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Part I 

Standard Error 



What are the main sources of  Error? 
 

These could be categorised as:  statistical & non statistical 
 

A. Statistical: Sampling Error  

B. Non Statistical:  
 

1. Data Entry Error 

2. Measurement Error: Sources 
• Recall error (don’t remember correctly) 

• Telescoping (incorrect date recall) 

• Reporting Errors (due to long surveys) 

• Prestige errors (misreport due to social pressures ) 

• Conditioning effects (from being in the survey) 

• Respondent effects (respondent identity affects answers) 

• Interviewer effects (facilitator bias; mis-measuring a baby) 

• Non-response rate 

• Inadequate sampling frame (Source: Nestor 1970; Deaton & Grosh 2000).  



Which of  these can we correct for existing data?  
 

Sampling Error?  Data Entry Error?  

Or  Measurement Error? 
• Recall error (don’t remember correctly) 

• Telescoping (incorrect date recall) 

• Reporting Errors (due to long surveys) 

• Prestige errors (misreport due to social pressures ) 

• Conditioning effects (from being in the survey) 

• Respondent effects (respondent identity affects answers) 

• Interviewer effects (facilitator bias; mis-measuring a baby) 

• Non-response rate 

• Inadequate sampling frame 

 

We can only correct for sampling error 

For this we shall compute standard errors, and build confidence 

intervals 

 



 

Focus of  this class: 

 

How Accurate are my Measures? 

 

If  I use them for policy, what is the 

chance that they are mistaken? 

 
 

 

 
 

 

 

? ? ? ? ? 



 

Focus of  Part I  

of  this class  
 

 
Understand, from a policy perspective, the need for 

computing standard errors, and building confidence 

intervals on M measures 

 

 
 

 

 



 

Some terminology 

 
•Inferential statistics like standard error and 

confidence intervals (CI) deal with inferences about 

populations based on the behavior of  samples.  

 
•Both standard errors and CI’s will help us  

determining how likely it is that results based on a 

sample (or samples) are the same results that would 

have been obtained for the entire population  
 



Standard error & standard deviation 
 

•Standard error of  a random variable, like H or A, is the 

sample estimation of  its (population) standard deviation. 

The standard error gives us an idea of  the precision of  

the sample estimation. 

 

•The standard deviation, intuitively,  is a notion of  

uncertainty. To obtain the standard deviation of  a 

random variable we need first to compute the variance. 

 

•The variance of  a random variable, like H, A or any 

other M, is a measure of  the dispersion of  the 

distribution around the mean. The smaller the variance 

the lesser the degree of  uncertainty. 



How to obtain the  

standard error 
 

To compute the standard error of  any M measure we can use: 

 

1. Analytical standard errors: “Formulas” which either provide the 

exact or the asymptotic approximation of  the standard error 

(Yalonetky, 2010).  

 

2.  Resampling methods like the bootstrap (Alkire, & Santos, 2010).  

 

 



Confidence Intervals (CI) 
 

The standard error is a point estimate. In many cases we might be 

interested in looking at interval estimates, called  confidence 

intervals.  

 

Confidence intervals provide a range of  likely values for the 

population parameter (i.e, H, or A) and not just a point 

estimate. 

 

For example to compare  H (or A) values across urban and rural 

regions we can compare their confidence intervals and look 

for overlaps. 

 

If  the CI’s overlap then we might conclude that the poverty 

comparison (H values) across urban and rural regions is not 

statistically different.  



Are the M0 values different? 

Rural Urban 

M0 

0 

Region 

M0 

0 

Case I Case II 

A B C 

Let’s look at the CI’s 

Is the rural 

region 

poorer than 

the urban 

one? 



Are the M0 values different? - CI 
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Are the M0 values different? 

Subgroup
Lower 

Bound

M0 

(subgroup)

Upper 

Bound
in M0 Significant

Manipur 0.143 0.158 0.173 0.033 Yes

Andhra Pradesh 0.175 0.190 0.206

Tripura 0.209 0.233 0.257 0.042 No

Arunachal Pradesh 0.251 0.275 0.299

Difference

 Source Alkire and Seth (2012): Trend and Analysis of  

 Multidimensional Poverty in India, 1999 and 2006 
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Nigeria:  Indicator Standard Errors 

Are the M0 values different? - CI 



16 

Source: Alkire and Roche (2012) - International MPI 

Note: Figures with an asterisk have non-overlapping  

confidence intervals at 95 percent.  

  Education   Health   Living Standards 

  YS SA   CM N   E S W F CF AO 

Average annual absolute change in censored headcount 

Bangladesh -1.3* -3.9* -1.8* -2.3* -3.0* -3.4* -0.1 -3.1* -3.0* -3.8* 

Bolivia -0.4* -3.9* -1.5* -0.4* -2.2* -3.1* -1.6* -1.9* -2.1* -1.7* 

Colombia -0.2* -0.4* -0.4* -0.4* -0.2* -0.4* -0.2* -0.4* -0.6* -0.8* 

Ethiopia -2.2* -1.1* -1.1* -5.8* -0.6* -2.0* -5.8* -0.8* -0.9* -1.0* 

Ghana -1.3* -4.3* -3.9* -2.6* -4.0* -5.5* -3.5* -0.3 -5.5* -4.1* 

Jordan 0.0 0.3 0.1 -0.6* 0.0 -0.1 -0.1 0.0 0.0 0.0 

Kenya -0.6 -0.4 -0.9* -0.2 -2.1* -2.7* -2.8* -1.8 -1.9* -2.9* 

Lesotho -0.7* -1.2* -0.7* -0.1 -2.4* -2.5* -1.4* -1.6* -1.8* -3.5* 

Madagascar 0.9 -0.2 -0.6 -4.3* -0.4 1.2* -1.7* -0.5 -0.5 -1.8* 

Nigeria -0.4 -0.7 -1.6* -0.8* -0.2 -4.5* -2.8* 0.2* -1.6* -1.4* 

MPI: are the M0 values different? - CI 



Part II 

Robustness and 

Dominance Analysis 



 

Focus of  Part II  

of  this class  
 

 
Understanding, how sensitive your policy 

prescriptions are to decisions you have made in 

designing the measure. It could be that the measure 

changes radically if  you adjust a parameter that you 

don’t feel strongly about.  

 

 
 

 

 



Note: Think through how the measure is used. 

Test robustness accordingly 
 

To test the robustness of  your measure, you have to first identify the 

comparisons that matter for policy. 

 

E.g. Central Government allocates budget according to the MPI in 

each region of  the country. (I need to test if  the regional comparisons are 

robust) 

 

A minister wants to show the steepest decrease in poverty in their 

region/dimension. (test trends) 

 

Other examples: comparisons of  % contribution vs MPI or H?  Or 

comparisons by social groups? 

 

 
 

 

 



 

Familiar for pov lines – e.g. Chen &Ravallion 2008 



Aspects that Affect MD Poverty Comparison  

• Poverty Cutoff 

• Weighting vector 

• Deprivation cutoffs 

• The measure in the AF class used 

• Sample size and statistical significance 
 

Comparison may alter when parameters vary 

For k = 1/3 

MPI of Nigeria is 0.310 

MPI for Zambia is 0.328 

For k = 1/2 

MPI of Nigeria is 0.232 

MPI for Zambia is 0.214 



Why is This Important? 

• Given that policy decisions based on the measure 

used affect the lives of the poor, it is important to 

understand the sensitivity of the measure with 

respect to the choice of parameters 



Main Sources of this Lecture 

• Batana (2008) OPHI Working Paper 13 

• Yalonetzky (2012) ECONEQ WP 2012 – 257 

• Alkire and Santos (2013) 



Dominance in a Multidimensional 

Framework 



Recap: Unidimensional FSD 
First order Stochastic Dominance 

Example of FSD: Let x=(2,4,6,10) and y=(1,4,5,10) 

H
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d
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u
n
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R
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No part of  y lies to the 

right of  x 

 

Thus, x FSD y in this case, 

which means x has 

unambiguously less 

poverty than y according 

to H 



Dominance for H and M0 in AF 

Question: When can we say that a distribution has higher H 

or M0 for any poverty cutoff (k), for a given weight 

vector and a given deprivation cutoff vector? 

 

Hint: The concept can be borrowed from the 

unidimensional stochastic dominance 

     Alkire and Foster (2011) 



Dominance for H and M0 in AF 

Consider the following deprivation matrix 

Income 
Years of  

Education 
Sanitation 
(Improved?) 

Access to 

Electricity 

g0 =  

0 0 0 0 

1 0 0 1 

1 1 1 1 

0 1 0 0 

z =  500 12 1 1 



Dominance for H and M0 in AF 

• For equal weight, deprivation score vector is c 

Income 
Years of  

Education 
Sanitation 
(Improved?) 

Access to 

Electricity c 

g0 =  

0 0 0 0 0 

1 0 0 1 2 

1 1 1 1 4 

0 1 0 0 1 

z =  500 12 1 1 



Dominance for H and M0 in AF 

Result (Alkire and Foster 2011) 

– If a deprivation score vector c for distribution X first order 

stochastically dominates another deprivation score vector c' 

of X', then X has no higher H and M0 than X' for all k and X 

has strictly lower H and M0 than X'  for some k 

 

Note however that the distribution functions would be downward sloping 

instead of upward rising 



Example 

Let the two deprivation score vectors be c = (0, 1, 2, 4) 

and c' = (1, 1, 3, 4) 

c 

F(c) 

1 

0 1 2 

3/4 

2/4 

1/4 

3 

F(c) 

4 

Is there any 

poverty  (k) for 

which there is 

more poverty in c 
than in c' ? 

F(c') 



M0 Curve 

Dominance holds in terms for M0 for all k 
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In case of  sample 

surveys, the 

confidence 

intervals for each 

k also needs to be 

computed in order 

to conclude 

dominance 



Robustness 



Why Need Robustness Checks? 

Note that dominance is an extreme form of robustness 

 

Stochastic Dominance (SD) conditions are useful for 

pair by pair analysis 

 

SD conditions may be too stringent and may not hold 

for the majority of the countries 



Why Need Robustness Checks? 

Note below that NOT all countries stochastically dominates 

each other (Batana 2008) 
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Why Need Robustness Checks? 

Thus, we need other ways to understand how robust the 

rankings are to changes in weights and cutoffs or test 

for restricted dominance 

 



Robustness of Comparison 

Is a particular comparison between two countries or 

regions robust when k varies between an interval? 

 

If k is between 0.9 and 

1.6, the comparisons  

between Niger &  

Burkina Faso and  

Benin & Nigeria are 

robust, but that  

between Kenya & 

Ghana is not 

    What if k ranges between 0.9 and 2.4? 
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Robustness of Comparison 

Until now, we have only compared the robustness of a pair 

of countries or regions 

 

How can we evaluate the ranking of a set of countries or 

regions, when 

– the poverty cut-off varies 

– the weights vary 

– the deprivation cutoffs vary 



Measuring Robustness of Comparisons 

• A useful method for comparing robustness of ranking 

is to compute rank correlation coefficients 
• Spearman’s rank correlation coefficient 

• Kendall’s rank correlation coefficient 

• Percentage of pair-wise comparisons that are robust 

• First, different rankings of countries or regions are 

generated for different specifications of parameters 

– Different weighting vectors, different poverty/deprivation cutoffs 

 

• Next, the pair-wise ranks and rank  correlation 

coefficients are computed  



Kendall’s Tau 

• For each pair, it is found if the comparison is concordant or 

discordant 

– 10 countries means 45 pair-wise comparisons 

 

• The comparison between a pair of countries is concordant if 

one dominates the other for both specifications (C) 

 

• The comparison between a pair of countries is discordant if 

one dominates the other for one specification but is 

dominated for the other specification (D) 



Kendall’s Tau 

• The Kendall’s Tau rank correlation coefficient (t) is 

equal to  

 

 

• It lies between -1 and +1 

 

• If there are ties, this measure should be adjusted for ties 

– The tie adjusted Tau is known as tau-b 

C D

C D









Spearman’s Rho 

• The Spearman’s Rho also measures rank correlation but 

is slightly different from Tau 

– First countries are ranked for two specifications 

– Then, for each country the difference in two ranks are 

computed (ri for country i) 

 

• The Spearman’s Rho (r) is 

2

1

2

6
1

( 1)

n

ii
r

n n
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Some Illustrations using the MPI 

Robustness to weights 

 

Re-weight each dimension: 

 

– 33%  50%  25%  25% 

– 33%  25%  50%  25% 

– 33%  25%  25%  50% 



Robustness to Weights 
MPI Weights 1 MPI Weights 2 MPI Weights 3

Equal weights: 

33% each 

(Selected 

Measure)

50% Education 

25% Health 

25% LS

50% Health

25% Education 

25% LS

Pearson 0.992

Spearman 0.979

Kendall (Taub) 0.893

Pearson 0.995 0.984

Spearman 0.987 0.954

Kendall (Taub) 0.918 0.829

Pearson 0.987 0.965 0.975

Spearman 0.985 0.973 0.968

Kendall (Taub) 0.904 0.863 0.854

Number of countries: 109

MPI 

Weights 2

50% Education 

25% Health 

25% LS

MPI 

Weights 3

50% Health 

25% Education 

25% LS

MPI 

Weights 4

50% LS 

25% Education 

25% Health

Alkire and Santos (2010, 2013) 



Robustness to Poverty Cutoff (k) 

Spearman’s Rank Correlation Table for different poverty 

cutoffs out of 10 indicators in India 

 

 

 

 

 

Alkire and Seth (2008) 



Other tests 

You can perform the Friedman test for rank 

independence (it will mostly reject independence – 

not very strong) 

 

You can perform the Wilcoxon test for changes in 

weights.  



You can also bootstrap (Alkire & Santos 2013) 

• We estimated the MPI for the different selected k-values and bootstrapped them. As all 

the surveys used have a complex survey design we have drawn samples of clusters 

(with replacement) within each strata (Deaton, 1997). For each country we have 

performed 1000 replications and with these estimates we have created the bootstrap 

95% confidence intervals. Given two countries, A and B, we say that B dominates A if 

A’s (bootstrapped) lower bound MPI estimate is greater than B’s (bootstrapped) upper 

bound MPI for all the considered k values. That is, B has lower poverty than A 

regardless of the k-cutoff and considering alternative samples. We perform this 

comparison for all the possible pairs of countries. 

• We find that 87.4% of all possible pair wise comparisons of bootstrapped estimates are 

robust to a change of k between 20% and 40%, meaning that one country is 

unambiguously less poor than another, independently of whether we require people to 

be deprived in 20, 33 or 40% of the weighted indicators.  

• When we test for robustness considering only countries with 10 indicators we find that 

91.2% of the comparisons are robust and when we discriminate by survey, we find that 

91.7% of comparisons among DHS countries are robust, 85.2% among MICS 

countries and only 59.6% among WHS countries, analogous to the results with the 

robustness to weights. 


