Summer School on

 Multidimensional PovertyJames Foster

GWU, Washington, DC, July 2013

Sources

- Alkire, S., Foster, J.E., 2011. "Counting and Multidimensional Poverty Measurement," Journal of Public Economics
- See also Alkire, S., Foster, J.E., 2011. "Understandings and Misunderstandings of Multidimensional Poverty Measurement," Journal of Economic Inequality

Outline

- Motivation
- Multidimensional Data
- Identification
- Aggregation
- Examples

Challenge

- A government would like to create an official multidimensional poverty indicator
- Desiderata
- It must understandable and easy to describe
- It must conform to "common sense" notions of poverty
- It must be able to target the poor, track changes, and guide policy.
- It must be technically solid
- It must be operationally viable
- It must be easily replicable
- What would you advise?

Practical Steps

- Select
- Purpose of the index (monitor, target, etc)
- Unit of Analysis (indy, hh, cty)
- Dimensions
- Specific variables or indicators for each dimension
- Whether variables or dimensions should be aggregated with others or left independent
- Cutoff for each independent variable/dimension
- Value of deprivation for each variable/dimension
- Identification method
- Aggregation method

This Presentation

- Assumes that the purpose, variables, dimensional cutoffs, values, etc. have been selected
- Focus here on the methodology for measuring poverty
- Identification
- Aggregation
- Note
- Identification step is more challenging when there are many dimensions

AF Methodology: Overview

Identification of poor - Dual cutoffs

Deprivation cutoffs - each deprivation counts
Poverty cutoff - in terms of aggregate deprivation values
Aggregation across the poor - Adjusted FGT Reduces to FGT in single variable case
Key Measure: Adjusted headcount ratio $\mathrm{M}_{0}=\mathrm{HA}$
H is the share of the population identified as poor, or the incidence
A is the average breadth or multiplicity of deprivation people suffer at the same time, or the intensity
Note: Relies on joint distribution

Observations

- Satisfies many desirable axioms
- joint restrictions on identification and aggregation
- Decomposability by sub-group
- Key for targeting
- Breakdown by factor after identification
- Key for policy coordination
- Ordinality axiom
- Key for applicability

Multidimensional Poverty

Suppose many variables or dimensions
Question
How to evaluate poverty?

Answer 1
If variables can be meaningfully combined into some overall resource or achievement variable, traditional methods can be used

Traditional Unidimensional Methods

Variable - income
Identification - poverty line
Aggregation - Foster-Greer-Thorbecke ' 84

Example Incomes $=(7,3,4,8)$ poverty line $z=5$
Deprivation vector $\left.\mathbf{g}^{\mathbf{0}}=\mathbf{(0 , 1 , 1 , 0}\right)$
Headcount ratio $P_{0}=m\left(g^{0}\right)=2 / 4$
Normalized gap vector $\mathrm{g}^{1}=(0,2 / 5,1 / 5,0)$
Poverty gap $=P_{1}=m\left(g^{1}\right)=3 / 20$
Squared gap vector $\mathbf{g}^{2}=(0,4 / 25,1 / 25,0)$
FGT Measure $=P_{2}=m\left(g^{2}\right)=5 / 100$

Combining Variables

Welfare aggregation
Construct each person's welfare level
Set cutoff and apply traditional poverty index
Problems
Many assumptions needed
Cardinal utility?
Comparability across people?
Alkire and Foster (2010) "Designing the Inequality-Adjusted Human Development Index"

Combining Variables

Price aggregation
Construct each person's expenditure level
Set cutoff and apply traditional poverty index
Problems
Many assumptions needed
Ordinal and nonmarket variables problematic
Link to welfare tenuous (local and unidirectional)
Foster, Majumdar, Mitra (1990) "Inequality and Welfare in Market Economies" JPubE

Caveats

Note
Even if an aggregate exists, it may not be the right approach Idea

Aggregate resource approach signals what could be
The budget constraint
Does not indicate what is
The actual bundle purchased
Example
Consumption poverty is falling rapidly in India
Yet 45% of kids malnourished
Problem
Aggregating may hide policy relevant information can't retrieve

Multidimensional Poverty

Suppose many variables or dimensions
Question
How to evaluate poverty?
Answer 2
If variables cannot be meaningfully aggregated into some overall resource or achievement variable, new methods must be used

Multidimensional Poverty

Some people go to great lengths to avoid this fact: Blinders approach

Limit consideration to a subset that can be aggregated, and use traditional methods.

Key dimensions ignored OPHI Missing Dimensions
Marginal methods
Apply traditional methods separately to each variable
Ignores joint distribution
Where did identification go? Alkire, Foster, Santos (2011) JEI

Multidimensional Data

- Income: "What is your income per capita in dollars a day?"
- $\$ 13$ or above (bold is non-deprived)
- Below $\$ 13$ (non-bold is deprived)
- Schooling: "How many years of schooling have you completed?"
- 12 or more
- 1-11 years
- Health: "Would you say that in general your health is - Excellent, Very good, Good, Fair, Or Poor?".
- Excellent, very good or good
- Fair or poor
- Social Service: "Do you have access to social service?"
- Yes
- No
- For this illustration we will assume deprivations have equal value

Multidimensional Data

Matrix of well-being scores for n persons in d domains

$$
\begin{aligned}
& \text { Domains } \\
& \boldsymbol{y}=\left[\begin{array}{cccc}
\mathbf{1 3 . 1} & \mathbf{1 4} & \mathbf{4} & \mathbf{1} \\
\mathbf{1 5 . 2} & \mathbf{7} & \mathbf{5} & \mathbf{0} \\
\mathbf{1 2 . 5} & \mathbf{1 0} & \mathbf{1} & \mathbf{0} \\
\mathbf{2 0} & \mathbf{1 1} & \mathbf{3} & \mathbf{1}
\end{array}\right] \text { Persons } .
\end{aligned}
$$

Multidimensional Data

Matrix of well-being scores for n persons in d domains

$$
\begin{aligned}
& \text { Domains } \\
& \boldsymbol{y}=\left[\begin{array}{cccc}
\mathbf{1 3 . 1} & \mathbf{1 4} & \mathbf{4} & \mathbf{1} \\
\mathbf{1 5 . 2} & \mathbf{7} & \mathbf{5} & \mathbf{0} \\
\mathbf{1 2 . 5} & \mathbf{1 0} & \mathbf{1} & \mathbf{0} \\
\mathbf{2 0} & \mathbf{1 1} & \mathbf{3} & \mathbf{1}
\end{array}\right] \text { Persons } \\
& \boldsymbol{z} \quad\left(\begin{array}{llll}
13 & 12 & 3 & 1
\end{array} \quad\right. \text { Cutoffs }
\end{aligned}
$$

Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

Domains

$$
y=\left\lfloor\begin{array}{cccc}
13.1 & 14 & 4 & 1 \\
15.2 & \underline{7} & 5 & \underline{0} \\
\frac{12.5}{20} & \underline{10} & \underline{1} & \underline{0} \\
\underline{11} & 3 & 1
\end{array}\right\rfloor \text { Persons }
$$

These entries fall below cutoffs

Deprivation Matrix

Replace entries: 1 if deprived, 0 if not deprived

$$
\begin{gathered}
\text { Domains } \\
\boldsymbol{g}^{\mathbf{0}}=\left|\begin{array}{llll}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0}
\end{array}\right| \quad \text { Persons }
\end{gathered}
$$

Normalized Gap Matrix

Normalized gap $=\left(z_{j}-y_{j i}\right) / z_{\mathrm{j}}$ if deprived, 0 if not deprived

Domains

$$
\begin{aligned}
& y=\left|\begin{array}{cccc}
13.1 & 14 & 4 & 1 \\
15.2 & \underline{7} & 5 & \underline{0} \\
\frac{12.5}{20} & \underline{10} & \underline{1} & \underline{0} \\
\underline{11} & 3 & 1
\end{array}\right| \quad \text { Persons } \\
& z \quad\left(\begin{array}{llll}
13 & 12 & 3 & 1
\end{array}\right) \quad \text { Cutoffs }
\end{aligned}
$$

Normalized Gap Matrix

Normalized gap $=\left(z_{\mathrm{j}}-\mathrm{y}_{\mathrm{j} j}\right) / \mathrm{z}_{\mathrm{j}}$ if deprived, 0 if not deprived

Domains

$$
\boldsymbol{g}^{1}=\left[\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 . 4 2} & \mathbf{0} & \mathbf{1} \\
\mathbf{0 . 0 4} & \mathbf{0 . 1 7} & \mathbf{0 . 6 7} & \mathbf{1} \\
\mathbf{0} & \mathbf{0 . 0 8} & \mathbf{0} & \mathbf{0}
\end{array}\right] \text { Persons }
$$

Squared Gap Matrix

Squared gap $=\left[\left(z_{j}-y_{j i}\right) / z_{j}\right]^{2}$ if deprived, 0 if not deprived

Domains

$$
\boldsymbol{g}^{\mathbf{1}}=\left[\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 . 4 2} & \mathbf{0} & \mathbf{1} \\
\mathbf{0 . 0 4} & \mathbf{0 . 1 7} & \mathbf{0 . 6 7} & \mathbf{1} \\
\mathbf{0} & \mathbf{0 . 0 8} & \mathbf{0} & \mathbf{0}
\end{array}\right] \text { Persons }
$$

Squared Gap Matrix

Squared gap $=\left[\left(z_{j}-y_{j i}\right) / z_{j}\right]^{2}$ if deprived, 0 if not deprived

Domains

$$
\boldsymbol{g}^{\mathbf{2}}=\left[\left.\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 . 1 7 6} & \mathbf{0} & \mathbf{1} \\
\mathbf{0 . 0 0 2} & \mathbf{0 . 0 2 9} & \mathbf{0 . 4 4 9} & \mathbf{1} \\
\mathbf{0} & \mathbf{0 . 0 0 6} & \mathbf{0} & \mathbf{0}
\end{array} \right\rvert\,\right. \text { Persons }
$$

Identification

$$
\begin{gathered}
\text { Domains } \\
\boldsymbol{g}^{\mathbf{0}}=\left|\begin{array}{llll}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0}
\end{array}\right| \quad \text { Persons }
\end{gathered}
$$

Deprivation matrix

Identification - Counting Deprivations

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{ll}
\mathbf{0} & \mathbf{2} \\
\mathbf{4} & \text { Persons } \\
\mathbf{1} &
\end{array}
$$

Identification - Counting Deprivations

Q/ Who is poor?

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{ll}
\mathbf{0} \\
\mathbf{2} & \mathbf{4} \\
\mathbf{1}
\end{array}
$$

Identification - Union Approach

Q/ Who is poor?
A1/ Poor if deprived in any dimension $c_{i} \geq 1$

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{gathered}
\mathbf{0} \\
\mathbf{2} \\
\mathbf{4} \\
\mathbf{1}
\end{gathered}
$$

Identification - Union Approach

Q/ Who is poor?
A1/ Poor if deprived in any dimension $c_{i} \geq 1$

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{lll}
\mathbf{0} & \underline{\mathbf{2}} & \\
& \underline{\mathbf{4}} & \\
\end{array}
$$

Observations
Union approach often predicts very high numbers.
Charavarty et al ' 98 , Tsui ‘ 02 , Bourguignon \& Chakravarty
2003 etc use the union approach

Identification - Intersection Approach

Q/ Who is poor?
A2/ Poor if deprived in all dimensions $\mathrm{c}_{\mathrm{i}}=\mathrm{d}$

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{ll}
\mathbf{0} & \\
\mathbf{2} & \text { Persons } \\
\mathbf{4} & \mathbf{1}
\end{array}
$$

Identification - Intersection Approach

Q/ Who is poor?
A2/ Poor if deprived in all dimensions $\mathrm{c}_{\mathrm{i}}=\mathrm{d}$

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{ll}
\mathbf{0} & \mathbf{2} \\
\mathbf{4} \\
\mathbf{1}
\end{array}
$$

Observations
Demanding requirement (especially if d large)
Often identifies a very narrow slice of population
Atkinson 2003 first to apply these terms.

Identification - Dual Cutoff Approach

Q/ Who is poor?
A/ Fix cutoff k, identify as poor if $c_{i} \geq k$

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{ll}
\mathbf{0} \\
\mathbf{2} & \mathbf{4} \\
\mathbf{1}
\end{array} \text { Persons }
$$

Identification - Dual Cutoff Approach

Q/ Who is poor?
A/ Fix cutoff k, identify as poor if $c_{i} \geq k(E x: k=2)$

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{ll}
\mathbf{0} & \underline{\mathbf{2}} \\
\text { Persons } & \\
\end{array}
$$

Identification - Dual Cutoff Approach

Q/ Who is poor?
A/ Fix cutoff k, identify as poor if $c_{i} \geq k(E x: k=2)$

$$
\boldsymbol{g}^{\mathbf{0}}=\left|\right| \begin{array}{ll}
\mathbf{0} & \underline{\mathbf{2}} \\
\underline{\mathbf{4}} & \\
& \text { Persons } \\
\end{array}
$$

Note
Includes both union $(k=1)$ and intersection $(k=d)$

Identification - Empirical Example

$\boldsymbol{k}=$ Union 1	\mathbf{H}
2	75.2%
3	54.5%
4	33.3%
5	16.5%
6	6.3%
7	1.5%
8	0.2%
9	0.0%
Inters. 10	0.0%

Poverty in India for 10 dimensions

91% of population would be targeted using union
0% using intersection
Need something in the middle
(Alkire and Seth 2009)

Identification - Dual Cutoff Approach

Identification function is $\rho_{k}\left(y_{i} ; z\right)$ where

$$
\begin{aligned}
& \rho_{\mathrm{k}}\left(\mathrm{y}_{\mathrm{i}} ; \mathrm{z}\right)=1 \text { if } \mathrm{c}_{\mathrm{i}} \geq \mathrm{k} \quad \text { (in which case } \mathrm{i} \text { is poor) } \\
& \text { and } \\
& \rho_{\mathrm{k}}\left(\mathrm{y}_{\mathrm{i}} ; z\right)=0 \text { if } \mathrm{c}_{\mathrm{i}}<\mathrm{k} \quad \text { (in which case } \mathrm{i} \text { is nonpoor) }
\end{aligned}
$$

Aggregation

Censor data of nonpoor

$$
\left.\boldsymbol{g}^{\mathbf{0}}=\left\lvert\, \begin{array}{cccc}
& \text { Domains } & c \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0}
\end{array}\right.\right] \quad \begin{aligned}
& \mathbf{0} \\
& \underline{\mathbf{2}} \\
& \underline{\mathbf{4}} \\
& \mathbf{1}
\end{aligned}
$$

Persons

Aggregation

Censor data of nonpoor

$$
\boldsymbol{g}^{\boldsymbol{0}}(\boldsymbol{k})=\left[\left. \right\rvert\, \begin{array}{rr}
\mathbf{0} & \underline{\mathbf{2}} \\
\underline{\mathbf{4}} & \\
& \text { Persons }
\end{array}\right.
$$

Aggregation
Censor data of nonpoor

$$
\boldsymbol{g}^{\boldsymbol{0}}(\boldsymbol{k})=\left[\left.\begin{array}{llll}
\text { Domains } & c(k) \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array} \right\rvert\, \begin{array}{cc}
\mathbf{0} & \underline{\mathbf{2}} \\
\underline{\mathbf{4}} & \\
\text { Persons } &
\end{array}\right.
$$

Similarly for $\mathrm{g}^{1}(\mathrm{k})$, etc

Aggregation - Headcount Ratio

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\begin{array}{cccc}
\text { Domains } & c(k) \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \begin{array}{|}
\mathbf{0} \\
\underline{\mathbf{2}} \\
\underline{\mathbf{4}} \\
\mathbf{0}
\end{array}
$$

Aggregation - Headcount Ratio

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\begin{array}{llll}
\text { Domains } & c(k) \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \begin{array}{|c}
\mathbf{0} \\
\underline{\mathbf{2}} \\
\underline{\mathbf{4}} \\
\mathbf{0}
\end{array}
$$

Two poor persons out of four: $\mathbf{H}=1 / 2$

Critique

Suppose the number of deprivations rises for person 2

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left|\begin{array}{llll}
& \text { Domains } & c(k) & \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right| \begin{aligned}
\mathbf{0} & \underline{\mathbf{2}} \\
\underline{\mathbf{4}} & \\
& \text { Persons }
\end{aligned}
$$

Two poor persons out of four: $\mathbf{H}=1 / 2$

Critique

Suppose the number of deprivations rises for person 2

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\right] \begin{array}{|ll}
\mathbf{0} & \\
\underline{\mathbf{3}} & \\
\text { Persons } \\
\underline{\mathbf{4}} & \\
\mathbf{0} &
\end{array}
$$

Two poor persons out of four: $\mathbf{H}=1 / 2$

Critique

Suppose the number of deprivations rises for person 2

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\begin{array}{cccc}
& \text { Domains } & c(k) \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \begin{array}{|}
\mathbf{0} \\
\underline{\mathbf{3}} \\
\underline{\mathbf{4}} \\
\mathbf{0}
\end{array}
$$

Two poor persons out of four: $\mathbf{H}=1 / 2$ No change!

Critique

Suppose the number of deprivations rises for person 2

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\right] \begin{array}{ll}
\mathbf{0} & \\
\underline{\mathbf{3}} & \\
\hline
\end{array}
$$

Two poor persons out of four: $\mathbf{H}=1 / 2$
No change!
Violates 'dimensional monotonicity'

Aggregation

Return to the original matrix

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\right] \quad \begin{array}{ll}
\mathbf{0} & \\
\underline{\mathbf{3}} & \\
\hline \mathbf{4} & \\
\text { Persons } \\
\mathbf{0} &
\end{array}
$$

Aggregation

Return to the original matrix

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\left.\begin{array}{llll}
\text { Domains } & c\left(k_{)}\right) \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array} \right\rvert\, \begin{array}{cc}
\mathbf{0} & \underline{\mathbf{2}} \\
\underline{\mathbf{4}} & \\
& \text { Persons }
\end{array}\right.
$$

Aggregation

Need to augment information

$$
\left.\boldsymbol{g}^{\boldsymbol{0}} \boldsymbol{(} \boldsymbol{k}\right)=\left|\right| \begin{array}{ccc}
\mathbf{0} & & \\
\underline{\mathbf{2}} & \mathbf{2} / \mathbf{4} & \mathbf{4} / \mathbf{4} \\
\text { Persons } & &
\end{array}
$$

Aggregation
Need to augment information

$$
\left.\boldsymbol{g}^{\boldsymbol{0}} \boldsymbol{(} \boldsymbol{k}\right)=\left|\right| \begin{array}{ccc}
\mathbf{0} & & \\
\underline{\mathbf{4}} & \mathbf{2} / \mathbf{4} & \mathbf{4} / \mathbf{4} \\
\text { Persons } & &
\end{array}
$$

$\mathrm{A}=$ average deprivation share among poor $=3 / 4$

Aggregation - Adjusted Headcount Ratio Adjusted Headcount Ratio $=M_{0}=$ HA

$$
\left.\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left\lvert\,\right.\right] \begin{array}{cc}
\mathbf{0} & \underline{\mathbf{2}} \\
\mathbf{4} & \mathbf{4} / \mathbf{4} \tag{Persons}\\
\mathbf{0} &
\end{array}
$$

$\mathrm{A}=$ average deprivation share among poor $=3 / 4$

Aggregation - Adjusted Headcount Ratio Adjusted Headcount Ratio $=M_{0}=$ HA $=\mathrm{m}\left(\mathrm{g}^{0}(\mathrm{k})\right)$

$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\right] \begin{array}{cc}
\mathbf{0} & \\
\underline{\mathbf{2}} & \mathbf{2} / \mathbf{4} \tag{Persons}\\
\underline{\mathbf{4}} & \mathbf{4} / \mathbf{4} \\
\mathbf{0} &
\end{array}
$$

$\mathrm{A}=$ average deprivation share among poor $=3 / 4$

Aggregation - Adjusted Headcount Ratio Adjusted Headcount Ratio $=\mathrm{M}_{0}=\mathrm{HA}=\mathbf{m}\left(\mathbf{g}^{\mathbf{0}} \mathbf{(k)}\right)=6 / 16=.375$

$$
\left.\left.\boldsymbol{g}^{\mathbf{0}} \boldsymbol{(} \boldsymbol{k}\right)=\left\lvert\,\right.\right] \begin{array}{cc}
\mathbf{0} & \underline{\mathbf{2}} \\
\mathbf{4} & \mathbf{4} / \mathbf{4} \\
\mathbf{0} &
\end{array}
$$

$\mathrm{A}=$ average deprivation share among poor $=3 / 4$

Aggregation - Adjusted Headcount Ratio

 Adjusted Headcount Ratio $=\mathrm{M}_{0}=\mathrm{HA}=\mathbf{m}\left(\mathbf{g}^{\mathbf{0}} \mathbf{(k)}\right)=6 / 16=.375$$$
\boldsymbol{g}^{\boldsymbol{0}}(\boldsymbol{k})=\left|\right| \begin{array}{cc}
\mathbf{0} & \underline{\mathbf{2}} \\
\mathbf{2} / \mathbf{4} \\
\mathbf{0} & \mathbf{4} / \mathbf{4}
\end{array}
$$

$\mathrm{A}=$ average deprivation share among poor $=3 / 4$
Note: if person 2 has an additional deprivation, M_{0} rises
Satisfies dimensional monotonicity

Aggregation - Adjusted Headcount Ratio

 Adjusted Headcount Ratio $=\mathrm{M}_{0}=\mathrm{HA}=\mathbf{m}\left(\mathbf{g}^{\mathbf{0}} \mathbf{(k)}\right)=7 / 16=.44$$$
\boldsymbol{g}^{\mathbf{0}}(\boldsymbol{k})=\left[\begin{array}{llll}
& \text { Domains } & c(k) & c(k) / d \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \begin{aligned}
& \mathbf{0} \\
& \underline{\mathbf{3}} \\
& \mathbf{4} / \mathbf{4} \\
& \mathbf{0}
\end{aligned}
$$

$\mathrm{A}=$ average deprivation share among poor $=7 / 8$
Note: if person 2 has an additional deprivation, M_{0} rises
Satisfies dimensional monotonicity

Methodology - Adjusted Headcount Ratio

Denoted (ρ_{k}, M_{0})
Interpretation: Similar to traditional gap
$\mathrm{P}_{1}=\mathrm{HI}$ and $\mathrm{M}_{0}=\mathrm{HA}$
Applicability: Valid for ordinal data
Robust to monotonic transformations
Simplicity: Easy to calculate
Usefulness: Can be broken down by dimension
Robust: Dominance results
Grounded in Capability Approach: Characterization via freedom - P\&X 1990

Expandable: If variables are all cardinal can go further

Pattanaik and Xu 1990 and M_{0}

- \quad Freedom $=$ the number of elements in a set.
- But does not consider the value of elements
- If dimensions are of intrinsic value and are usually valued, then every deprivation can be interpreted as a shortfall of intrinsic concern.
- The sum of deprivation values can be interpreted as the unfreedoms of each person
- Adjusted headcount ratio is then interpreted as a measure of unfreedoms across a population.

Aggregation：Adjusted Poverty Gap
Need to augment information of M_{0} Use normalized gaps

Domains

$$
\boldsymbol{g}^{1}(k)=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0.42 & 0 & 1 \\
0.04 & 0.17 & 0.67 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \text { Persons }
$$

Average gap across all deprived dimensions of the poor：

$$
\begin{aligned}
& G=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 国罒図図/6 }
\end{aligned}
$$

Aggregation：Adjusted Poverty Gap Adjusted Poverty Gap $=\mathrm{M}_{1}=\mathrm{M}_{0} \mathrm{G}=$ HAG

Domains

$$
\boldsymbol{g}^{1}(k)=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0.42 & 0 & 1 \\
0.04 & 0.17 & 0.67 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \text { Persons }
$$

Average gap across all deprived dimensions of the poor：

$$
\begin{aligned}
& G=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 网网図国/6 }
\end{aligned}
$$

Aggregation：Adjusted Poverty Gap Adjusted Poverty Gap $=\mathrm{M}_{1}=\mathrm{M}_{0} \mathrm{G}=\mathrm{HAG}=\mathrm{m}\left(\mathrm{g}^{1}(\mathrm{k})\right)$

Domains

$$
\boldsymbol{g}^{1}(\boldsymbol{k})=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0.42 & 0 & 1 \\
0.04 & 0.17 & 0.67 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \text { Persons }
$$

Average gap across all deprived dimensions of the poor：

$$
\begin{aligned}
& G=
\end{aligned}
$$

$$
\begin{aligned}
& \text { 図国娄囫/6 }
\end{aligned}
$$

Aggregation: Adjusted Poverty Gap Adjusted Poverty Gap $=\mathrm{M}_{1}=\mathrm{M}_{0} \mathrm{G}=\mathrm{HAG}=\mathrm{m}\left(\mathrm{g}^{1}(\mathrm{k})\right)$

Domains

$$
\boldsymbol{g}^{1}(\boldsymbol{k})=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0.42 & 0 & 1 \\
0.04 & 0.17 & 0.67 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \text { Persons }
$$

Obviously, if in a deprived dimension, a poor person becomes even more deprived, then M_{1} will rise. Satisfies monotonicity

Aggregation: Adjusted FGT
Consider the matrix of squared gaps

Domains

$$
g^{2}(k)=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0.42^{2} & 0 & 1^{2} \\
0.04^{2} & 0.17^{2} & 0.67^{2} & 1^{2} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Aggregation: Adjusted FGT Adjusted FGT is $\mathrm{M}_{2}=\mathrm{m}\left(\mathrm{g}^{2}(\mathrm{k})\right)$

$$
\boldsymbol{g}^{\mathbf{2}}(\boldsymbol{k})=\left[\begin{array}{cccc}
\boldsymbol{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 . 4 2}^{\mathbf{2}} & \mathbf{0} & \mathbf{1}^{2} \\
\mathbf{0 . 0 4} & \mathbf{0 . 1 7}^{\mathbf{2}} & \mathbf{0 . 6 7}^{\mathbf{2}} & \mathbf{1}^{\mathbf{2}} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \quad \text { Persons }
$$

Aggregation: Adjusted FGT Adjusted FGT is $\mathrm{M}_{2}=\mathrm{m}\left(\mathrm{g}^{2}(\mathrm{k})\right)$

$$
\boldsymbol{g}^{\mathbf{2}}(\boldsymbol{k})=\left[\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 . 4 2}^{\mathbf{2}} & \mathbf{0} & \mathbf{1}^{2} \\
\mathbf{0 . 0 4} & \mathbf{0 . 1 7}^{\mathbf{2}} & \mathbf{0 . 6 7}^{\mathbf{2}} & \mathbf{1}^{\mathbf{2}} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \quad \text { Persons }
$$

Satisfies a transfer axiom

Aggregation: Adjusted FGT Family

Adjusted FGT is $\mathrm{M}_{\mathrm{a}}=\mathrm{m}\left(\mathrm{g}^{\mathrm{a}}(\mathrm{k})\right)$ for $\mathrm{a} \geq 0$ Domains

$$
\boldsymbol{g}^{\alpha}(k)=\left[\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0 . 4 2}^{\alpha} & \mathbf{0} & \mathbf{1}^{\alpha} \\
\mathbf{0 . 0 4} & \mathbf{0 . 1 7}^{\alpha} & \mathbf{0 . 6 7} & \mathbf{1}^{\alpha} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \text { Persons }
$$

Theorem 1
For any deprivation values and cutoffs, the methodology $\mathrm{M}_{k a}=\left(\rho_{k}, M_{\text {因 }}\right)$ satisfies: decomposability, replication invariance, symmetry, poverty and deprivation focus, weak and dimensional monotonicity, nontriviality, normalisation, and weak rearrangement for $[W \geq 0$; monotonicity for $[W]$ 0 ; and weak transfer for $\left[\begin{array}{l} \\ k\end{array} \geq 1\right.$.

General Case

Previously assumed value of 1 for each deprivation With sum being d
Now allow values or weights be general: $\mathrm{w}_{\mathrm{j}}>0$ With sum being d
Identification and aggregation steps

1) Poverty cutoff k is compared to deprivation score or sum of deprivation values
2) Aggregation matrix now has columns weighted by deprivation values, and measures are found by taking mean of matrix

General Case - Matrices

$$
\begin{gathered}
\text { Domains } \\
\boldsymbol{g}^{\mathbf{0}}=\left|\begin{array}{llll}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0}
\end{array}\right| \quad \text { Persons }
\end{gathered}
$$

Deprivation matrix with values given by
Weighting vector $\omega=(1,1,1,1)$

General Case - Matrices

$$
\begin{gathered}
\text { Domains } \\
\boldsymbol{g}^{\mathbf{0}}=\left|\begin{array}{llll}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0}
\end{array}\right| \quad \text { Persons }
\end{gathered}
$$

Suppose instead that we have
Weighting vector $\omega=(.5,2,1, .5)$

General Case - Matrices

$$
\begin{gathered}
\text { Domains } \\
\boldsymbol{g}^{\mathbf{0}}=\left[\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{2} & \mathbf{0} & \mathbf{. 5} \\
\mathbf{. 5} & \mathbf{2} & \mathbf{1} & \mathbf{. 5} \\
\mathbf{0} & \mathbf{2} & \mathbf{0} & \mathbf{0}
\end{array}\right] \text { Persons } \text {. }
\end{gathered}
$$

Deprivation matrix with
Weighting vector $\omega=(.5,2,1, .5)$

General Case - Identification

$$
\boldsymbol{g}^{0}=\left[\right] \begin{gathered}
\\
\mathbf{0} \\
\mathbf{2 . 5} \\
\mathbf{4} \\
\mathbf{2}
\end{gathered}
$$

Deprivation matrix with
Weighting vector $\omega=(.5,2,1, .5)$

General Case - Identification

Who is poor?

$$
\boldsymbol{g}^{0}=\left[\right] \begin{gathered}
\mathbf{0} \\
\mathbf{2 . 5} \\
\mathbf{4} \\
\mathbf{2}
\end{gathered}
$$

Deprivation matrix with
Weighting vector $\omega=(.5,2,1, .5)$

General Case - Identification

Who is poor?
Let $\mathrm{k}=2$
Domains

$$
g^{0}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 2 & 0 & .5 \\
.5 & 2 & 1 & .5 \\
0 & 2 & 0 & 0
\end{array}\right] \quad \begin{gathered}
0 \\
\underline{2.5} \\
\underline{4}
\end{gathered}
$$

Deprivation matrix with
Weighting vector $\omega=(.5,2,1, .5)$

General Case - Identification

Who is poor?
Let $\mathrm{k}=2.5$

$$
\boldsymbol{g}^{0}=\left[\right] \begin{gathered}
\mathbf{0} \\
\underline{\mathbf{2 . 5}} \\
\mathbf{2}
\end{gathered}
$$

Deprivation matrix with
Weighting vector $\omega=(.5,2,1, .5)$
Note: Impact identification

General Case - Aggregation

How much poverty? $\mathrm{M}_{0}=\mathrm{HA}$

Domains

$$
g^{0}(k)=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 2 & 0 & .5 \\
.5 & 2 & 1 & .5 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{gathered}
0 \\
\underline{2.5} \\
\underline{4} \\
0
\end{gathered}
$$

Deprivation matrix with
Weighting vector $\omega=(.5,2,1, .5)$

$$
\mathrm{H}=1 / 2, \mathrm{~A}=6.5 / 8
$$

General Case - Aggregation

How much poverty? $\mathrm{M}_{0}=\mathrm{HA}=\mathrm{m}\left(\mathrm{g}^{0}(\mathrm{k})\right)=6.5 / 16=.406$

Domains

$$
g^{0}(k)=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 2 & 0 & .5 \\
.5 & 2 & 1 & .5 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{gathered}
0 \\
\underline{2.5} \\
\underline{4} \\
0
\end{gathered}
$$

Deprivation matrix with
Weighting vector $\omega=(.5,2,1, .5)$

$$
\mathrm{H}=1 / 2, \mathrm{~A}=6.5 / 8
$$

Properties Reviewed

－Our methodology satisfies a number of typical properties of multidimensional poverty measures：
－Symmetry
Normalization
Poverty Focus
Deprivation Focus

Scale invariance
Replication invariance
Weak Monotonicity
Weak Re－arrangement
－M_{0}, M_{1} and M_{2} satisfy Dimensional Monotonicity，Decomposability
－M_{1} and M_{2} satisfy Monotonicity（for $\times 0$ ）－that is，they are sensitive to changes in the depth of deprivation in all domains with cardinal data．

$$
M_{2} \text { satisfies Weak Transfer (for } ⿴ 囗 十 \text {). }
$$

Implementations: Choosing k

- Depends on: purpose of exercise, data, and weights
- "In the final analysis, how reasonable the identification rule is depends, inter alia, on the attributes included and how imperative these attributes are to leading a meaningful life." (Tsui 2002 p. 74).
- E.g. a measure of Human Rights; data good = union
- Targeting: according to category (poorest 5\%). Or budget (we can cover 18% - who are they?)
- Poor data, or people do not value all dimensions: $\mathrm{k}<\mathrm{d}$
- Some particular combination (e.g. the intersection of income deprived and deprived in any other dimension)

Implementation: Robustness for k

- Theorem 2 Where a and a^{\prime} are the respective attainment vectors for y and y^{\prime} in $Y\left(a_{i}=d-c_{i}\right)$, we have:
- (i) $y H y^{\prime}$ 圆 $a F D a^{\prime}$- (ii) $a F D a^{\prime}$ 圈 $y M_{0} y^{\prime}$ a $a S D a^{\prime}$, and the converse does not hold.
(i) akin to Foster Shorrocks: first order dominance over attainment vectors ensures that multidimensional headcount is lower (or no higher) for all possible values of k - and the converse is also true.
(ii) shows that M_{0} is implied by first order dominance, and implies second order, in turn

Example - Indonesia

Deprivation	Percentage of Population
Expenditure	30.1%
Health (BMI)	17.5%
Schooling	36.4%
Drinking Water	43.9%
Sanitation	33.8%

Example - Indonesia

Number Deprivations\quad of	Percentage of Population
One	26%
Two	23%
Three	17%
Four	8%
Five	2%

Identification as k varies

Cutoff k

Percentage
 Population

74.9\%
49.2\%
26.4\%
9.7\%
1.7\%

And interpretation?

Equal Weights

Measure	$k=1$ (Union)	$\boldsymbol{k}=2$	$k=3$ (Intersection)
H	0.577	0.225	0.039
M_{0}	0.280	0.163	0.039
M_{1}	0.123	0.071	0.016
M_{2}	0.088	0.051	0.011

General Weights

Measure	$k=0.75$ (Union)	$k=1.5$	$k=2.25$	$k=3$ (Intersection)
H	0.577	0.346	0.180	0.039
M_{0}	0.285	0.228	0.145	0.039
M_{1}	0.114	0.084	0.058	0.015
M_{2}	0.075	0.051	0.036	0.010

And interpretation?

Equal Weights					
Measure	$k=1$ (Union)	$\boldsymbol{k}=2$		$k=3$ (Intersec	rsection
H	0.577	0.225		0.039	
M_{0}	0.280	0.163		0.039	
M_{1}	0.123	0.071		0.016	
M_{2}	0.088	0.051		0.011	
General Weights					
Measure	$k=0.75$ (Union)	$k=1.5$	$k=2.25$	$k=3$ (Intersection)	
H	0.577	0.346	0.180	0.039	
M_{0}	0.285	0.228	0.145	0.039	
M_{1}	0.114	0.084	0.058	0.015	\%
$2 \mid x I_{2}$	0.075	0.051	0.036	0.010	menseror

And interpretation?

If all persons have maximal deprivation, eights then $G=1$, so $M_{0}=$ M_{1}. Low gap if M_{0} is higher than M_{1}.

	0.280	0.163
M_{1}	0.123	0.071
M_{2}	0.088	0.051

$\mathrm{M}_{0}=\mathrm{H}$ for intersection

General Weights

Measure	$k=0.75$ (Union)	$k=1.5$	$k=2.25$	$k=3$ (Intersection)
H	0.577	0.346	0.180	0.039
M_{0}	0.285	0.228	0.145	0.039
M_{l}	0.114	0.084	0.058	0.015

And interpretation?

AF Method: Decompositions

By Population Subgroup
M_{α} Poverty
H Headcount
A Intensity
Post-identification: By Dimension
Censored Headcount
Percentage Contribution

All draw on censored matrix

Informal Glossary of Terms

Deprivation: if $y_{i d}<z$ person i is deprived in y_{d} Poverty: if $\mathrm{c}_{\mathrm{i}} \leq k$ person i is poor.
Deprivation cutoffs: the z cutoffs for each dimension Poverty cutoff: the overall cutoff k
Dimension: for AF - a column in the matrix having its own deprivation cutoff (sometimes called an 'indicator') Joint distribution: showing the simultaneous or coupled deprivations a person/hh has

