Subjective Agency Indicator

Controlling for Adaptive Preferences
Concepts

Inputs

rules → income → goods → capabilities → functionings → wellbeing

characteristics midfare

Opportunity

Choice

Objectives
Relevance

• Obesity
 – expansion of opportunity set lead to aggravation of wellbeing

• Social Exclusion
 – Self-esteem, etc.

• Gender
 – Internalised values (voting, intrahousehold, birth)

• Employment
 – Overworked, necessity, degrading
Dataset

- 230 women: 2 spaces, 6 dimensions

<table>
<thead>
<tr>
<th>Deprivation</th>
<th>Agency</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Own Education</td>
<td>Education</td>
<td>Children’s Educ.</td>
</tr>
<tr>
<td>Income</td>
<td>Employment</td>
<td>Employment</td>
</tr>
<tr>
<td>Health</td>
<td>Health</td>
<td>Health</td>
</tr>
<tr>
<td>Personal Income</td>
<td>Household</td>
<td>Household Chores</td>
</tr>
<tr>
<td>Mobility</td>
<td>Mobility</td>
<td>Marriage</td>
</tr>
<tr>
<td>Nb of Associations</td>
<td>Group</td>
<td>Political</td>
</tr>
</tbody>
</table>

Agency question:
- No control, external pressure, please others, instrumental importance, fully endorse.
Problem

- **Interpersonal comparability** (Suh 1994)
 - Meaning, culture, etc.

- **Idiosyncratic differences** (Diener, Costa & McCrea, etc.)
 - Attitudes: optimism, self-esteem, neuroticism, etc.

- **Time adaptation** (Burchart, Brickman)
 - Duration of shock (injury, lottery, etc).

- **Structural adaptation** (Easterlin)
 - Social: caste, gender, religion, etc.

- **Values** (Diener and Fujita)
empowerment

welfare
empowerment

decision
Aggregating Across Dimensions

• Index:
 • Each dimension is indexed 0,1 (max, min in sample for each dim.)
 • Average index score across 6 dimensions in poverty/agency.
 • (-) Arbitrary weightings / (+) simplicity

• FGT scores:
 • Each dimension is considered as an observation
 • FGT score computed across 6 dimensions for each individual in two spaces
 • (-) Arbitrary Poverty Line / (+) FGT

• Ranksum:
 • Mann-Whitney two sample statistics (each dimension 1 observ.)
 • Probability that i has outperforms a given benchmark
 • (-) Less weight to outliers / (+) non-comparability of benchmarks across dimensions.
Graph 1: empowerment/ poverty indices

$y = -0.0399x + 0.693$

$y = 0.0786x + 0.7301$

$y = 0.0575x + 0.9551$
Conflicting Phenomena

• **Correlation:**
 – Better off people feel more empowered
 • Problem: double counting

• **Adaptation:**
 – Better off people are more demanding
 • Problem: measuring the opposite of what we’re trying to measure.

• **Difference:**
 – *Index*: If strong adaptation in some dimensions, strong correlation in others, it cancels out.
 – *Ranksum*: If correlation in more dimensions, then this will dominate.
 – *FGT*: If strong adaptation at high levels of income, this will dominate (see FGT2).
Correlations

<table>
<thead>
<tr>
<th></th>
<th>educself</th>
<th>educemp</th>
<th>jobearning</th>
<th>jobemp</th>
<th>persinct</th>
<th>hhemp</th>
<th>health</th>
<th>healthp</th>
<th>mobility</th>
<th>mobemp</th>
<th>groupct</th>
<th>groupemp</th>
</tr>
</thead>
<tbody>
<tr>
<td>educself</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>educemp</td>
<td>1</td>
<td>-0.0883</td>
<td></td>
</tr>
<tr>
<td>educdec</td>
<td>-0.0339</td>
<td>-0.058</td>
<td></td>
</tr>
<tr>
<td>jobearning</td>
<td>0.1695</td>
<td>0.0782</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jobemp</td>
<td>-0.055</td>
<td>0.0829</td>
<td>-0.0413</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jobdec</td>
<td>-0.0361</td>
<td>0.0253</td>
<td>-0.0804</td>
<td>-0.088</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>persinchhtot</td>
<td>0.076</td>
<td>0.0081</td>
<td>0.4291</td>
<td>-0.3256</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hhemp</td>
<td>0.0243</td>
<td>0.2676</td>
<td>-0.1084</td>
<td>0.2003</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hhdec</td>
<td>0.0035</td>
<td>-0.1303</td>
<td>-0.1252</td>
<td>-0.1463</td>
<td>0.0522</td>
<td>0.123</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>health</td>
<td>-0.0642</td>
<td>-0.1056</td>
<td>-0.1586</td>
<td>-0.2455</td>
<td>0.23</td>
<td>-0.0999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>healthemp</td>
<td>-0.0741</td>
<td>0.158</td>
<td>0.1991</td>
<td>0.0851</td>
<td>0.0966</td>
<td>0.1389</td>
<td>-0.1236</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>healthdec</td>
<td>0.0602</td>
<td>-0.1363</td>
<td>-0.0804</td>
<td>-0.1088</td>
<td>-0.0521</td>
<td>0.0943</td>
<td>0.044</td>
<td>-0.3152</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mobility</td>
<td>0.0961</td>
<td>-0.0523</td>
<td>-0.1567</td>
<td>-0.1002</td>
<td>0.0337</td>
<td>0.062</td>
<td>-0.0436</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mobemp</td>
<td>-0.0766</td>
<td>0.2608</td>
<td>0.1197</td>
<td>0.2192</td>
<td>-0.0643</td>
<td>0.1801</td>
<td>-0.1672</td>
<td>0.2321</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mobdecmar</td>
<td>0.0334</td>
<td>-0.1426</td>
<td>-0.1148</td>
<td>-0.2415</td>
<td>0.0988</td>
<td>0.0326</td>
<td>0.0957</td>
<td>-0.2583</td>
<td>0.3131</td>
<td>-0.4836</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>groupcount</td>
<td>0.0295</td>
<td>0.1822</td>
<td>0.1659</td>
<td>0.0814</td>
<td>-0.1698</td>
<td>0.1505</td>
<td>-0.0736</td>
<td>0.2902</td>
<td>0.0247</td>
<td>0.0085</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>groupemp</td>
<td>0.007</td>
<td>0.2765</td>
<td>0.1138</td>
<td>0.3331</td>
<td>-0.1441</td>
<td>0.1347</td>
<td>-0.361</td>
<td>0.024</td>
<td>-0.2593</td>
<td>0.2817</td>
<td>-0.033</td>
<td>1</td>
</tr>
<tr>
<td>groupdecpol</td>
<td>0.0407</td>
<td>-0.2058</td>
<td>-0.1042</td>
<td>-0.1004</td>
<td>-0.0343</td>
<td>-0.0168</td>
<td>0.073</td>
<td>-0.0554</td>
<td>0.2149</td>
<td>-0.2544</td>
<td>-0.0719</td>
<td>-0.1921</td>
</tr>
<tr>
<td>change</td>
<td>-0.0319</td>
<td>-0.3017</td>
<td>-0.1696</td>
<td>-0.2226</td>
<td>0.0228</td>
<td>-0.0859</td>
<td>0.243</td>
<td>-0.0985</td>
<td>0.2681</td>
<td>-0.3161</td>
<td>-0.1828</td>
<td>-0.3222</td>
</tr>
<tr>
<td>steps</td>
<td>0.0121</td>
<td>0.171</td>
<td>0.2691</td>
<td>0.1909</td>
<td>-0.0041</td>
<td>0.1666</td>
<td>-0.159</td>
<td>0.2652</td>
<td>-0.241</td>
<td>0.2543</td>
<td>0.316</td>
<td>0.2595</td>
</tr>
<tr>
<td>fate</td>
<td>-0.0295</td>
<td>0.2255</td>
<td>-0.0389</td>
<td>0.1083</td>
<td>-0.091</td>
<td>0.189</td>
<td>-0.1689</td>
<td>0.2037</td>
<td>0.0736</td>
<td>-0.0305</td>
<td>0.141</td>
<td>0.0336</td>
</tr>
</tbody>
</table>
Solution

- Panel
 - Can eliminate idiosyncratic and structural differences but not time and value-related adaptation

- Time series analysis
 - Requires long data series (virtually impossible for poverty work)

- Structural equation
 - Can help understand endogenous preferences
 - Requires a theoretical model of preference formation process
Solution

• Use the error term from the regression
 – Empowerment relative to peers.

• Advantage
 – Purge data of double counting and adaptation

• Disadvantage
 – Sample-specific
 – Peer-specific (might be judged as empowered, when in fact, it is just that your peers have adaptation)
 – Might lose important information in the process (correlation)
Regressions

<table>
<thead>
<tr>
<th>obs</th>
<th>212</th>
<th>212</th>
<th>212</th>
<th>220</th>
<th>220</th>
<th>220</th>
<th>220</th>
<th>220</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>0.1002</td>
<td>0.0192</td>
<td>0.0203</td>
<td>0.0629</td>
<td>0.0143</td>
<td>0.0133</td>
<td>0.1725</td>
<td>0.1188</td>
<td>0.1138</td>
</tr>
<tr>
<td>health</td>
<td>reg</td>
<td>ologit</td>
<td>oprobit</td>
<td>pov</td>
<td>-0.309 **</td>
<td>-0.463 **</td>
<td>-0.287 **</td>
<td>pov</td>
<td>0.126 **</td>
</tr>
<tr>
<td>healthem</td>
<td>reg</td>
<td>ologit</td>
<td>oprobit</td>
<td>pov</td>
<td>0.820 **</td>
<td>0.301</td>
<td>0.214 **</td>
<td>pov</td>
<td>0.147</td>
</tr>
<tr>
<td>mobility</td>
<td>reg</td>
<td>ologit</td>
<td>oprobit</td>
<td>pov</td>
<td>0.126 **</td>
<td>0.474 **</td>
<td>0.308 **</td>
<td>pov</td>
<td>0.859 **</td>
</tr>
<tr>
<td>mobilityem</td>
<td>reg</td>
<td>ologit</td>
<td>oprobit</td>
<td>pov</td>
<td>0.859 **</td>
<td>0.347 *</td>
<td>0.228 **</td>
<td>pov</td>
<td>0.286 **</td>
</tr>
</tbody>
</table>

Results

- **Hausman Test:** 0 Rejected
- **G. Hausman:** 0 Rejected
- **Hausman Test:** - N/A
- **G. Hausman:** 0 Rejected

<table>
<thead>
<tr>
<th>obs</th>
<th>220</th>
<th>220</th>
<th>220</th>
<th>214</th>
<th>214</th>
<th>214</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>0.1057</td>
<td>0.1047</td>
<td>0.1007</td>
<td>0.1812</td>
<td>0.0341</td>
<td>0.0365</td>
</tr>
<tr>
<td>health</td>
<td>reg</td>
<td>ologit</td>
<td>oprobit</td>
<td>pov</td>
<td>-0.273 -0</td>
<td>-0.165 -0</td>
</tr>
<tr>
<td>healthem</td>
<td>reg</td>
<td>ologit</td>
<td>oprobit</td>
<td>pov</td>
<td>-0.273 -0</td>
<td>-0.165 -0</td>
</tr>
<tr>
<td>mobility</td>
<td>reg</td>
<td>ologit</td>
<td>oprobit</td>
<td>pov</td>
<td>-0.273 -0</td>
<td>-0.165 -0</td>
</tr>
<tr>
<td>mobilityem</td>
<td>reg</td>
<td>ologit</td>
<td>oprobit</td>
<td>pov</td>
<td>0.576 **</td>
<td>0.310 **</td>
</tr>
</tbody>
</table>

Results

- **Hausman Test:** - N/A
- **G. Hausman:** 0.304 Accepted
Graph 3: FGT indices (corrected for adaptive preferences)
Hybrid

- 1. General empowerment indicator (steps)
- 2. Decision Making Indicator
- 3. Agency Indicator

- Revised Agency Indicator : G + D *A
Graph 3: FGT indices (corrected for adaptive preferences)
Aggregation Across Spaces

• Stochastic Dominance (Duclos)
 – Union: poor if either disempowered or deprived
 • E.g. obesity
 – Intersection: poor if both disempowered and deprived
 • E.g. fasting.
Poverty Dominance Surface