

Summer School on Multidimensional Poverty

James Foster GWU, Washington, DC, July 2013

Sources

- Alkire, S., Foster, J.E., 2011. "Counting and Multidimensional Poverty Measurement," *Journal of Public Economics*
- See also Alkire, S., Foster, J.E., 2011.

 "Understandings and Misunderstandings of Multidimensional Poverty Measurement," *Journal of Economic Inequality*

Outline

- Motivation
- Multidimensional Data
- Identification
- Aggregation
- Examples

Challenge

• A government would like to create an official multidimensional poverty indicator

Desiderata

- It must understandable and easy to describe
- It must conform to "common sense" notions of poverty
- It must be able to target the poor, track changes, and guide policy.
- It must be technically solid
- It must be operationally viable
- It must be easily replicable
 - What would you advise?

Practical Steps

Select

- Purpose of the index (monitor, target, etc)
- Unit of Analysis (indy, hh, cty)
- Dimensions
- Specific variables or indicators for each dimension
- Whether variables or dimensions should be aggregated with others or left independent
- Cutoff for each independent variable/dimension
- Value of deprivation for each variable/dimension
- Identification method
- Aggregation method

This Presentation

- Assumes that the purpose, variables, dimensional cutoffs, values, etc. have been selected
- Focus here on the methodology for measuring poverty
 - Identification
 - Aggregation
- Note
 - Identification step is more challenging when there are many dimensions

AF Methodology: Overview

Identification of poor – Dual cutoffs

Deprivation cutoffs - each deprivation counts

Poverty cutoff - in terms of aggregate deprivation values

Aggregation across the poor – Adjusted FGT

Reduces to FGT in single variable case

Key Measure: Adjusted headcount ratio $M_0 = HA$

H is the share of the population identified as poor, or the *incidence*

A is the average breadth or multiplicity of deprivation people suffer at the same time, or the *intensity*

Note: Relies on joint distribution

Observations

- Satisfies many desirable axioms
 - joint restrictions on identification and aggregation
- Decomposability by sub-group
 - Key for targeting
- Breakdown by factor after identification
 - Key for policy coordination
- Ordinality axiom
 - Key for applicability

Multidimensional Poverty

Suppose many variables or dimensions

Question

How to evaluate poverty?

Answer 1

If variables can be meaningfully combined into some overall resource or achievement variable, *traditional methods can be used*

Traditional Unidimensional Methods

Variable – income Identification – poverty line Aggregation – Foster-Greer-Thorbecke '84

Example Incomes = (7,3,4,8) poverty line z = 5

Deprivation vector
$$g^0 = (0,1,1,0)$$

Headcount ratio $P_0 = m(g^0) = 2/4$
Normalized gap vector $g^1 = (0, 2/5, 1/5, 0)$
Poverty gap = $P_1 = m(g^1) = 3/20$
Squared gap vector $g^2 = (0, 4/25, 1/25, 0)$
FGT Measure = $P_2 = m(g^2) = 5/100$

Combining Variables

Welfare aggregation

Construct each person's welfare level

Set cutoff and apply traditional poverty index

Problems

Many assumptions needed

Cardinal utility?

Comparability across people?

Alkire and Foster (2010) "Designing the Inequality-Adjusted Human Development Index"

Combining Variables

Price aggregation

Construct each person's expenditure level

Set cutoff and apply traditional poverty index

Problems

Many assumptions needed

Ordinal and nonmarket variables problematic

Link to welfare tenuous (local and unidirectional)

Foster, Majumdar, Mitra (1990) "Inequality and Welfare in Market Economies" *JPubE*

Caveats

Note

Even if an aggregate exists, it may not be the right approach

Idea

Aggregate resource approach signals what *could be*The budget constraint

Does not indicate what *is*The actual bundle purchased

Example

Consumption poverty is falling rapidly in India Yet 45% of kids malnourished

Problem

Aggregating may hide policy relevant information can't retrieve

Multidimensional Poverty

Suppose many variables or dimensions

Question

How to evaluate poverty?

Answer 2

If variables cannot be meaningfully aggregated into some overall resource or achievement variable, *new methods must be used*

Multidimensional Poverty

Some people go to great lengths to avoid this fact:

Blinders approach

Limit consideration to a subset that *can* be aggregated, and use traditional methods.

Key dimensions ignored OPHI Missing Dimensions

Marginal methods

Apply traditional methods separately to each variable

Ignores joint distribution

Where did identification go? Alkire, Foster, Santos (2011) JEI

Multidimensional Data

- Income: "What is your income per capita in dollars a day?"
 - \$13 or above (bold is non-deprived)
 - Below \$13 (non-bold is deprived)
- Schooling: "How many years of schooling have you completed?"
 - 12 or more
 - 1-11 years
- **Health:** "Would you say that in general your health is Excellent, Very good, Good, Fair, Or Poor?"_
 - Excellent, very good or good
 - Fair or poor
- Social Service: "Do you have access to social service?"
 - Yes
 - No
- For this illustration we will assume deprivations have equal value

Multidimensional Data

Matrix of well-being scores for *n* persons in *d* domains

$$y = \begin{bmatrix} 13.1 & 14 & 4 & 1 \\ 15.2 & 7 & 5 & 0 \\ 12.5 & 10 & 1 & 0 \\ 20 & 11 & 3 & 1 \end{bmatrix}$$
 Persons

Multidimensional Data

Matrix of well-being scores for *n* persons in *d* domains

$$y = \begin{bmatrix} 13.1 & 14 & 4 & 1 \\ 15.2 & 7 & 5 & 0 \\ 12.5 & 10 & 1 & 0 \\ 20 & 11 & 3 & 1 \end{bmatrix}$$
 Persons

z (13 12 3 1) Cutoffs

Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

$$y = \begin{bmatrix} 13.1 & 14 & 4 & 1 \\ 15.2 & 7 & 5 & 0 \\ \underline{12.5} & \underline{10} & \underline{1} & \underline{0} \\ 20 & \underline{11} & 3 & 1 \end{bmatrix}$$
 Persons

These entries fall below cutoffs

Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
 Persons

Normalized Gap Matrix

Normalized gap = $(z_i - y_{ii})/z_i$ if deprived, 0 if not deprived

Domains

$$y = \begin{bmatrix} 13.1 & 14 & 4 & 1 \\ 15.2 & 7 & 5 & 0 \\ 12.5 & 10 & 1 & 0 \\ 20 & 11 & 3 & 1 \end{bmatrix}$$
 Persons

z (13 12 3 1) Cutoffs

Normalized Gap Matrix

Normalized gap = $(z_i - y_{ii})/z_i$ if deprived, 0 if not deprived

$$g^{1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0.08 & 0 & 0 \end{bmatrix}$$
 Persons

Squared Gap Matrix

Squared gap = $[(z_i - y_{ii})/z_i]^2$ if deprived, 0 if not deprived

$$g^{1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0.08 & 0 & 0 \end{bmatrix}$$
 Persons

Squared Gap Matrix

Squared gap = $[(z_i - y_{ii})/z_i]^2$ if deprived, 0 if not deprived

$$g^{2} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.176 & 0 & 1 \\ 0.002 & 0.029 & 0.449 & 1 \\ 0 & 0.006 & 0 & 0 \end{bmatrix}$$
Persons

Identification

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
 Persons

Deprivation matrix

Identification – Counting Deprivations

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 & 4 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 Persons

Identification – Counting Deprivations

Q/ Who is poor?

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 & 4 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 Persons

Identification – Union Approach

Q/ Who is poor?

A1/ Poor if deprived in any dimension $c_i \ge 1$

Identification – Union Approach

Q/ Who is poor?

A1/ Poor if deprived in any dimension $c_i \ge 1$

Observations

Union approach often predicts very high numbers.

Charavarty et al '98, Tsui '02, Bourguignon & Chakravarty 2003 etc use the union approach

Identification – Intersection Approach

Q/ Who is poor?

A2/ Poor if deprived in all dimensions $c_i = d$

Identification – Intersection Approach

Q/ Who is poor?

A2/ Poor if deprived in all dimensions $c_i = d$

Observations

Demanding requirement (especially if d large)
Often identifies a very narrow slice of population
Atkinson 2003 first to apply these terms.

Q/ Who is poor?

A/ Fix cutoff k, identify as poor if $c_i \ge k$

Q/ Who is poor?

A/ Fix cutoff k, identify as poor if $c_i \ge k$ (Ex: k = 2)

Q/ Who is poor?

A/ Fix cutoff k, identify as poor if $c_i \ge k$ (Ex: k = 2)

Note

Includes both union (k = 1) and intersection (k = d)

Identification – Empirical Example

k =	Н
Union 1	91.2%
2	75.5%
3	54.4%
4	33.3%
5	16.5%
6	6.3%
7	1.5%
8	0.2%
9	0.0%
Inters. 10	0.0%

Poverty in India for 10 dimensions

```
91% of population
would be targeted
using union
0% using intersection
Need something in the
middle
(Alkire and Seth 2009)
```


Identification function is $\rho_k(y_i;z)$ where

$$\rho_{k}(y_{i};z) = 1 \text{ if } c_{i} \ge k \text{ (in which case i is poor)}$$

and

$$\rho_{k}(y_{i};z) = 0 \text{ if } c_{i} < k \text{ (in which case i is nonpoor)}$$

Censor data of nonpoor

Censor data of nonpoor

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} c(k) \\ 0 \\ \underline{4} \\ 0 \end{array} \qquad \text{Persons}$$

Censor data of nonpoor

Domains
$$c(k)$$

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} 0 \\ \underline{2} \\ \underline{4} \\ 0 \end{array} \quad \text{Persons}$$

Similarly for g¹(k), etc

Aggregation – Headcount Ratio

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} c(k) \\ 0 \\ \underline{4} \\ 0 \end{array} \quad \text{Persons}$$

Aggregation – Headcount Ratio

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} c(k) \\ 0 \\ \underline{2} \\ \underline{4} \\ 0 \end{array} \quad \text{Persons}$$

Two poor persons out of four: H = 1/2

Suppose the number of deprivations rises for person 2

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} c(k) \\ 0 \\ \underline{2} \\ \underline{4} \\ 0 \end{array} \qquad \begin{array}{c} \text{Persons} \\ \underline{4} \\ 0 \end{array}$$

Two poor persons out of four: H = 1/2

Suppose the number of deprivations rises for person 2

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} 0 \\ 3 \\ 4 \\ 0 \end{array} \qquad \begin{array}{c} \text{Persons} \\ \end{array}$$

Two poor persons out of four: H = 1/2

Suppose the number of deprivations rises for person 2

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} 0 \\ 3 \\ 4 \\ 0 \end{array} \qquad \begin{array}{c} \text{Persons} \\ \end{array}$$

Two poor persons out of four: H = 1/2No change!

Suppose the number of deprivations rises for person 2

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} c(k) \\ 0 \\ \underline{4} \\ 0 \end{array} \qquad \begin{array}{c} \text{Persons} \\ \underline{4} \\ 0 \end{array}$$

Two poor persons out of four: H = 1/2

No change!

Violates 'dimensional monotonicity'

Return to the original matrix

Return to the original matrix

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} c(k) \\ 0 \\ \underline{4} \\ 0 \end{array} \quad \text{Persons}$$

Need to augment information

deprivation shares among poor

Domains
$$c(k)$$
 $c(k)/d$

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \frac{2}{4} \qquad \frac{2}{4} \qquad 4/4 \qquad \text{Persons}$$

Need to augment information

deprivation shares among poor

Domains
$$c(k)$$
 $c(k)/d$

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} 0 \\ \underline{2} \\ \underline{4} \\ 0 \end{array} \qquad \begin{array}{c} 2/4 \\ \underline{4}/4 \end{array} \qquad \begin{array}{c} \text{Persons} \\ \underline{4} \\ 0 \end{array}$$

Adjusted Headcount Ratio = M_0 = HA

Domains
$$c(k)$$
 $c(k)/d$

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} 0 \\ \underline{2} & 2/4 \\ \underline{4} & 4/4 \end{array} \quad \text{Persons}$$

Adjusted Headcount Ratio = M_0 = HA = $m(g^0(k))$

Domains
$$c(k)$$
 $c(k)/d$

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} 0 \\ \underline{2} \\ \underline{4} \\ 0 \end{array} \qquad \begin{array}{c} 2/4 \\ \underline{4}/4 \end{array} \qquad \begin{array}{c} \text{Persons} \\ \underline{4} \\ 0 \end{array}$$

Adjusted Headcount Ratio = $M_0 = HA = m(g^0(k)) = 6/16 = .375$

Domains
$$c(k)$$
 $c(k)/d$

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} 0 \\ \underline{2} \\ \underline{4} \\ 0 \end{array} \quad \text{Persons}$$

Adjusted Headcount Ratio = $M_0 = HA = m(g^0(k)) = 6/16 = .375$

Domains
$$c(k)$$
 $c(k)/d$

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} 2 & 2/4 \\ \underline{4} & 4/4 \end{array} \quad \text{Persons}$$

A = average deprivation share among poor = 3/4Note: if person 2 has an additional deprivation, M_0 rises Satisfies dimensional monotonicity

Adjusted Headcount Ratio = $M_0 = HA = m(g^0(k)) = 7/16 = .44$

Domains
$$c(k)$$
 $c(k)/d$

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} 0 \\ \underline{3} \\ \underline{4} \\ 0 \end{array} \quad \begin{array}{c} 3/4 \\ 4/4 \end{array} \quad \text{Persons}$$

A = average deprivation share among poor = 7/8Note: if person 2 has an additional deprivation, M_0 rises Satisfies dimensional monotonicity

Methodology - Adjusted Headcount Ratio

Denoted (ρ_k, M_0)

Interpretation: Similar to traditional gap

 $P_1 = HI$ and $M_0 = HA$

Applicability: Valid for ordinal data

Robust to monotonic transformations

Simplicity: Easy to calculate

Usefulness: Can be broken down by dimension

Robust: Dominance results

Grounded in Capability Approach: Characterization via freedom – P&X 1990

Expandable: If variables are all cardinal can go further

Pattanaik and Xu 1990 and M_0

- Freedom = the number of elements in a set.
- But does not consider the value of elements
- If dimensions are of intrinsic value and are usually valued, then *every deprivation* can be interpreted as a shortfall of intrinsic concern.
- The sum of deprivation values can be interpreted as the unfreedoms of each person
- Adjusted headcount ratio is then interpreted as a measure of unfreedoms across a population.

Need to augment information of M₀ Use normalized gaps

Domains
$$g^{1}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ Persons}$$

Average gap across all deprived dimensions of the poor:

Adjusted Poverty Gap = $M_1 = M_0G = HAG$

Domains

$$g^{1}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 Persons

Average gap across all deprived dimensions of the poor:

Adjusted Poverty Gap = $M_1 = M_0G = HAG = m(g^1(k))$

$$g^{1}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 Persons

Average gap across all deprived dimensions of the poor:

Adjusted Poverty Gap = $M_1 = M_0G = HAG = m(g^1(k))$

Domains
$$g^{1}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42 & 0 & 1 \\ 0.04 & 0.17 & 0.67 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ Persons}$$

Obviously, if in a deprived dimension, a poor person becomes even more deprived, then M_1 will rise.

Satisfies monotonicity

Aggregation: Adjusted FGT

Consider the matrix of squared gaps

Domains
$$g^{2}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42^{2} & 0 & 1^{2} \\ 0.04^{2} & 0.17^{2} & 0.67^{2} & 1^{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 Persons

Aggregation: Adjusted FGT

Adjusted FGT is $M_2 = m(g^2(k))$

Domains
$$g^{2}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42^{2} & 0 & 1^{2} \\ 0.04^{2} & 0.17^{2} & 0.67^{2} & 1^{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 Persons

Aggregation: Adjusted FGT

Adjusted FGT is $M_2 = m(g^2(k))$

Domains
$$g^{2}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42^{2} & 0 & 1^{2} \\ 0.04^{2} & 0.17^{2} & 0.67^{2} & 1^{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 Persons

Satisfies a transfer axiom

Aggregation: Adjusted FGT Family

Adjusted FGT is $M_a = m(g^a(k))$ for $a \ge 0$ Domains

$$g^{\alpha}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.42^{\alpha} & 0 & 1^{\alpha} \\ 0.04^{\alpha} & 0.17^{\alpha} & 0.67^{\alpha} & 1^{\alpha} \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ Persons}$$

Theorem 1

For any deprivation values and cutoffs, the methodology $M_{ka} = (\rho_k, M_{\mathbb{M}})$ satisfies: decomposability, replication invariance, symmetry, poverty and deprivation focus, weak and dimensional monotonicity, nontriviality, normalisation, and weak rearrangement for $\mathbb{M} \geq 0$; monotonicity for $\mathbb{M} > 0$; and weak transfer for $\mathbb{M} \geq 1$.

General Case

Previously assumed value of 1 for each deprivation With sum being d

Now allow values or weights be general: $w_j > 0$ With sum being d

Identification and aggregation steps

- 1) Poverty cutoff k is compared to deprivation score or sum of deprivation values
- 2) Aggregation matrix now has columns weighted by deprivation values, and measures are found by taking mean of matrix

General Case - Matrices

Domains

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
 Persons

Deprivation matrix with values given by Weighting vector $\omega = (1, 1, 1, 1)$

General Case - Matrices

Domains

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
 Persons

Suppose instead that we have

Weighting vector
$$\omega = (.5, 2, 1, .5)$$

General Case - Matrices

Domains

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & .5 \\ .5 & 2 & 1 & .5 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$
 Persons

Weighting vector
$$\omega = (.5, 2, 1, .5)$$

Domains

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & .5 \\ .5 & 2 & 1 & .5 \\ 0 & 2 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} 0 \\ 2.5 \\ 4 \\ 2 \end{array}$$

Persons

Weighting vector
$$\omega = (.5, 2, 1, .5)$$

Who is poor?

Domains

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & .5 \\ .5 & 2 & 1 & .5 \\ 0 & 2 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} 0 \\ 2.5 \\ 4 \\ 2 \end{array}$$

Persons

Weighting vector
$$\omega = (.5, 2, 1, .5)$$

Who is poor? Let k = 2

Domains

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & .5 \\ .5 & 2 & 1 & .5 \\ 0 & 2 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} 0 \\ \underline{2.5} \\ \underline{4} \\ \underline{2} \end{array}$$

Persons

Weighting vector
$$\omega = (.5, 2, 1, .5)$$

Who is poor? Let k = 2.5

Domains

$$g^{0} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & .5 \\ .5 & 2 & 1 & .5 \\ 0 & 2 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} 0 \\ \underline{2.5} \\ \underline{4} \\ 2 \end{array}$$

Persons

Deprivation matrix with

Weighting vector
$$\omega = (.5, 2, 1, .5)$$

Note: Impact identification

General Case - Aggregation

How much poverty? $M_0 = HA$

Domains

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & .5 \\ .5 & 2 & 1 & .5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} 0 \\ \underline{2.5} \\ \underline{4} \\ 0 \end{array}$$

Persons

Deprivation matrix with

Weighting vector
$$\omega = (.5, 2, 1, .5)$$

H = 1/2, A = 6.5/8

General Case - Aggregation

How much poverty? $M_0 = HA = m(g^0(k)) = 6.5/16 = .406$

Domains

$$g^{0}(k) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & .5 \\ .5 & 2 & 1 & .5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} 0 \\ \underline{2.5} \\ \underline{4} \\ 0 \end{array}$$

Persons

Deprivation matrix with

Weighting vector
$$\omega = (.5, 2, 1, .5)$$

H = 1/2, A = 6.5/8

Properties Reviewed

• Our methodology satisfies a number of typical properties of multidimensional poverty measures:

• Symmetry Scale invariance

Normalization Replication invariance

Poverty Focus Weak Monotonicity

Deprivation Focus Weak Re-arrangement

- M_0 , M_1 and M_2 satisfy Dimensional Monotonicity, Decomposability
- M_1 and M_2 satisfy *Monotonicity* (for M > 0) that is, they are sensitive to changes in the depth of deprivation in all domains with cardinal data.
 - M_2 satisfies Weak Transfer (for $\mathbb{W} > 1$).

Implementations: Choosing k

- Depends on: purpose of exercise, data, and weights
 - "In the final analysis, how reasonable the identification rule is depends, *inter alia*, on the attributes included and how imperative these attributes are to leading a meaningful life." (Tsui 2002 p. 74).
- E.g. a measure of Human Rights; data good = union
- Targeting: according to category (poorest 5%). Or budget (we can cover 18% who are they?)
- Poor data, or people do not value all dimensions: k<d
- Some particular combination (e.g. the intersection of income deprived and deprived in any other dimension)

Implementation: Robustness for k

- Theorem 2 Where a and a' are the respective attainment vectors for y and y' in $Y(a_i=d-c_i)$, we have:
- (i) $y H y' \bowtie a FD a'$
- (ii) a FD a' M $y M_0 y'$ M a SD a', and the converse does not hold.
- (i) akin to Foster Shorrocks: first order dominance over attainment vectors ensures that multidimensional headcount is lower (or no higher) for all possible values of *k* and the converse is also true.
- (ii) shows that M_0 is implied by first order dominance, and implies second order, in turn

Example - Indonesia

Deprivation	Percentage of Population			
Expenditure	30.1%			
Health (BMI)	17.5%			
Schooling	36.4%			
Drinking Water	43.9%			
Sanitation	33.8%			

Example - Indonesia

Number of	Percentage of
Deprivations	Population
One	26%
Two	23%
Three	17%
Four	8%
Five	2%

Identification as k varies

Cutoff k	Percentage of Population	f
1	74.9%	
2	49.2%	
3	26.4%	
4	9.7%	
5	1.7%	

Equal Weights					
Measure	k=1 (Union)	k :	=2	<i>k</i> =3 (Intersection)	
Н	0.577	0.2	225	0.039	
M_0	0.280	0.1	163	0.039	
M_1	0.123	0.0	071	0.016	
M_2	0.088	0.0	051	0.011	
General We	General Weights				
Measure	k = 0.75 (Union)	k = 1.5	k = 2.25	k = 3 (Intersection)	
H	0.577	0.346	0.180	0.039	
M_0	0.285	0.228 0.145		0.039	
M_{I}	0.114	0.084 0.058		0.015	
M_2	0.075	0.051	0.036	0.010	

Equal Weig	hts				1
Measure	k=1 (Union)	k =2		1,-2	= H for ersection
H	0.577	0.225		0.039	1
M_0	0.280	0.163		0.039	
M_{I}	0.123	0.071		0.016	
M_2	0.088	0.051		0.011	
General We	eights				
Measure	k = 0.75 (Union)	k = 1.5	k = 2.25	k = 3 (Intersection)	
\overline{H}	0.577	0.346	0.180	0.039	
M_0	0.285	0.228	0.145	0.039	
M_{I}	0.114	0.084	0.058	0.015	
overty s. 2	0.075	0.051	0.036	0.010	UNIVERSITY OF OXFORD

Human Development Initiative

If all persons have maximal deprivation, then G=1, so M_0 = M_1 . Low gap if M_0 is higher than M_1 .

eights		
k=1 (Union)	k =2	k=3 (Intersec
0.577	0.225	0.039
0.280	0.163	0.039

 $M_0 = H$ for intersection

Mo	0.280	0.163	0.039
M_1	0.123	0.071	0.016
M_2	0.088	0.051	0.011

General Weights

	G			
Measur	k = 0.75 (Union)	k = 1.5	k = 2.25	k = 3 (Intersection)
H	0.577	0.346	0.180	0.039
M_0	0.285	0.228	0.145	0.039
M_1	0.114	0.084	0.058	0.015
overty 2	0.075	0.051	0.036	0.010

If all person	ns have	nts				1
maximal dep then G=1,	privation, so $M_0 =$	k=1 (Union)	k=	=2	<i>l</i> -2	= H for
M_1 . Good i	O	0.577	0.2	225	0.039	
different fr	$\lim M_1$	0.280	0.1	163	0.039	
·	M_1	0.123	0.0)71	0.016	
	M_2	0.088	0.0)51	0.011	
General We		ights				
	Measure	k = 0.75 (Union)	<i>k</i> = 1.5	k = 2.25	k = 3 (Intersection)	
	W/	0.577	0.346	0.180	0.039	
Weights	\mathcal{M}_0	0.285	0.228	0.145	0.039	
affect	M_{I}	0.114	0.084	0.058	0.015	
relevant <i>k</i> values.	rtyM2	0.075	0.051	0.036	0.010	UNIVERSITY OF OXFORD
values.	elopment Initiative					OHI OHD

AF Method: Decompositions

By Population Subgroup

 M_{α} Poverty

H Headcount

A Intensity

Post-identification: By Dimension

Censored Headcount

Percentage Contribution

All draw on censored matrix

Informal Glossary of Terms

Deprivation: if $y_{id} < z$ person i is **deprived** in y_d

Poverty: if $c_i \le k$ person *i* is poor.

Deprivation cutoffs: the z cutoffs for each dimension

Poverty cutoff: the overall cutoff *k*

Dimension: for AF - a column in the matrix having its own deprivation cutoff (sometimes called an 'indicator')

Joint distribution: showing the simultaneous or coupled deprivations a person/hh has

