Inequality-adjusted HDI: the basics

Gastón Yalonetzky

March 2011
Table of contents

Introduction

The computation and decomposition of the IHDI

Some properties of the IHDI

The interpretation and policy aspects of the IHDI

Limitations of the IHDI
Introduction: What is the inequality-adjusted HDI

- The HDI is insensitive to the degree of inequality within each dimension.
Introduction: What is the inequality-adjusted HDI

- The HDI is insensitive to the degree of inequality within each dimension.
- The IHDI is a generalization of the HDI that takes into account, for every dimension, both the average achievement and the way it is distributed across the population.
Introduction: What is the inequality-adjusted HDI

- The HDI is insensitive to the degree of inequality within each dimension.
- The IHDI is a generalization of the HDI that takes into account, for every dimension, both the average achievement and the way it is distributed across the population.
- The IHDI is based on the measures of Foster, Lopez-Calva and Szekely (2005), which in turn are based on the inequality indices of Atkinson (1970).
Introduction: What is the inequality-adjusted HDI

- The HDI is insensitive to the degree of inequality within each dimension.
- The IHDI is a generalization of the HDI that takes into account, for every dimension, both the average achievement and the way it is distributed across the population.
- The IHDI is based on the measures of Foster, Lopez-Calva and Szekely (2005), which in turn are based on the inequality indices of Atkinson (1970).
- Since the IHDI is never higher than the HDI, the former is interpreted as "actual human development", penalized by inequality, while the latter means "potential human development" (should inequality be completely suppressed).
The basic formulas of the IHDI: The Atkinson statistic for the geometric mean

When the inequality aversion parameter, ϵ, is equal to 1, the statistic A_x is:

\[
A_x = 1 - \frac{\prod_{n=1}^{N} x_n}{\sqrt[N]{\sum_{n=1}^{N} x_n}}
\]
The basic formulas of the IHDI: The Atkinson statistic for the geometric mean

When the inequality aversion parameter, ϵ, is equal to 1, the statistic A_x is:

$$A_x = 1 - \frac{\prod_{n=1}^{N} x_n^{\frac{1}{N}}}{\bar{x}} = 1 - \frac{\sqrt[N]{x_1 \cdots x_N}}{\bar{x}}$$

Where: $\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$
The basic formulas of the IHDI: Relationship between mean attainment and inequality

The geometric mean penalizes the arithmetic mean by the degree of inequality:

$$\sqrt[N]{x_1 \cdots x_N} = \bar{x}(1 - A_x)$$
The basic formulas of the IHDI: Relationship between mean attainment and inequality

The geometric mean penalizes the arithmetic mean by the degree of inequality:

\[\frac{1}{N} \prod_{i=1}^{N} x_i = \bar{x}(1 - A_x) = \sqrt[\sqrt{\cdots\sqrt{x_1 \cdots x_N}}] \]

Similarly, the inequality-adjusted dimension index is obtained from the HDI dimension index, by penalizing it with the inequality loss:

\[I_{I_x} = I_x(1 - A_x) \]
The basic formulas of the IHDI: Computing the IHDI

Then the dimension-specific, inequality-adjusted measures are aggregated using, again, the geometric mean.

\[IHDI = \sqrt[3]{I_1 \ldots I_D} \]
The basic formulas of the IHDI: Computing the IHDI

Then the dimension-specific, inequality-adjusted measures are aggregated using, again, the geometric mean.

\[IHDI = \sqrt[\text{D}]{I_1 \cdots I_D} \]

In the specific case of the HDR:

\[IHDI = \sqrt[3]{I_{\text{Life}} I_{\text{Education}} I_{\text{Income}}} \]
The basic formulas of the IHDI: Computing the IHDI

Then the dimension-specific, inequality-adjusted measures are aggregated using, again, the geometric mean.

\[IHDI = \sqrt[3]{I_1 \ldots I_D} \]

In the specific case of the HDR:

\[IHDI = \sqrt[3]{I_{Life} I_{Education} I_{Income}} \]

Notice that, by contrast, the HDI is computed using the averages (and the normalizations):

\[HDI = \sqrt[3]{I_{Life} I_{Education} I_{Income}} \]
The basic formulas of the IHDI: Computing the IHDI

Then the dimension-specific, inequality-adjusted measures are aggregated using, again, the geometric mean.

\[IHDI = \sqrt[3]{I_1 \cdots I_D} \]

In the specific case of the HDR:

\[IHDI = \sqrt[3]{I_{Life} I_{Education} I_{Income}} \]

Notice that, by contrast, the HDI is computed using the averages (and the normalizations):

\[HDI = \sqrt[3]{I_{Life} I_{Education} I_{Income}} \]

In both cases, the IHDI and the HDI, are sensitive to inequality across the normalized dimensions.
The basic formulas of the IHDI: Computing the IHDI

Then the dimension-specific, inequality-adjusted measures are aggregated using, again, the geometric mean.

\[IHDI = \sqrt[3]{I_1 \ldots I_D} \]

In the specific case of the HDR:

\[IHDI = \sqrt[3]{I_{Life} I_{Education} I_{Income}} \]

Notice that, by contrast, the HDI is computed using the averages (and the normalizations):

\[HDI = \sqrt[3]{I_{Life} I_{Education} I_{Income}} \]

In both cases, the IHDI and the HDI, are sensitive to inequality across the normalized dimensions. They penalize ”unbalanced relative development”.
Notice the following interesting relationship between the IHDI and the HDI:

\[IHDI = \sqrt[3]{(1 - A_{Life})(1 - A_{Education})(1 - A_{Income})} \times HDI \]
The basic formulas of the IHDI: the loss

Notice the following interesting relationship between the IHDI and the HDI:

\[IHDI = \sqrt[3]{(1 - A_{Life})(1 - A_{Education})(1 - A_{Income})} \cdot HDI \]

The HDI represents the highest possible level, the "potential", that the IHDI could get if one could freely transfer achievements across people, in order to eliminate within-dimension inequality.
The basic formulas of the IHDI: the loss

Notice the following interesting relationship between the IHDI and the HDI:

$$IHDI = \sqrt[3]{(1 - A_{\text{Life}})(1 - A_{\text{Education}})(1 - A_{\text{Income}})} \times HDI$$

The HDI represents the highest possible level, the ”potential”, that the IHDI could get if one could freely transfer achievements across people, in order to eliminate within-dimension inequality. From this relationship we can compute the percentage loss in ”potential HDI” due to inequality:

$$Loss = 1 - \frac{IHDI}{HDI} = 1 - \sqrt[3]{(1 - A_{\text{Life}})(1 - A_{\text{Education}})(1 - A_{\text{Income}})}$$
The basic formulas of the IHDI: Example

Example: Slovenia

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Dimension index</th>
<th>Inequality measure (A1)</th>
<th>Inequality-adjusted index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life expectancy</td>
<td>78.8</td>
<td>0.930</td>
<td>0.043</td>
</tr>
<tr>
<td>Mean years of schooling</td>
<td>9</td>
<td>0.682</td>
<td></td>
</tr>
<tr>
<td>Expected years of schooling</td>
<td>16.7</td>
<td>0.811</td>
<td></td>
</tr>
<tr>
<td>Education index</td>
<td></td>
<td>0.782</td>
<td>0.040</td>
</tr>
<tr>
<td>Logarithm of GNI</td>
<td>10.16</td>
<td>0.780</td>
<td></td>
</tr>
<tr>
<td>GNI</td>
<td>25,857</td>
<td>0.238</td>
<td>0.122</td>
</tr>
</tbody>
</table>

Human Development Index

| HDI with unlogged income | \(\sqrt[3]{0.930 \cdot 0.782 \cdot 0.238} = 0.557 \) | \(\sqrt[3]{0.890 \cdot 0.751 \cdot 0.209} = 0.519 \) | 1−0.519/0.557 = 0.068 |
| HDI | \(\sqrt[3]{0.930 \cdot 0.782 \cdot 0.780} = 0.828 \) | \((0.519 / 0.557) \cdot 0.828 = 0.772 \) |

Note: Values are rounded.
The IHDI versus the HDI: an Example

Figure 5.1 Inequality has large impacts on human development

Loss in HDI due to multidimensional inequality

Note: Numbers beside bars are percentage loss due to multidimensional inequality (see statistical table 5).
Source: HDR0 calculations using data from the HDR0 database.
The basic formulas of the IHDI: Decomposition of the loss

The Loss function can be decomposed into an approximation of the sum of the dimension’s inequality contributions by noticing that:

\[\text{Loss} \approx \frac{1}{D} \sum_{d=1}^{D} A_d \]

Then the contribution of inequality in, say, education, can be computed as:

\[C_{\text{Education}} = \frac{A_{\text{Education}}}{D} \sum_{d=1}^{D} A_d \]
The basic formulas of the IHDI: Decomposition of the loss

The Loss function can be decomposed into an approximation of the sum of the dimension’s inequality contributions by noticing that:

\[
\text{Loss} \approx \frac{1}{D} \sum_{d=1}^{D} A_d
\]
The basic formulas of the IHDI: Decomposition of the loss

The Loss function can be decomposed into an approximation of the sum of the dimension’s inequality contributions by noticing that:

$$Loss \approx \frac{1}{D} \sum_{d=1}^{D} A_d$$

Then the contribution of inequality in, say, education, can be computed as:

$$C_{Education} = \frac{A_{Education}}{\sum_{d=1}^{D} A_d}$$
Decomposition of the loss: Example
The basic formulas of the IHDI: Data aspects and requirements

Q: What data do we need?

- Ideally, disaggregated at the individual level.
- Not necessary for the IHDI. Because it is not sensitive to the association of dimensions, there is no need to rely on the same dataset for all the variables.
- Inequality will be underestimated for that variable and then for the whole IHDI.
- Taking the log of income compresses inequality. It's better to work with the levels. However, for flexible options see the appendix of the HDR 2010.
- The IHDI cannot be computed sensibly with negative values and one zero suffices for $A \times 1 = A$
 Disposing of those observations or imputing values may be necessary. The HDR 2010 replaces them with the minimum value of the bottom 0.5 percentile distribution of positive incomes. It may be necessary to assess the impact of imputations on inequality.
The basic formulas of the IHDI: Data aspects and requirements

- Q: What data do we need? A: Ideally, disaggregated at the individual level.
The basic formulas of the IHDI: Data aspects and requirements

▶ Q: What data do we need? A: Ideally, disaggregated at the individual level.
▶ Q: All the variables from the same dataset?
The basic formulas of the IHDI: Data aspects and requirements

Q: What data do we need? A: Ideally, disaggregated at the individual level.

Q: All the variables from the same dataset? A: Not necessary for the IHDI. Because it is not sensitive to the association of dimensions, there is no need to rely on the same dataset for all the variables.

Q: What if I have, say, municipal data for some variable? A: Inequality will be underestimated for that variable and then for the whole IHDI.

Q: I want to use an income measure, shall I take its log? A: Taking the log of income compresses inequality. It’s better to work with the levels. However, for flexible options see the appendix of the HDR 2010.

Q: What if I have zeroes or negative values? A: The IHDI cannot be computed sensibly with negative values and one zero suffices for $A_x = 1\!$. Disposing of those observations or imputing values may be necessary. The HDR 2010 replaces them with the minimum value of the bottom 0.5 percentile distribution of positive incomes. It may be necessary to assess the impact of imputations on inequality.
The basic formulas of the IHDI: Data aspects and requirements

Q: What data do we need? A: Ideally, disaggregated at the individual level.

Q: All the variables from the same dataset? A: Not necessary for the IHDI. Because it is not sensitive to the association of dimensions, there is no need to rely on the same dataset for all the variables.

Q: What if I have, say, municipal data for some variable?
The basic formulas of the IHDI: Data aspects and requirements

- Q: What data do we need? A: Ideally, disaggregated at the individual level.
- Q: All the variables from the same dataset? A: Not necessary for the IHDI. Because it is not sensitive to the association of dimensions, there is no need to rely on the same dataset for all the variables.
- Q: What if I have, say, municipal data for some variable? A: Inequality will be underestimated for that variable and then for the whole IHDI.
The basic formulas of the IHDI: Data aspects and requirements

▶ Q: What data do we need? A: Ideally, disaggregated at the individual level.

▶ Q: All the variables from the same dataset? A: Not necessary for the IHDI. Because it is not sensitive to the association of dimensions, there is no need to rely on the same dataset for all the variables.

▶ Q: What if I have, say, municipal data for some variable? A: Inequality will be underestimated for that variable and then for the whole IHDI.

▶ Q: I want to use an income measure, shall I take its log?
The basic formulas of the IHDI: Data aspects and requirements

Q: What data do we need? A: Ideally, disaggregated at the individual level.

Q: All the variables from the same dataset? A: Not necessary for the IHDI. Because it is not sensitive to the association of dimensions, there is no need to rely on the same dataset for all the variables.

Q: What if I have, say, municipal data for some variable? A: Inequality will be underestimated for that variable and then for the whole IHDI.

Q: I want to use an income measure, shall I take its log? A: Taking the log of income compresses inequality. It’s better to work with the levels. However, for flexible options see the appendix of the HDR 2010.
The basic formulas of the IHDI: Data aspects and requirements

- Q: What data do we need? A: Ideally, disaggregated at the individual level.
- Q: All the variables from the same dataset? A: Not necessary for the IHDI. Because it is not sensitive to the association of dimensions, there is no need to rely on the same dataset for all the variables.
- Q: What if I have, say, municipal data for some variable? A: Inequality will be underestimated for that variable and then for the whole IHDI.
- Q: I want to use an income measure, shall I take its log? A: Taking the log of income compresses inequality. It’s better to work with the levels. However, for flexible options see the appendix of the HDR 2010.
- What if I have zeroes or negative values?
The basic formulas of the IHDI: Data aspects and requirements

- Q: What data do we need? A: Ideally, disaggregated at the individual level.
- Q: All the variables from the same dataset? A: Not necessary for the IHDI. Because it is not sensitive to the association of dimensions, there is no need to rely on the same dataset for all the variables.
- Q: What if I have, say, municipal data for some variable? A: Inequality will be underestimated for that variable and then for the whole IHDI.
- Q: I want to use an income measure, shall I take its log? A: Taking the log of income compresses inequality. It’s better to work with the levels. However, for flexible options see the appendix of the HDR 2010.
- What if I have zeroes or negative values? A: The IHDI cannot be computed sensibly with negative values and one zero suffices for $A_x = 1$! Disposing of those observations or imputing values may be necessary. The HDR 2010 replaces them with the minimum value of the bottom 0.5 percentile distribution of positive incomes. It may be necessary to assess the impact of imputations on inequality.
Properties of the IHDI

The following are properties relevant to the IHDI:
Properties of the IHDI

The following are properties relevant to the IHDI:

▶ Sensitivity to progressive rank-preserving transfers within dimensions.
Properties of the IHDI

The following are properties relevant to the IHDI:

▶ Sensitivity to progressive rank-preserving transfers within dimensions. The IHDI increases when a richer person transfers part of its achievement to a poorer person, and their pairwise ranks do not change.
Properties of the IHDI

The following are properties relevant to the IHDI:

▶ Sensitivity to progressive rank-preserving transfers within dimensions. The IHDI increases when a richer person transfers part of its achievement to a poorer person, and their pairwise ranks do not change.

▶ Path-independence.
Properties of the IHDI

The following are properties relevant to the IHDI:

- Sensitivity to progressive rank-preserving transfers within dimensions. The IHDI increases when a richer person transfers part of its achievement to a poorer person, and their pairwise ranks do not change.

- Path-independence. If $\overline{x} = l_x$ then the IHDI would also be path independent, i.e. $IHDI = \prod_{d=1}^{D} \prod_{n=1}^{N} x_{id}^{\frac{1}{ND}}$
Properties of the IHDI

The following are properties relevant to the IHDI:

- Sensitivity to progressive rank-preserving transfers within dimensions. The IHDI increases when a richer person transfers part of its achievement to a poorer person, and their pairwise ranks do not change.

- Path-independence. If \(\bar{x} = l_x \) then the IHDI would also be path independent, i.e. \(IHDI = \prod_{d=1}^{D} \prod_{n=1}^{N} x_{id}^{1/ND} \)

- Sub-group consistency.
Properties of the IHDI

The following are properties relevant to the IHDI:

- Sensitivity to progressive rank-preserving transfers within dimensions. The IHDI increases when a richer person transfers part of its achievement to a poorer person, and their pairwise ranks do not change.

- Path-independence. If $\bar{x} = I_x$ then the IHDI would also be path independent, i.e. $IHDI = \prod_{d=1}^{D} \prod_{n=1}^{N_d} x_{id}^1$.

- Sub-group consistency. Notice that: $\bar{x}(1 - A_x) = \prod_{j=1}^{G} [\prod_{i=1}^{N_j} x_i^{1/N_j}]^{N_j/N}$.
Some properties of the IHDI:

- Individual scale invariance.
- Independence of standardized values.
- Consistency over time.

Multiplying one variable by a constant does not change $1 - A_x$, although the IHDI gets re-scaled, yet rankings are preserved, percentage differences are preserved, and even the Loss function remains unchanged.

Standarization (i.e. division of the dimensional achievement by a common value across countries, e.g. that of one specific country) does not affect country rankings.

Since scale revisions do not affect relative and percentage rankings, then these remain consistent over time (i.e. they do not themselves constitute a source of change).
Properties of the IHDI

Some more properties:

▶ Individual scale invariance. Multiplying one variable by a constant, does not change $1 - A_x$ although the IHDI's get re-scaled, yet rankings are preserved, percentage differences are preserved, and even the Loss function remains unchanged.
Properties of the IHDI

Some more properties:

▶ Individual scale invariance. Multiplying one variable by a constant, does not change $1 - A_x$ although the IHDI's get re-scaled, yet rankings are preserved, percentage differences are preserved, and even the Loss function remains unchanged.

▶ Independence of standarized values.
Properties of the IHDI

Some more properties:

- Individual scale invariance. Multiplying one variable by a constant, does not change $1 - A_x$ although the IHDI get re-scaled, yet rankings are preserved, percentage differences are preserved, and even the Loss function remains unchanged.

- Independence of standarized values. Standarization (i.e. division of the dimensional achievement by a common value across countries, e.g. that of one specific country) does not affect country rankings.
Properties of the IHDI

Some more properties:

▶ Individual scale invariance. Multiplying one variable by a constant, does not change $1 - A_x$ although the IHDI's get re-scaled, yet rankings are preserved, percentage differences are preserved, and even the Loss function remains unchanged.

▶ Independence of standarized values. Standarization (i.e. division of the dimensional achievement by a common value across countries, e.g. that of one specific country) does not affect country rankings.

▶ Consistency over time.
Properties of the IHDI

Some more properties:

▶ Individual scale invariance. Multiplying one variable by a constant, does not change $1 - A_x$ although the IHDIs get re-scaled, yet rankings are preserved, percentage differences are preserved, and even the Loss function remains unchanged.

▶ Independence of standarized values. Standarization (i.e. division of the dimensional achievement by a common value across countries, e.g. that of one specific country) does not affect country rankings.

▶ Consistency over time. Since scale revisions do not affect relative and percentage rankings, then these remain consistent over time (i.e. they do not themselves constitute a source of change).
As mentioned, the IHDI is a generalization of the HDI that takes into account the degree of inequality in the distributions of the dimensions.
Some interpretation and policy aspects of IHDI

As mentioned, the IHDI is a generalization of the HDI that takes into account the degree of inequality in the distributions of the dimensions. The difference between the HDI ("potential HD") and the IHDI ("actual HD") reflects the loss in wellbeing due to the unequal distribution of attainments. These comparisons are related to old wellbeing measurement theory (e.g. Atkinson, Sen’s metric).
As mentioned, the IHDI is a generalization of the HDI that takes into account the degree of inequality in the distributions of the dimensions. The difference between the HDI ("potential HD") and the IHDI ("actual HD") reflects the loss in wellbeing due to the unequal distribution of attainments. These comparisons are related to old wellbeing measurement theory (e.g. Atkinson, Sen’s metric).

The inequality captured by the IHDI includes all sources, i.e. it is an inequality of "outcomes" that is not helpful to analyze unequal opportunities.
Some interpretation and policy aspects of IHDI

- As mentioned, the IHDI is a generalization of the HDI that takes into account the degree of inequality in the distributions of the dimensions. The difference between the HDI (“potential HD”) and the IHDI (“actual HD”) reflects the loss in wellbeing due to the unequal distribution of attainments. These comparisons are related to old wellbeing measurement theory (e.g. Atkinson, Sen’s metric).

- The inequality captured by the IHDI includes all sources, i.e. it is an inequality of ”outcomes” that is not helpful to analyze unequal opportunities.

- These measures are descriptive.
Some interpretation and policy aspects of IHDI

- As mentioned, the IHDI is a generalization of the HDI that takes into account the degree of inequality in the distributions of the dimensions. The difference between the HDI ("potential HD") and the IHDI ("actual HD") reflects the loss in wellbeing due to the unequal distribution of attainments. These comparisons are related to old wellbeing measurement theory (e.g. Atkinson, Sen’s metric).

- The inequality captured by the IHDI includes all sources, i.e. it is an inequality of "outcomes" that is not helpful to analyze unequal opportunities.

- These measures are descriptive. They draw the attention to situations in which inequality is prominent vis-a-vis mean attainment in explaining trends in wellbeing.
Some interpretation and policy aspects of IHDI

- As mentioned, the IHDI is a generalization of the HDI that takes into account the degree of inequality in the distributions of the dimensions. The difference between the HDI ("potential HD") and the IHDI ("actual HD") reflects the loss in wellbeing due to the unequal distribution of attainments. These comparisons are related to old wellbeing measurement theory (e.g. Atkinson, Sen’s metric).

- The inequality captured by the IHDI includes all sources, i.e. it is an inequality of "outcomes" that is not helpful to analyze unequal opportunities.

- These measures are descriptive. They draw the attention to situations in which inequality is prominent vis-a-vis mean attainment in explaining trends in wellbeing. But they do not say anything about what should be done. Inequality and mean attainments may be in substitute or complementary relationships (e.g. poverty traps).
Some interpretation and policy aspects of IHDI

- As mentioned, the IHDI is a generalization of the HDI that takes into account the degree of inequality in the distributions of the dimensions. The difference between the HDI ("potential HD") and the IHDI ("actual HD") reflects the loss in wellbeing due to the unequal distribution of attainments. These comparisons are related to old wellbeing measurement theory (e.g. Atkinson, Sen’s metric).

- The inequality captured by the IHDI includes all sources, i.e. it is an inequality of "outcomes" that is not helpful to analyze unequal opportunities.

- These measures are descriptive. They draw the attention to situations in which inequality is prominent vis-a-vis mean attainment in explaining trends in wellbeing. But they do not say anything about what should be done. Inequality and mean attainments may be in substitute or complementary relationships (e.g. poverty traps).

- The IHDI should not be compared to a Gini coefficient.
Some interpretation and policy aspects of IHDI

- As mentioned, the IHDI is a generalization of the HDI that takes into account the degree of inequality in the distributions of the dimensions. The difference between the HDI ("potential HD") and the IHDI ("actual HD") reflects the loss in wellbeing due to the unequal distribution of attainments. These comparisons are related to old wellbeing measurement theory (e.g. Atkinson, Sen’s metric).

- The inequality captured by the IHDI includes all sources, i.e. it is an inequality of "outcomes" that is not helpful to analyze unequal opportunities.

- These measures are descriptive. They draw the attention to situations in which inequality is prominent vis-a-vis mean attainment in explaining trends in wellbeing. But they do not say anything about what should be done. Inequality and mean attainments may be in substitute or complementary relationships (e.g. poverty traps).

- The IHDI should not be compared to a Gini coefficient. Discounting the mean attainment with a Gini coefficient, $\mu(x)[1 - G(x)]$, has been done (Anand and Sen, 1993; Hicks, 1997), but, unlike the FLS measures, the Gini is generally not sub-group consistent and it is not path-independent.
Limitations of the IHDI

- Lack of association sensitivity.
Limitations of the IHDI

- Lack of association sensitivity.
- Zero and negative values.