. 

This is a basic requirement that ensures that M measures poverty in a way that is 

consistent with the identification method ρ. In the deprivation focus axiom, the simple 

increment is defined independently of the particular identification method employed 

and is applicable to all nondeprived entries in y – poor and non-poor alike.  

It is possible for a multidimensional poverty methodology to follow the poverty 

focus axiom without satisfying the deprivation focus axiom. Consider, for example, a 

unidimensional approach that, say, adds dimensional achievements to create an 

aggregate variable, identifies the poor using an aggregate cutoff, and employs a 

                                                 
24 An alternative definition would consider persons strictly above the cutoff to be non-poor. See Foster 
and Sen 1997 p.175.  
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standard income poverty measure on the aggregate variable. Given the assumed 

tradeoffs across dimensions, it is possible for a poor person to be lifted out of poverty 

as a result of an increment in a nondeprived dimension, thus lowering the measured 

level of poverty and violating deprivation focus. Conversely, the deprivation focus 

axiom may be satisfied without accepting the poverty focus axiom: for example if the 

average gap μ(g1) over all deprivations (poor or non-poor) is taken to be the measure 

and yet an intersection approach to identification is used.  

The two forms of focus axioms are related in certain cases. When union 

identification is used, it can be shown that the deprivation focus axiom implies the 

poverty focus axiom. When an intersection approach is used, the poverty focus axiom 

implies the deprivation version. Bourguignon and Chakravarty (2003), for example, 

assume the deprivation focus axiom (their ‘strong focus axiom’) along with union 

identification, and so their methodology automatically satisfies the poverty focus 

axiom. 

The next set of properties ensures that methodology M has the proper orientation. 

Consider the following extensions to the definition of a simple increment: We say that x 

is obtained from y by a deprived increment among the poor if in addition to being a 

simple increment we have zj'>yi'j' for i' ∈ Z; it is a dimensional increment among the 

poor if it satisfies xi'j'>zj'>yi'j' for i' ∈ Z. In other words, a deprived increment among the 

poor improves a deprived achievement of a poor person, while a dimensional increment 

among the poor completely removes the deprivation. Consider the following properties. 

WEAK MONOTONICITY: If x is obtained from y by a simple increment, then 

M(x;z)<M(y;z). 

MONOTONICITY: M satisfies weak monotonicity and the following: if x is obtained 

from y by a deprived increment among the poor then M(x;z)<M(y;z). 
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DIMENSIONAL MONOTONICITY: If x is obtained from y by a dimensional increment 

among the poor, then M(x;z)<M(y;z). 

Weak monotonicity ensures that poverty does not increase when there is an 

unambiguous improvement in achievements. Monotonicity additionally requires 

poverty to fall if the improvement occurs in a deprived dimension of a poor person. 

Dimensional monotonicity specifies that poverty should fall when the improvement 

removes the deprivation entirely; it is clearly implied by monotonicity.  

The weak monotonicity and focus axioms ensure that a measure M achieves its 

highest value at x0 in which all achievements are 0 (and hence each person is 

maximally deprived), while it achieves its lowest value at any xz in which all 

achievements reach or exceed the respective deprivation cutoffs given in z (and hence 

no one is deprived). ‘Nontriviality’ ensures that these maximum and minimum values 

are distinct, while ‘normalisation’ goes further and assigns a value of 1 to x0 and a 

value of 0 to each xz.   

NONTRIVIALITY: M achieves at least two distinct values. 

NORMALISATION: M achieves a minimum value of 0 and a maximum value of 1. 

One can also explore how a methodology regards changes in inequality among the 

poor. The first axiom of this sort is based on an ‘averaging’ of the achievement vectors 

of two poor persons i and i', in which person i receives λ>0 of the first vector and 1-

λ>0 of the second with the shares reversed for person i'. Following Kolm (1977) these 

d many ‘progressive transfers’ between the poor represent an unambiguous decrease in 

inequality, which some would argue should be reflected in a lower or equal value of 

multidimensional poverty. In general, we say that x is obtained from y by an averaging 
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of achievements among the poor if x=By for some n×n bistochastic matrix25 B satisfying 

bii=1 for every non-poor person i in y. Note that the requirement bii=1 ensures that all 

the non-poor columns in y are unaltered in x, while the fact that B is bistochastic 

ensures that the poor columns in x are obtained as a convex combination of the poor 

columns in y, and hence inequality has fallen or remained the same. Consider the 

following property. 

WEAK TRANSFER: If x is obtained from y by an averaging of achievements among 

the poor, then M(x;z)<M(y;z). 

This axiom ensures that an averaging of achievements among the poor generates a 

poverty level that is less than or equal to the original poverty level.  

A second axiom relating poverty to inequality has its origins in the work of 

Atkinson and Bourguignon (1982). The concept is based on a different sort of 

‘averaging’ across two poor persons, whereby one person begins with weakly more of 

each achievement than a second person, but then switches one or more achievement 

levels with the second person so that this ranking no longer holds. Motivated by Boland 

and Proschan (1988), we say x is obtained from y by a simple rearrangement among the 

poor if there are two persons i and i' who are poor in y, such that for each j either  

(xij,xi'j)=(yij,yi'j) or (xij,xi'j)=(yi'j,yij), and for every other person i"≠i,i' we have  

xi"j=yi"j. In other words, a simple rearrangement among the poor reallocates the 

achievements of the two poor persons but leaves the achievements of everyone else 

unchanged. We say x is obtained from y by an association decreasing rearrangement 

among the poor if, in addition, the achievement vectors of i and i' are comparable by 

vector dominance in y but are not comparable in x. The following property ensures that 

                                                 
25 A bistochastic matrix is a nonnegative square matrix having the property that the sum of the elements 
in each row (or column) is 1.  
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reducing inequality in this way generates a poverty level that is less than or equal to the 

original level.  

WEAK REARRANGEMENT: If x is obtained from y by an association decreasing 

rearrangement among the poor, then M(x;z)<M(y;z). 

The following result establishes the axiomatic characteristics of our 

methodologies. 

Theorem 1  For any given weighting vector and cutoffs, the methodology Mkα 

=(ρk,Mα) satisfies: decomposability, replication invariance, symmetry, poverty and 

deprivation focus, weak and dimensional monotonicity, nontriviality, normalisation, 

and weak rearrangement for α>0; monotonicity for α>0; and weak transfer for α>1.  

Proof  In the Appendix 

Note that if the number of dimensions were set to d=1, methodology Mkα would 

naturally reduce to the single cutoff identification method and the standard single 

dimensional Pα measures; the poverty and deprivation focus axioms would become the 

usual focus axiom; weak rearrangement would be trivially satisfied; and the 

conclusions of Theorem 1 would reduce to the standard list of axioms satisfied by the 

Pα measures. 

The following formulas for Mkα are also helpful in empirical applications:  

(1a)   Mα(y;z)=Σi μ( gi
α (k))/n  

(1b)   Mα(y;z)=Σj wj μ( g∗ j
α (k)) 

where gi
α (k) is the ith row, and g∗ j

α (k) is the jth column, of the censored matrix gα(k).  

Since μ(gi
α (k))=Mα(yi;z) is person i’s poverty level, (1a) says that overall 

poverty is the average of the individual poverty levels. It is the natural extension of 

decomposability to singleton subgroups. Expression (1b) provides an analogous 
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breakdown across dimensions, but with an important difference. The term μ( g∗ j
α (k)) 

depends on all dimensions, not just on j, and so (1b) is not a complete decomposition of 

Mα by dimension. However, once the identification step is complete, (1b) allows total 

poverty to be viewed as a weighted average of dimensional values μ( g∗ j
α (k)), and we 

can interpret wjμ( g∗ j
α (k))/Mα(y;z) as the (post-identification) contribution of dimension 

j.26  

How does the methodology Mkα compare to existing approaches? Several classes 

of multidimensional poverty measures can be found in the literature, including those of 

Tsui 2002 and Bourguignon and Chakravarty 2003. However, virtually all existing 

measures have been defined only for union identification, and would violate the 

poverty focus axiom if paired with other identification functions.27 Our methodology 

uses identification functions that include the union and intersection approaches but also 

could fall between them, and constructs new poverty measures that are specifically 

appropriate for our identification functions in that the resulting methodology satisfies 

the poverty focus axiom. 

7. THE CASE OF THE ADJUSTED HEADCOUNT RATIO 

The methodology Mk0=(ρk,M0) has several characteristics that merit special 

attention. First, it can accommodate the ordinal (and even categorical) data that 

commonly arise in multidimensional settings. This means that the methodology 

delivers identical conclusions when monotonic transformations are applied to both 

                                                 
26 In the presence of union identification, formula (1b) becomes a true ‘factor decomposability’ as 
defined by Chakravarty et al 1998; in general, though, (1b) does not account for dimensional 
contributions to poverty via the identification step. It may well be possible to account for total 
contributions using other methods, such as a Shapley-based approach; however, this is a topic for future 
research. 
27 Union based versions of certain members of Mα can be obtained from classes given by Brandolini and 
D’Alessio 1998, Bourguignon and Chakravarty 2003, Deutsch and Silber 2005, and Chakravarty and 
Silber 2008. A related measure of social exclusion is found in Chakravarty and D’Ambrosia 2006.  



Alkire and Foster    Multidimensional Poverty Measurement 

OPHI Working Paper No 32  www.ophi.org.uk 

variables and cutoffs. In symbols, let fj denote the strictly increasing function on 

variable j=1,…,d. Then where f(yi) is the vector whose jth entry is fj(yij), and f(z) is the 

vector whose jth entry is fj(zj), we have ρk(f(yi);f(z))=ρk(yi;z) for i=1,…,n. In other words, 

identification is unaffected by monotonic transformations, which is clearly relevant for 

consistent targeting using ordinal data. Similarly, where f(y) is the matrix whose ijth 

entry is fj(yij) we have M0(f(y);f(z))=M0(y;z), which indicates that the poverty value is 

also unchanged.28 These characteristics of Mk0=(ρk,M0) are especially relevant when 

poverty is viewed from the capability perspective, since many key functionings are 

fundamentally ordinal (or categorical) variables. 

Virtually every other multidimensional methodology defined in the literature 

(including our (ρk,Mα) for α>0) lacks one or both forms of invariance, and for most 

measures, the underlying ordering is not even preserved, i.e., M(x;z)>M(y;z) and 

M(f(x);f(z))<M(f(y);f(z)) can both be true. Special care must be taken not to use 

measures whose poverty judgments are meaningless (i.e., reversible under monotonic 

transformations) when variables are ordinal. The methodology (ρk,H) survives this test. 

But it does so at the cost of violating dimensional monotonicity, among other 

properties. In contrast, (ρk,M0) provides both meaningful comparisons and favourable 

axiomatic properties and is arguably a better choice when data are ordinal.  

Second, the measure M0 from the methodology Mk0 conveys tangible 

information on the deprivations of the poor in a transparent way. Some measures have 

aggregate values whose meaning can only be found relative to other values. M0 is the 

frequency of poverty H times the average breadth A of deprivation among the poor or, 

equivalently, the aggregate deprivations experienced by the poor as a share of the 

                                                 
28 The set of the poor and the measured value of poverty are therefore meaningful in the sense of Roberts 
1979. Note that M0 can also be applied to categorical variables (which do not necessarily admit a unique 
ordering across categories), so long as achievements can be separated into deprived and nondeprived 
sets. 
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maximum possible range of deprivations across society. Its simple structure ensures 

that M0 is easy to interpret and straightforward to calculate.  

Breakdown (1b) becomes especially useful in this case, since the term μ( g∗ j
0 (k)) 

is the percentage Hj of the population that is both deprived in dimension j and poor, and 

M0(y;z)=Σj wjHj is the weighted average of these dimensional headcounts. Dimension 

j’s contribution to overall M0 poverty is disproportionately high (i.e., exceeds its 

baseline weight wj) exactly when Hj exceeds its average value M0. The headcount 

methodology (ρk,H), by comparison, has no such dimensional breakdown. 

Third, the adjusted headcount methodology is fundamentally related to the 

axiomatic literature on freedom. In a key paper, Pattanaik and Xu (1990) explore a 

‘counting’ approach to measuring freedom that ranks opportunity sets according to the 

number of (equally weighted) options they contain. Now suppose that our matrix y has 

been normatively constructed so that each dimension represents an equally valued 

functioning. Then deprivation in a given dimension is suggestive of capability 

deprivation, and since M0 counts these deprivations, it can be viewed as a measure of 

‘unfreedom’ analogous to Pattanaik and Xu. Indeed, the link between (ρk,M0) and 

unfreedom can be made precise, yielding a result that simultaneously characterizes ρk 

and M0 using axioms adapted from Pattanaik and Xu.29 This general approach also has 

an appealing practicality: as suggested by Anand and Sen (1997), it may be more 

tractable to monitor a small set of deprivations than a large set of attainments. 

8. CHOOSING CUTOFFS 

To implement our methodology, two general forms of cutoffs must be chosen: 

the within dimension cutoffs zj and the cross dimensional cutoff k. We now briefly 

                                                 
29 For a fuller discussion see Alkire and Foster 2007. 
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discuss the practical and conceptual considerations surrounding cutoff selection, and 

also provide some elementary dominance results for variable k. 

The dual cutoffs in our approach are quite different from one another. 

Dimensional cutoffs like zj have long been used to identify deprivations in a dimension 

of interest. Consequently, in many variables there is a general understanding of what a 

given cutoff level means and how to go about selecting it.30 To be sure, any specific 

choice of z, no matter how well grounded, is somewhat arbitrary and should be subject 

to robustness tests – say, by evaluating poverty levels for a grid of nearby cutoffs.31 But 

selecting reasonable levels for z should not be an unduly taxing exercise. 

The cross-dimensional cutoff k, by comparison, may seem less tangible, since it 

resides in the space between dimensions rather than within a specific domain. This 

sense is reinforced by the relative lack of attention that has been paid to the 

identification step: apart from the union and intersection approaches, specific 

multidimensional identification procedures are not typically given in the literature. But 

the identification method ρk and its parameter k provide a concrete solution to 

identification that can be readily grasped, especially in the equal-weighted ‘counting’ 

case that focuses on the number of dimensions in which people are deprived. A person 

with a greater multiplicity of deprivations is given higher priority than someone with 

only one or two deprivations; setting k establishes the minimum eligibility criteria for 

poverty in terms of breadth of deprivation and reflects a judgement regarding the 

maximally acceptable multiplicity of deprivations.  

The choice of k could therefore be a normative one, with k reflecting the 

minimum deprivation count required to be considered poor in a specific context under 

                                                 
30 On the setting of poverty lines see Sen 1981, Ravallion 1994, Foster and Sen 1997, Bourguignon and 
Chakravarty 2003, Foster 2006. 
31Alternatively, we might draw on the multidimensional dominance tests in the literature (Duclos et al 
2007). 
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consideration. As noted by Tsui, “In the final analysis, how reasonable the 

identification rule is depends, inter alia, on the attributes included and how imperative 

these attributes are to leading a meaningful life.” (2002 p. 74). If, for example, 

deprivation in each dimension meant a terrible human rights abuse and data were 

highly reliable, then k could be set at the minimal union level to reflect the fact that 

human rights are each essential, have equal status, and cannot be positioned in a 

hierarchical order. There may also be a role for empirical evidence in the setting of k. If 

studies were to reveal that persons enjoying six functionings tended not to value a 

seventh, this might suggest setting a cutoff at a k of two or more dimensions rather than 

the union level of one.  

 The choice of k could also be chosen to reflect specific policy goals and 

priorities. For example, in order to focus on the multidimensionally poorest decile of 

the population, one could select a k cutoff whose resulting headcount was closest to 

10%. By changing k one might be able to ‘zoom in’ to analyse a smaller group with 

greater multiplicity of deprivations or ‘zoom out’ to consider a wider population with 

fewer. Relatedly, if a budget constraint restricted coverage to a certain number of 

persons, then one could use k to target those suffering the greatest breadth of 

deprivation.  Thus the choice of k could be a useful policy tool.  

No matter which technique is finally employed in selecting the parameter k, it 

clearly makes sense to check robustness for values near the original cutoff, or even to 

opt for dominance tests that cover all possible values of k. Suppose that weights w and 

dimensional cutoff z have been selected, and let y and y' be any two data matrices. We 

say that y Mα dominates y', written yMαy', if multidimensional poverty in y' is at least as 

high as that in y according to all methodologies (ρk,Mα) with k ∈ (0,d], and is strictly 

higher for some k. We define yHy' in an analogous way. The easiest way to empirically 
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implement these partial orderings is to calculate poverty levels at an appropriately 

defined grid of k values (namely, k=Σj∈ J wj for every nonempty J⊆{1,…,d}, which for 

equal weights reduces to k=1,…,d). However, in the cases of (ρk,M0) and (ρk,H), one 

can obtain useful characterization results for the associated partial orderings. 

 Let c=(c1,…,cd) be the vector of weighted deprivation counts for the matrix y. 

Then the associated vector of weighted attainments, denoted by a=(a1,…,an), can be 

defined by ai=(d-ci) for each i=1,…,n. Clearly a is a unidimensional distribution and as 

such has a cumulative distribution function Fa. Let FD and SD denote the usual first 

order and second order stochastic dominance partial orderings over attainment 

vectors.32 We have the following result. 

Theorem 2  Where a and a' are the respective attainment vectors for y and y' in Y, we 

have:  

 (i) yHy'⇔aFDa' 

 (ii) aFDa'⇒yM0y'⇒ aSDa', and the converse does not hold. 

Proof  In the Appendix. 

This result shows that first order dominance over attainment vectors ensures 

that multidimensional poverty as evaluated by the methodology (ρk,H) is lower (or no 

higher) for all possible values of the cross dimensional cutoff k – and the converse is 

true as well. This result is reminiscent of an analogous result for the unidimensional 

headcount ratio given in Foster and Shorrocks (1988). The second result shows that M0 

is implied by first order dominance, and implies second order, in turn. Consequently, 

the M0 partial ordering is more complete than the H partial ordering, and is able to 

make more comparisons independently of the selection of cutoff k. 
                                                 
32 Let a and a' be two attainment distributions with associated cumulative distribution functions Fa and 
Fa' . We say that a first order dominates a', written aFDa', if Fa(s)≤Fa' (s) for all s≥0, with < for some s. 
Similarly, a second order dominates a', written aSDa', if drrFdrrF

s

a

s

a )()(
0 '0 ∫∫ ≤  for all s≥0, with < for 

some s. 
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9. ILLUSTRATIVE EXAMPLES 

We now illustrate the measurement methodology and its variations using data from 

the United States and Indonesia. 

9.1 United States 

To estimate multidimensional poverty in the US we use data from the 2004 

National Health Interview Survey33 on adults aged 19 and above (n=45,884). We draw 

on four variables: (1) income measured in poverty line increments and grouped into 15 

categories, (2) self-reported health, (3) health insurance, and (4) years of schooling. For 

this illustration, we assume that all variables are ordinal and therefore restrict 

consideration to H and M0. The dimensional cutoffs are as follows: if a person (1) lives 

in a household falling below the standard income poverty line, (2) reports ‘fair’ or 

‘poor’ health, (3) lacks health insurance, or (4) lacks a high school diploma, then the 

person is considered to be deprived in the respective dimension.34 The population is 

partitioned into four groups: Hispanic/Latino, (Non-Hispanic) White, (Non-Hispanic) 

African American/Black and Other. 

Table 1 presents the traditional income poverty headcount (the share of the 

population below the income cutoff), and the multidimensional measures H and M0, 

where the latter are evaluated using k=2 and equal weights. Column 3 gives the 

population share in each group while Column 5 presents the share of all income poor 

people found in each group. Comparing these two columns, we see that the incidence of 

income poverty is disproportionately high for the Hispanic and African-American 

populations. Moving now to the multidimensional headcount ratio H, column 7 gives 

the percentage of all multidimensionally poor people who fall within each group. The 

                                                 
33 US National Center for Health Statistics 2004b. 
34 Precise definitions of the indicators and their respective cutoffs appear in Alkire and Foster 2007. 
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percentage of the multidimensionally poor who are Hispanic is much higher than the 

respective figure in column 5, while the percentage who are African-American is 

significantly lower, illustrating how our multidimensional approach to identifying the 

poor can alter the traditional, income-based poverty profile. Whereas column 7 gives 

the distribution of poor people across the groups, column 9 lists the distribution of 

deprivations experienced by the poor people in each group. The resulting figures for M0 

further reveal the disproportionate Hispanic contribution to poverty that is evident in 

this dataset. 

Table 1: Profile of US Poverty by Ethnic/Racial Group (k=2) 
 

1 2 3 4 5 6 7 8 9 

Group Population Percentage 
Contrib. 

Income 
Poverty 

Headcount 

Percentage 
Contrib. H Percentage 

Contrib. M0 
Percentage 

Contrib. 

Hispanic 9100 19.8% 0.23 37.5% 0.39 46.6% 0.229 47.8% 
White 29184 63.6% 0.07 39.1% 0.09 34.4% 0.050 33.3%

African- 
American 5742 12.5% 0.19 20.0% 0.21 16.0% 0.122 16.1% 

Others 1858 4.1% 0.10 3.5% 0.12 3.0% 0.067 2.8% 
Total 45884 100.0% 0.12 100.0% 0.16 100.0% 0.09 100.0% 

 
Why does multidimensional poverty paint such a different picture? In Table 2, we 

use our methodology to identify the dimension-specific changes driving the variations 

in M0. The final column of Table 2 reproduces group poverty levels found in Column 8 

of Table 1, while the rows break these poverty levels down by dimension. We use 

formula (1b), which in the present case becomes M0=ΣjHj/d, where Hj is the share of 

the respective population that is both poor and deprived in dimension j. The first row 

gives the decomposition for the Hispanic population, with column 2 reporting that 20% 

of Hispanics are both multidimensionally poor and deprived in income. Column 6 has 

the overall M0 for Hispanics, which is simply the average of H1 through H4. The second 

row expresses the same data in percentage terms, with column 2 providing the per cent 

contribution of the income dimension to the Hispanic level of M0 or, alternatively, the 
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percentage of all deprivations experienced by the Hispanic poor population that are 

income deprivations. Notice that for Hispanics, the contribution from health insurance 

and schooling is quite high, whereas the contribution of income is relatively low. In 

contrast, the contribution of income for African-Americans is relatively high. This 

explains why, in comparison to traditional income based poverty, the percentage of 

overall multidimensional poverty originating in the Hispanic population rises, while the 

contribution for African-Americans is lower. The example shows how the measure M0 

can be readily broken down by population subgroup and dimension to help explain its 

aggregate level.35 

Table 2: Contribution of Dimensions to Group M0 
 

1 2 3 4 5 6 

Group H1 
Income 

H2 
Health 

H3 
H. Insurance 

H4 
Schooling M0 

Hispanic 0.200 0.116 0.274 0.324 0.229 
Percentage Contrib.  21.8%  12.7%  30.0%  35.5%   100% 
White 0.045 0.053 0.043 0.057 0.050 
Percentage Contrib.  22.9%  26.9%  21.5%  28.7%   100% 
African-American 0.142 0.112 0.095 0.138 0.122 
Percentage Contrib.  29.1%  23.0%  19.5%  28.4%   100% 

 
The results above were reported for the value of k =2. In particular, we saw that 

Hispanics had higher M0 poverty than White, and Whites than African-Americans. A 

natural question is whether the results would change for different k cutoffs.  Table 3 

and Figure 1 below report M0 levels for k=1,2,3,4, and show that the ranking of the 

three key population sub-groups is robust.  Indeed, it can be shown that the 

multidimensional headcount ratio likewise yields dominance across the three groups, 

which according to Theorem 2 would ensure that M0 dominance also holds. It might 

                                                 
35 In addition, a government who targets education, for example, would be able to see this directly 
reflected in the overall level of poverty (rather than having to wait until the effects show up much later in 
income) and could break the total down to understand the relationship between dimensional policies and 
overall poverty impacts. We are grateful to Karla Hoff for pointing out this useful characteristic of the 
measure for policy discussions. 
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also be useful to test whether the differences between groups were statistically 

significant.  

Table 3: M0 values 

 k=1 k=2 k=3 k=4 
Hispanic 0.3031 0.2287 0.1012 0.0141 
White 0.1019 0.0496 0.0151 0.0014 
African-American 0.1931 0.1217 0.0489 0.0056 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

9.2 Indonesia 

The data for this example are drawn from the Rand Corporation’s 2000 Indonesian 

Family Life Survey (Strauss, et. al., 2004). Our sample consists of all adults aged 19 

years and above (n=19,752). We use d=3 dimensions: (1) expenditure, (2) health 

measured as body mass index BMI, and (3) years of schooling. We assume that the 

Figure 1: M0 Dominance  
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three variables are cardinally measurable.36 The dimensional cutoffs are as follows: if a 

person (1) lives in a household with expenditures below 150,000 Rupiah, (2) has a BMI 

of less than 18.5 kg/m2, or (3) has fewer than six years of schooling then the person is 

deprived in the respective dimension.37 The respective headcounts of deprivation are 

30.1 per cent for expenditure, 17.5 per cent for BMI, and 36.4 per cent for schooling.  

Table 4 presents Mα poverty levels for all relevant values of k for two weighting 

structures.  

Table 4: Multidimensional Poverty Measures: 
Cardinal Variables 

 
Equal Weights 

Measure k=1 
(Union) k=2 k=3 

(Intersection) 

H 0.577 0.225 0.039 
M0   0.280 0.163 0.039 
M1  0.123 0.071 0.016 

M2  0.088 0.051 0.011 

General Weights 

Measure k = 0.75 
(Union) k = 1.5 k = 2.25  k = 3 

(Intersection)

H 0.577 0.346 0.180 0.039 

M0   0.285 0.228 0.145 0.039 

M1  0.114 0.084 0.058 0.015 

M2  0.075 0.051 0.036 0.010 

 

 

In the equally weighted case, we see from Table 3 that when k=2, the headcount ratio is 

22.5%, and the value of M0=HA is 0.163; M0 departs from H according to the level of 

A. In the present case, A=0.72, because 83% of the poor are deprived in exactly two 

                                                 
36 To be more precise, we assume variables to be measureable on a ratio scale, which means that they 
have a natural zero and are unique up to multiplication by a positive constant. Let Λ be the d×d diagonal 
matrix having λj>0 as its jth diagonal element. Matrix multiplying Λ by y and z has the effect of rescaling 
the dimension j achievements and cutoff by λj, which is precisely the transformation allowable for ratio 
scale variables. Indeed, it is an easy matter to show that Mα(yΛ;zΛ)=Mα(y;z) and hence the poverty 
values rendered by the adjusted FGT indices are meaningful when achievements are measured as ratio 
scale variables. 
37In Indonesia primary school is completed in six years.  Precise definitions and justifications of variables 
and cutoffs are presented in Alkire and Foster 2007. 
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dimensions, while the remaining 17% are deprived in all three. Note that M0 and H 

coincide when all poor persons are deprived in d dimensions, as always occurs with the 

intersection method. Moving to M1=HAG, the relevant factor is the average gap, which 

is G=0.44 in the present case. This indicates that the average achievement of a poor 

person in a deprived state is 56% of the respective cutoff – quite a large gap. If all 

deprived achievements were 0, hence G were 1, then M1 and M0 would have the same 

value. M2=HAS shows a further decrease from M1 (0.051 rather than 0.071), and 

reflects the severity of poverty S. If all normalized gaps were identical, we would 

expect S to equal G2 (or 0.19 in this case). Instead, S=0.31, and this larger value means 

that there is inequality among deprived states of the poor.     

In the second case we use a weight of w1=1.5 for expenditure, a weight of 

w2=w3=0.75 for the other two dimensions. This results in a relative weight of 50 per 

cent for expenditure, and 25 per cent for the other two dimensions. The new weighting 

structure clearly affects identification and the meaning of k. Union now is reached 

when k is equal to the lowest weight applied, or 0.75; Intersection is k=3 as before, and 

two additional intermediate cases are relevant. When k=1.5 every poor person is at 

least deprived in either expenditure or in both other dimensions. When k=2.25 each 

poor person is deprived in income and at least one additional dimension.  

While the union headcount is, naturally, the same for equal and general weights, 

the value of M0 increases in general weights, because the expenditure deprivation 

headcount exceeds the BMI deprivation headcount. However M1 is smaller, which 

indicates that the normalized gap in expenditure deprivation is less than the normalized 

gap in at least one other dimension.  Thus this section provides an example in which 

variables are cardinal, and illustrates how straightforward it is to calculate our 

methodology for the case of equal weights and of general weights. 
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10. CONCLUDING REMARKS 

This paper proposes a methodology Mkα for measuring multidimensional poverty 

whose ‘dual cutoff’ identification function ρk is a natural generalization of the 

traditional union and intersection identifications, and whose aggregation method Mα 

appropriately extends the FGT measures for the given ρk. We show that Mkα satisfies a 

range of desirable properties including population decomposability; it also exhibits a 

useful breakdown by dimension once the identification step has been completed. The 

adjusted headcount methodology Mk0=(ρk,M0) is particularly well-suited for use with 

ordinal data and is an intuitive measure of the breadth of multidimensional poverty. 

Basic dominance results for variable k are obtained for the methodologies (ρk,H) and 

(ρk,M0). An empirical example illustrates our methods and, in particular, shows how 

multidimensional evaluation differs from an income based approach.   

Several other aspects of our measurement methodology warrant further study. 

First, the identification method is based on cutoffs and is sensitive to certain changes, 

but insensitive to others. Small changes in individual achievements around a z-cutoff 

can lead to a change in the poverty status of an individual, and moreover can cause the 

poverty level to vary discontinuously in achievements.38 Note though, that this 

characteristic is also exhibited by the standard income based headcount ratio – arguably 

the most frequently used poverty measure. Hence a violation of continuity at cutoffs 

need not preclude the use of a technology in practice. Even so, it would be interesting 

to explore this question further and to see whether natural methods exist for 

‘smoothing’ the discontinuities.  

                                                 
38 For example, using the intersection method of identification, if any given achievement rises above its 
cutoff, then the person will no longer be poor. Consequently, the multidimensional headcount will fall by 
1/n, while the change in Mα will be no larger than the change in H, and is weakly decreasing in α. 
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At the same time, the poverty status of a person is unaffected by certain other 

changes in achievements. For example, a poor person can never rise out of poverty by 

increasing the level of a non-deprived achievement, while a non-poor person will never 

become poor as a result of decrease in the level of a deprived achievement. This 

insensitivity is perhaps not unexpected, given our interest in applying the method to 

ordinal data and in avoiding aggregation before identification. However, there are 

tensions here that could be evaluated as part of a more systematic investigation of 

identification methods.39  

Second, unlike other recent contributions, our presentation has not emphasized the 

potential interrelationships among dimensions that can exist when variables are 

cardinal. To be sure, the identification method ρk takes into account a rather crude form 

of linkage across dimensions, since a person must be deprived in k dimensions in order 

to be considered as poor. However, for α>0, the aggregation method Mα is ‘neutral’ in 

that individual i’s poverty level Mα(yi;z) has a vanishing cross partial derivative for any 

pair of dimensions in which i is deprived. It is sometimes argued that the cross partials 

should be positive, reflecting a form of complementarity across dimensions; 

alternatively, they might be negative so as to yield a form of substitutability. Since Mα 

is neutral, it is a trivial matter to convert Mα into a measure that satisfies one or the 

other requirement:  replace the individual poverty function Mα(yi;z) with [Mα(yi;z)]γ for 

some γ>0 and average across persons.40 The resulting poverty index regards all pairs of 

dimensions as substitutes when γ<1, and as complements when γ>1, with γ=1 being our 

basic neutral case. Of course, when there are more than two dimensions, it might be 

natural to expect some pairs of dimensions to be complements and others to be 

substitutes, and with varying degrees and strengths. The γ transformation requires 
                                                 
39 For example it would be interesting to see whether a measure that reflects the depth of dimensional 
deprivations can be crafted for ordinal data 
40 Bourguignon and Chakarvarty 2003 present poverty indices of this kind.  
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dimensions to be all substitutes or all complements, and with a strength that is uniform 

across all pairs and for all people. This seems unduly restrictive, but is reflective of the 

state of the literature.  

There are additional problems that need to be faced when considering 

interrelationships among dimensions. At a theoretical level, there are several definitions 

of substitutes and complements that could be applied, and the leading candidate – the 

Auspitz-Lieben-Edgeworth-Pareto (ALEP) definition – has certain difficulties (Kannai 

1980). On the empirical side, there does not seem to be a standard procedure for 

determining the extent of substitutability and complementarity across dimensions of 

poverty. Moveover, it is not entirely clear that any interrelationships across variables 

must be incorporated into the overarching methodology for evaluating 

multidimensional poverty. Instead, the interconnections might plausibly be the subject 

of separate empirical investigations that supplement, but are not necessarily part of, the 

underlying poverty measure. Our methodology provides a neutral foundation upon 

which more refined accounts of the interconnection between dimensions could be built. 

 We hope that the methodology developed in this paper will be a useful touchstone for 

future research efforts. 
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Appendix   

Proof of Theorem 1  Verification is immediate for all properties except for weak 

rearrangement and weak transfer. For weak rearrangement, is clear that the 

rearrangement does not change the set of the poor nor the collection of achievements 

among the poor. Hence, Mα is unaffected by the rearrangement and just satisfies the 

axiom for all α>0.  

As for the weak transfer property, let α>1 and consider any x and y such that x is 

obtained from y by an averaging of achievements among the poor. Then where q is the 

number of poor persons in y, let y' be the matrix obtained from y by replacing each of 

the n-q non-poor rows of y with the vector z. Similarly, let x' be the matrix obtained 

from x by replacing the same n-q rows with z. Clearly Mα(y;z)=Mα(y';z) and 

Mα(x;z)=Mα(x';z). For any data matrix v, let gα(v) denote the matrix of α powers of 

normalised gaps (or shortfalls) associated with v, and notice that μ(gα(v)) is a convex 

function of v for α>1. Since x'=By' for some bistochastic matrix B, it follows that 

μ(gα(x'))<μ(gα(y')). But Mα(y';z)=μ(gα(y')) by the construction of y', and if the number 

of poor in x is q, then Mα(x';z)=μ(gα(x')) and we would be done. However, it is also 

possible that the number of poor in x is less than q; in other words the smoothing 

process has moved at least one person from being poor to being non-poor. Then it 

follows that the associated rows in gα(x') will need to be censored in measuring 

Mα(x';z), implying that Mα(x';z)<μ(gα(x')). Either way, it follows that Mα(x;z)<Mα(y;z) 

and hence Mα satisfies the weak transfer axiom for α>1. 

 
Proof of Theorem 2   

(i) It is clear that for k∈(0,d] we have H(y;z)=Fa(s) for s=d-k, where s∈[0,d). 

Consequently, yHy' implies Fa(s)≤Fa'(s) for all s∈[0,d) with < for some s. Note that for 
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any s≥d we have Fa(s)=Fa'(s)=1, and hence aFDa'. The converse holds by analogous 

arguments.  

(ii) It is clear that for k∈(0,d] we have M0(y;z)= [
  

Fa t( )dt
0

s∫ +sFa(s)]/d where s=d-k, and 

therefore yM0y' is equivalent to  

(A1) (Fa '0

s∫ (t) − Fa (t))dt + s(Fa' (s) − Fa (s)) ≥ 0 for all s∈[0,d), with > for some s.  

Suppose that aFDa'. Then
    

Fa t( )dt
0

s∫ ≤
  

F ′ a t( )dt
0

s∫  and sFa(s)≤sFa'(s) hold for all s∈[0,d) 

while each inequality must be strict for some s. By (A1), then, we have yM0y'. Now 

suppose that yM0y'. We want to show that aSDa', which since Fa' (s)= Fa (s)  for s≥d, 

becomes 

(A2)  (Fa '0

s∫ (t) − Fa (t))dt ≥ 0 for all s∈[0,d), with > for some s. 

Pick any s1∈[0,d). If Fa ' (s1) − Fa (s1) ≤ 0, then by (A1), 

 (Fa '0

s1∫ (t) − Fa (t))dt  ≥ (Fa '0

s1∫ (t) − Fa (t))dt + s1(Fa ' (s1) − Fa (s1)) ≥ 0, 

as required by (A2). Alternatively, suppose that Fa ' (s1) − Fa (s1) > 0. If Fa ' (s) − Fa (s) ≥ 0 

for all s<s1, then clearly (Fa '0

s1∫ (t) − Fa (t))dt  ≥ 0 once again as required by (A2). On the 

other hand, if it is not true that Fa ' (s) − Fa (s) ≥ 0 for all s<s1, then the set S={s ∈ [0,s1): 

Fa ' (s) − Fa (s) < 0} must be nonempty. Since each s∈S satisfies Fa ' (s) − Fa (s) < 0, it 

follows that (Fa'0

s∫ (t) − Fa (t))dt  ≥ 0 for each s∈S, again by (A1). Let s0≤s1 be the least 

upper bound of S. Then it follows from the continuity of (Fa '0

s∫ (t) − Fa (t))dt  in s that 

(Fa '0

s0∫ (t) − Fa (t))dt  ≥ 0. Moreover, Fa ' (s) − Fa (s) ≥ 0 for all s ∈ (s0,s1) and so we 

conclude that (Fa '0

s1∫ (t) − Fa (t))dt  ≥ 0 again. Since s1 can be any element of [0,d), it 

follows that (Fa '0

s∫ (t) − Fa (t))dt ≥ 0 for all s∈[0,d). If it were the case that 
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(Fa'0

s∫ (t) − Fa (t))dt =0 for all s∈[0,d), then this would imply that Fa ' (s) and Fa (s)  are 

identical, which is ruled out by the strict portion of (A1). Hence (A2) is true and aSDa'. 

 

 




