Inequality-adjusted HDI: more advanced

Gastón Yalonetzky

March 2011
Table of contents

Introduction

Exploring the sensitivity of the IHDI
 Stochastic dominance for the FLS and IHDI

A note on sub-group consistency relevant to the IHDI
Introduction: The IHDI as a special case of the FLS measures

- When $\bar{x} = l_x$ the HDI is a special case of the family of Foster, Lopez-Calva and Szekely (2005)
Introduction: The IHDI as a special case of the FLS measures

- When $\bar{x} = l_x$ the HDI is a special case of the family of Foster, Lopez-Calva and Szekely (2005)

- For each dimension, FLS compute a measure of Atkinson inequality, and then they compute and aggregate measure of inequality across the Atkinson measures of inequality for all dimensions.
Introduction: The IHDI as a special case of the FLS measures

- When $\bar{x} = I_x$ the HDI is a special case of the family of Foster, Lopez-Calva and Szekely (2005)

- For each dimension, FLS compute a measure of Atkinson inequality, and then they compute and aggregate measure of inequality across the Atkinson measures of inequality for all dimensions. "A generalized mean of generalized means".
Introduction: The IHDI as a special case of the FLS measures

- When $\bar{x} = I_x$ the HDI is a special case of the family of Foster, Lopez-Calva and Szekely (2005)

- For each dimension, FLS compute a measure of Atkinson inequality, and then they compute and aggregate measure of inequality across the Atkinson measures of inequality for all dimensions. "A generalized mean of generalized means".

- The key detail is that they use the same value of the inequality aversion parameter for both stages.
Introduction: The IHDI as a special case of the FLS measures

- When $\bar{x} = I_x$ the HDI is a special case of the family of Foster, Lopez-Calva and Szekely (2005)
- For each dimension, FLS compute a measure of Atkinson inequality, and then they compute and aggregate measure of inequality across the Atkinson measures of inequality for all dimensions. "A generalized mean of generalized means".
- The key detail is that they use the same value of the inequality aversion parameter for both stages.
- That yields an index that is path-independent.
Introduction: The IHDI as a special case of the FLS measures

- When $\bar{x} = l_x$ the HDI is a special case of the family of Foster, Lopez-Calva and Szekely (2005)
- For each dimension, FLS compute a measure of Atkinson inequality, and then they compute and aggregate measure of inequality across the Atkinson measures of inequality for all dimensions. "A generalized mean of generalized means".
- The key detail is that they use the same value of the inequality aversion parameter for both stages.
- That yields an index that is path-independent.
We start from a general "generalized mean of generalized means"

\[
M(\sigma, \delta) = \left[\frac{1}{D} \sum_{d=1}^{D} \left(\frac{1}{N} \sum_{n=1}^{N} x_{nd}^\sigma \right)^{\frac{1}{\sigma}} \right]^{\frac{1}{\delta}}
\]
Introduction: The FLS measures

We start from a general "generalized mean of generalized means"

\[
M(\sigma, \delta) = \left[\frac{1}{D} \sum_{d=1}^{D} \left(\frac{1}{N} \sum_{n=1}^{N} x_{nd}^{\sigma} \right)^{\frac{1}{\sigma}} \right]^{\frac{1}{\delta}}
\]

Now if \(\sigma = \delta = \epsilon \):

\[
FLS(\epsilon) = \left[\frac{1}{ND} \sum_{d=1}^{D} \sum_{n=1}^{N} x_{nd}^{\epsilon} \right]^{\frac{1}{\epsilon}} \forall \epsilon \neq 0
\]

\[
FLS(0) = \prod_{d=1}^{D} \prod_{n=1}^{N} x_{nd}^{\frac{1}{ND}}
\]

The IHDI is based on FLS(0).
Introduction: The FLS measures

We start from a general "generalized mean of generalized means"

\[
M(\sigma, \delta) = \left[\frac{1}{D} \sum_{d=1}^{D} \left(\frac{1}{N} \sum_{n=1}^{N} x_{nd}^{\sigma} \right)^{\frac{1}{\sigma}} \right]^{\frac{1}{\delta}}
\]

Now if \(\sigma = \delta = \epsilon \):

\[
FLS(\epsilon) = \left[\frac{1}{ND} \sum_{d=1}^{D} \sum_{n=1}^{N} x_{nd}^{\epsilon} \right]^{\frac{1}{\epsilon}} \forall \epsilon \neq 0
\]

\[
FLS(0) = \prod_{d=1}^{D} \prod_{n=1}^{N} x_{nd}^{\frac{1}{ND}}
\]

The IHDI is based on FLS(0).
An illustration of the FLS measures
Data issues

- When information from some dimension is aggregated at an intermediate level between the individual and the country (e.g. municipalities) the IHDI, and its associated loss function, need to be considered as upper and lower bounds, respectively.
Data issues

- When information from some dimension is aggregated at an intermediate level between the individual and the country (e.g. municipalities) the IHDI, and its associated loss function, need to be considered as *upper and lower bounds*, respectively.

- Imputations for the replacements of zeroes or negative values have non-trivial effects on the computed inequality.
Data issues

- When information from some dimension is aggregated at an intermediate level between the individual and the country (e.g. municipalities) the IHDI, and its associated loss function, need to be considered as *upper and lower bounds*, respectively.

- Imputations for the replacements of zeroes or negative values have non-trivial effects on the computed inequality. This warrants sensitivity analysis.
Data issues

- When information from some dimension is aggregated at an intermediate level between the individual and the country (e.g. municipalities) the IHDI, and its associated loss function, need to be considered as upper and lower bounds, respectively.

- Imputations for the replacements of zeroes or negative values have non-trivial effects on the computed inequality. This warrants sensitivity analysis.

- With the Atkinson measures, for each dimension, it turns out that if the imputed value is above (below) the geometric mean of the unaffected observations then the total geometric mean will also be above (below) the restricted geometric mean.
Illustration of the imputation problem
Inequality-adjusted HDI: more advanced

- Exploring the sensitivity of the IHDI
- Stochastic dominance for the FLS and IHDI

Stochastic dominance for the FLS family, including the IHDI

- Say we want to adjust the HDI for inequality using other inequality aversion parameters.
Say we want to adjust the HDI for inequality using other inequality aversion parameters. Could that affect the robustness of our country rankings?
Stochastic dominance for the FLS family, including the IHDI

- Say we want to adjust the HDI for inequality using other inequality aversion parameters. Could that affect the robustness of our country rankings? In principle, yes.
Stochastic dominance for the FLS family, including the IHDI

- Say we want to adjust the HDI for inequality using other inequality aversion parameters. Could that affect the robustness of our country rankings? In principle, yes.
- Say we want to tinker with weights for the aggregation across dimensions.
Say we want to adjust the HDI for inequality using other inequality aversion parameters. Could that affect the robustness of our country rankings? In principle, yes.

Say we want to tinker with weights for the aggregation across dimensions. That could also affect country rankings!
Stochastic dominance for the FLS family, including the IHDI

▶ Say we want to adjust the HDI for inequality using other inequality aversion parameters. Could that affect the robustness of our country rankings? In principle, yes.
▶ Say we want to tinker with weights for the aggregation across dimensions. That could also affect country rankings!
▶ Are there conditions under which a country is better-off in terms of inequality-adjusted human development regardless of the aforementioned choices?
Stochastic dominance for the FLS family, including the IHDI

The following are the conditions:
Stochastic dominance for the FLS family, including the IHDI

The following are the conditions:

First order: (sufficient but not necessary)

\[\Delta FLS(\epsilon, w) \geq 0 \iff \Delta F(x_i) \leq 0 \forall i \in [1, D] \]
Stochastic dominance for the FLS family, including the IHDI

The following are the conditions:

First order: (sufficient but not necessary)

$$\Delta FLS(\epsilon, w) \geq 0 \leftrightarrow \Delta F(x_i) \leq 0 \forall i \in [1, D]$$

Second order: (necessary and sufficient)

$$\Delta FLS(\epsilon, w) \geq 0 \leftrightarrow \Delta H(x_i) \leq 0 \forall i \in [1, D]$$
Stochastic dominance for the FLS family, including the IHDI

The following are the conditions:

First order: (sufficient but not necessary)

\[\Delta FLS(\epsilon, w) \geq 0 \iff \Delta F(x_i) \leq 0 \forall i \in [1, D] \]

Second order: (necessary and sufficient)

\[\Delta FLS(\epsilon, w) \geq 0 \iff \Delta H(x_i) \leq 0 \forall i \in [1, D] \]

Several other robustness methods are available.
Stochastic dominance for the FLS family, including the IHDI

The following are the conditions:

First order: (sufficient but not necessary)

\[\Delta FLS(\epsilon, w) \geq 0 \iff \Delta F(x_i) \leq 0 \forall i \in [1, D] \]

Second order: (necessary and sufficient)

\[\Delta FLS(\epsilon, w) \geq 0 \iff \Delta H(x_i) \leq 0 \forall i \in [1, D] \]

Several other robustness methods are available. We will discuss some in the lectures on robustness.
A note on sub-group consistency relevant to the IHDI

- Sub-group consistency implies that if inequality increases in one group, *ceteris paribus*, then overall inequality has to increase.
Sub-group consistency implies that if inequality increases in one group, *ceteris paribus*, then overall inequality has to increase.

However this does not mean that a reduction in inequality in all regions should lead to a reduction in inequality nationally.
A note on sub-group consistency relevant to the IHDI

- Sub-group consistency implies that if inequality increases in one group, *ceteris paribus*, then overall inequality has to increase.

- However this does not mean that a reduction in inequality in all regions should lead to a reduction in inequality nationally. Why?
A note on sub-group consistency relevant to the IHDI

- Sub-group consistency implies that if inequality increases in one group, *ceteris paribus*, then overall inequality has to increase.
- However this does not mean that a reduction in inequality in all regions should lead to a reduction in inequality nationally. Why?
- Because population composition could change as well!
Sub-group consistency implies that if inequality increases in one group, *ceteris paribus*, then overall inequality has to increase.

However this does not mean that a reduction in inequality in all regions should lead to a reduction in inequality nationally. Why?

Because population composition could change as well! Changes in population composition are not ”covered” by the property of sub-group consistency.