

Summer School on Multidimensional Poverty Analysis

11-23 August 2014

Oxford Department of International Development Queen Elizabeth House, University of Oxford

Properties of Multidimensional Poverty Measures

Suman Seth

11 August 2014

Session IV

Main Sources of this Lecture

- Alkire S., J. E. Foster, S. Seth, S. Santos, J. M. Roche, P. Ballon, Multidimensional Poverty Measurement and Analysis, Oxford University Press, forthcoming, (Chs 2.2, 2.3, 2.5).
- Bourguignon and Chakravarty (2003): The Measurement of Multidimensional Poverty
- Alkire and Foster (2007, 2011): Counting and Multidimensional Poverty Measurement
- Please see the reading list for other

Preliminaries

- Reference population
 - We refer as 'Society' (e.g. country, region etc.)
- Unit of measurement
 - We refer as 'Person' (could be households)
 - Suppose there are n persons in the society (n may vary)
- Variables or dimensions for assessing poverty
 - We refer as 'Space'
 - Suppose there are d such variables (fixed set)

- Achievement: performance of a person in a dimension
 - $-x_{ij}$: Achievement of person i (=1,...,n) in dimension j (=1,...,d)
- Achievement matrix
 - Summarizes achievementsof all *n* persons in *d* dimensions
- Achievement vector of a Person X =
 - May contain achievements in d
 different dimensions
 - Standard of living, knowledge, quality of health

Dimensions

Preliminaries

• A typical achievement matrix (with 4 dimensions)

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
$X = \frac{1}{2}$	700	14	Yes	Yes	Person 1
	300	13	Yes	No	Person 2
	400	10	No	No	Person 3
	800	11	Yes	Yes	Person 4

Preliminaries

• Matrix X summarizes the joint distribution of 'd' dimensions across 'n' individuals

• Row vector x_i = $(x_{i1},...,x_{id})$ summarizes the achievements of person i in all d dimensions

• Column vector $\mathbf{x}_{\bullet j} = (\mathbf{x}_{1j}, ..., \mathbf{x}_{nj})$ summarizes the achievements in dimension j of all n persons

Measurement

Measurement of multidimensional poverty involves two major steps like unidimensional measurement

- Identification
- Aggregation

- <u>Identification</u>: Who is multidimensionally poor?
 - An 'identification function', $\rho(\bullet)$, decides who should be multidimensionally poor

```
\rho(x_{i\bullet}) = 1 if person i is multidimensionally poor \rho(x_{i\bullet}) = 0 if person i is not multidimensionally poor
```

- There can be two types of identification Approaches
 - Censored Achievement Approach (Includes Counting)
 - Aggregate Achievement Approach

- Identification: Censored Achievement Approach
 - First stage: Determine whether individuals are deprived in each dimension
 - Second stage: Identify if someone is poor based on an identification function (criterion)
 - Examples:
 - Union criterion (if deprived in at least one dimension)
 - Intersection criterion (if deprived in all dimensions)
 - Intermediate criterion

Recall the achievement matrix

The deprivation cutoff vector is $z = (z_1, ... z_d)$

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
X =	700	14	Yes	Yes	Person 1
	300	13	Yes	No	Person 2
	400	10	No	No	Person 3
	800	11	Yes	Yes	Person 4

Recall the achievement matrix

The deprivation cutoff vector is $z = (z_1, ... z_d)$

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
X =	700	14	Yes	Yes	Person 1
	300	13	Yes	No	Person 2
	400	10	No	No	Person 3
	800	11	Yes	Yes	Person 4
z =	500	12	Yes	Yes	

Example: Construct the 'Deprivation Matrix'

Replace entries: 1 if deprived, 0 if not deprived

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
X=	700	14	Yes	Yes	Person 1
	300	13	Yes	No	Person 2
	400	10	No	No	Person 3
	800	11	Yes	Yes	Person 4
z =	500	12	Yes	Yes	

Example: Construct the 'Deprivation Matrix'

Replace entries: 1 if deprived, 0 if not deprived

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
$g^0 =$	0	0	0	0	Person 1
	1	0	0	1	Person 2
	1	1	1	1	Person 3
	0	1	0	0	Person 4
ı					ı
z =	500	12	Yes	Yes	

These entries fall below cutoffs

Example: Equivalently 'Censored Deprivation Matrix'

$$x_{ij}^* = x_{ij} \text{ if } x_{ij}^* < z_j \text{ and } x_{ij}^* = z_j \text{ if } x_{ij}^* \ge z_j$$

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
$X^* = \frac{1}{2}$	500	12	Yes	Yes	Person 1
	300	12	Yes	No	Person 2
	400	10	No	No	Person 3
	500	11	Yes	Yes	Person 4

$$z = \begin{bmatrix} 500 & 12 & \text{Yes} \end{bmatrix}$$

These entries fall below cutoffs

- Identification: Aggregate Achievement Approach
 - A person is identified as poor if her aggregate
 achievement falls below an aggregate poverty line
 - Let the aggregation function be denoted by ϕ
 - Then,

$$\rho(x_{i\bullet}) = 1 \quad \text{if } \phi(x_{i\bullet}) < \underline{\phi}$$

$$\rho(x_{i\bullet}) = 0 \quad \text{if } \phi(x_{i\bullet}) \ge \underline{\phi}$$

Example: Consumer Expenditure Approach

Note: No deprivation matrix was created in this situation

Second Step: Aggregation

- Aggregation: How poor is the society?
 - Based on the identification criterion, this step constructs an index of poverty P(X;z) summarizing the information of the poor (a censored matrix can be created just as in the unidimensional framework)

Classification of Properties

- Invariance Properties
- Dominance Properties
- Subgroup Properties
- Technical Properties
- Two types
 - Natural extensions of the unidimensional properties
 - Axioms specific to the multidimensional context

Symmetry: If matrix Y is obtained from matrix X by a permutation of achievements and the deprivation cutoff vector z remains unchanged, then P(Y;z) = P(X;z)

Y is obtained from X by a **permutation** of incomes if $X = \Pi Y$, where Π is a permutation matrix.

Example:

$$Y = \Pi X = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 4 & 2 \\ 3 & 5 & 4 \\ 8 & 6 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 5 & 4 \\ 4 & 4 & 2 \\ 8 & 6 & 3 \end{bmatrix}$$

Replication Invariance: If matrix Y is obtained from matrix X by a replication and the deprivation cutoff vector z remains unchanged, then P(Y;z) = P(X;z)

Y is obtained from X by a <u>replication</u> if each person's achievement vector in X is simply repeated a finite number of times

Example:
$$X = \begin{bmatrix} 4 & 4 & 2 \\ 3 & 5 & 4 \\ 8 & 6 & 3 \end{bmatrix}$$
 $Y = \begin{bmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 3 & 5 & 4 \\ 3 & 5 & 4 \\ 8 & 6 & 3 \end{bmatrix}$

H Oxford Poverty & Human Development Initiative

$$Y = \begin{bmatrix} 4 & 4 & 2 \\ 3 & 5 & 4 \\ 3 & 5 & 4 \\ 8 & 6 & 3 \\ 8 & 6 & 3 \end{bmatrix}$$

Scale Invariance: If all achievements in matrix X and the deprivation cutoff vector z are post multiplied by any diagonal matrix Λ , then $P(X\Lambda; z\Lambda) = P(X; z)$.

Example:
$$X = \begin{bmatrix} 4 & 4 & 2 \\ 3 & 5 & 4 \\ 8 & 6 & 3 \end{bmatrix}$$
 $z = \begin{bmatrix} 4 & 5 & 3 \end{bmatrix}$ $\Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

$$X\Lambda = \begin{bmatrix} 1(4) & 2(4) & 3(2) \\ 1(3) & 2(5) & 3(4) \\ 1(8) & 2(6) & 3(3) \end{bmatrix} \qquad z\Lambda = \begin{bmatrix} 1(4) & 2(5) & 3(3) \end{bmatrix}$$

Focus: Unlike in the unidimensional framework, there are two types of focus axiom

(<u>Type I</u>) Focus on those identified as multidimensionally poor' (we are not interested in those who are not multidimensionally poor)

(<u>Type II</u>) Focus on dimensions where multidimensionally poor are deprived (we are not interested in dimensions in which they are not deprived)

Poverty Focus (Type I): If Y is obtained from X by an increment to a non-poor person's achievement and the deprivation cutoff vector remains unchanged, then P(Y;z) = P(X;z)

Example:
$$X = \begin{bmatrix} 4 & 4 & 2 \\ 3 & 5 & 4 \\ 8 & 6 & 4 \end{bmatrix}, z = (5,6,4), \text{ and } g^0 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Person 3 is not multidimensionally poor, does it matter if he/she experiences an increase in any of the dimensions?

Deprivation Focus (Type II): If Y is obtained from X by an increment in achievements in non-deprived dimensions, then P(Y;z) = P(X;z). [Deprived vs. Poor]

Example:
$$X = \begin{bmatrix} 4 & 4 & 2 \\ 3 & 5 & 4 \\ 8 & 6 & 4 \end{bmatrix}$$
, $z = (5, 6, 4)$, and $g^0 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Suppose person 2 is considered multidimensionally poor, does it matter if he/she experiences an increment in the third dimension in which he/she is not deprived?

Focus Axioms and Types of Identification

Each of the two focus axioms is attributed to each identification technique introduced earlier

- Poverty focus is attributed to the Aggregated Achievement Approach
- Deprivation focus is attributed to the Censored Achievement Approach

Ordinality: If Y and z' are obtained from X and z as equivalent representation, then P(Y;z') = P(X;z)

Equivalent representation: A monotonic transformation of each dimension and its deprivation cutoff is taken

Example:

$$X = \begin{bmatrix} 4 & 9000 & 0 \\ 3 & 9000 & 1 \\ 8 & 15000 & 1 \end{bmatrix}, z = (5,10k,1) \rightarrow Y = \begin{bmatrix} 48 & 3.95 & 3 \\ 36 & 3.95 & 5 \\ 96 & 4.18 & 5 \end{bmatrix}, z' = (10,4,5)$$

$$\begin{bmatrix} 12x, \log(x), x + 2 \end{bmatrix}$$

Why is the ordinality property important?

Practical importance – real world data

Monotonic transformations are sometimes inevitable

Scale of variables (Ch 2.3)

- Ratio scale: $y_{ij} = ax_{ij}$, a > 0 Divide, Multiply (e.g. income)
- Interval scale: $y_{ij} = ax_{ij} + b$, a > 0 Add, subtract (e.g. z-score)
- Ordinal: $y_{ij} = f(x_{ij})$, f is increasing order known (e.g. access)
- Nominal or categorical: No arithmetic operator, no order

(gender, ethnicity)

Monotonicity: If Y is obtained from X by a *deprived* increment among the poor and the poverty line remains unchanged, then P(Y,z) < P(X,z)

Y is obtained from X by a *deprived increment* if there is an increment in a deprived achievement of a multidimensionally poor

Example:
$$X = \begin{bmatrix} 4 & 4 & 2 \\ 3 & 5 & 4 \\ 8 & 6 & 3 \end{bmatrix}, z = (5 \ 6 \ 4), Y = \begin{bmatrix} 4 & 4 & 3 \\ 3 & 5 & 4 \\ 8 & 6 & 3 \end{bmatrix}$$

Person 1 is multidimensionally poor, and experiences an improvement in the third dimension.

<u>Dimensional Monotonicity</u>: If Y is obtained from X by a *dimensional increment among the poor*, then P(Y;z) < P(X,z)

Y is obtained from X by a dimensional increment among the poor if due to an increment in a deprived achievement of a poor, he or she becomes non-deprived in that dimension

Example:
$$X = \begin{bmatrix} 4 & 4 & 2 \\ 3 & 5 & 4 \\ 8 & 6 & 3 \end{bmatrix}$$
, $z = (5 \ 6 \ 4)$, $Y = \begin{bmatrix} 4 & 4 & 2 \\ 3 & 6 & 4 \\ 8 & 6 & 3 \end{bmatrix}$

Suppose person 2 is considered multidimensionally poor, and experiences an increment in the second dimension and is no longer deprived in it

Transfer in unidimensional context: If y is obtained from x by a progressive transfer among the poor, then P(y;z) < P(x;z)

Recall if income is transferred from a person to another who is not richer than the former, keeping mean income same, the transfer is called a *progressive transfer*

This is also known as Pigou-Dalton transfer principle

Example: z = 10, x = (9,4,15,8); y = (9,5,15,7)

Bistochastic matrix (*B*): A matrix whose row elements and column elements sum up to one

Example: A general bistochastic matrix
$$\begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.3 & 0.3 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Multiply a vector by a bistochastic matrix

$$\begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.3 & 0.3 \\ 0.1 & 0.4 & 0.5 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 16 \end{bmatrix} = \begin{bmatrix} 7.6 \\ 8.8 \\ 11.6 \end{bmatrix}$$

Bistochastic matrix (*B*): A matrix whose row elements and column element sum up to one

Example: What bistochastic matrix is used to obtain y = (9,5,15,7) from x = (9,4,15,8)?

It is
$$B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0.75 & 0 & 0.25 \\ 0 & 0 & 1 & 0 \\ 0 & 0.25 & 0 & 0.75 \end{bmatrix}$$

<u>Uniform Majorization</u> (UM): Y is obtained from X by a Uniform Majorization among the poor (an averaging of achievements among the poor) if Y = BX, where B is an $n \times n$ bistochastic matrix but not a permutation matrix, and $b_{ii}=1$ for every non-poor person i in Y.

$$X = BY = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 4 & 2 \\ 3 & 5 & 4 \\ 8 & 6 & 3 \end{bmatrix} = \begin{bmatrix} 3.5 & 4.5 & 3 \\ 3.5 & 4.5 & 3 \\ 8 & 6 & 3 \end{bmatrix}, \text{ and } z = \begin{bmatrix} 5 & 6 & 5 \end{bmatrix}$$

Achievements of the first two persons (poor) were smoothed

<u>Transfer</u>: If *Y* is obtained from *X* by a uniform majorization among the poor (an averaging of achievements among the poor), then P(Y;z) < P(X;z).

Weak Transfer: If Y is obtained from X by a uniform majorization among the poor (an averaging of achievements among the poor), then $P(Y;z) \leq P(X;z)$.

Note: The stronger version is not compatible with the focus axioms

Rearrangements

Income Education Health

Income Education Health

$$X = \begin{bmatrix} 7 & 7 & 2 \\ 3 & 3 & 8 \\ 10 & 10 & 12 \end{bmatrix}$$
Person 1 Person 2 $Y = \begin{bmatrix} 7 & 7 & 8 \\ 3 & 3 & 2 \\ 10 & 10 & 12 \end{bmatrix}$ Person 3 Person 3
$$z = \begin{bmatrix} 4 & 5 & 3 \end{bmatrix}$$

Is the pattern of poverty same in both societies?

If not, what is the difference?

Both matrices have the same <u>marginal</u> distribution for each dimension, different <u>joint</u> distribution

Require a property sensitive to joint distribution (Atkinson & Bourguignon, 1982; Boland & Proschan, 1988).

The property is intrinsic to the multidimensional case

$$X = \begin{bmatrix} 7 & 7 & 2 \\ 3 & 3 & 8 \\ 10 & 10 & 12 \end{bmatrix} \qquad Y = \begin{bmatrix} 7 & 7 & 8 \\ 3 & 3 & 2 \\ 10 & 10 & 12 \end{bmatrix}$$

Ways to call the data transformation:

From X to Y:

Association increasing rearrangement Correlation-increasing transfer Correlation increasing switch

From *Y* to *X*:

Association decreasing rearrangement

Question...

How do you think poverty should change under an association decreasing rearrangement?

$$X = \begin{bmatrix} 7 & 7 & 2 \\ 3 & 3 & 8 \\ 10 & 10 & 12 \end{bmatrix} \qquad Y = \begin{bmatrix} 7 & 7 & 8 \\ 3 & 3 & 2 \\ 10 & 10 & 12 \end{bmatrix}$$

- If dimensions are *substitutes*, poverty should *decrease*
- If dimensions are *complements*, poverty should *increase*
- If dimensions are neither substitute nor complements, poverty should *not change*.

Bourguignon and Chakravarty (2003)

Association decreasing deprivation rearrangement among the poor

In this case, the rearrangement takes place among the poor and only among their deprived dimensions

Example: Not an association decreasing deprivation rearrangement among the poor

$$Y = \begin{bmatrix} 7 & 7 & 8 \\ 3 & 3 & 2 \\ 10 & 10 & 7 \end{bmatrix} \quad X = \begin{bmatrix} 7 & 7 & 7 \\ 3 & 3 & 2 \\ 10 & 10 & 8 \end{bmatrix} \quad z = \begin{bmatrix} 4 & 5 & 3 \end{bmatrix}$$

Example: An association decreasing deprivation rearrangement among the poor

$$Y = \begin{bmatrix} 2 & 4 & 8 \\ 3 & 3 & 2 \\ 10 & 10 & 12 \end{bmatrix} \quad X = \begin{bmatrix} 3 & 4 & 8 \\ 2 & 3 & 2 \\ 10 & 10 & 8 \end{bmatrix} \quad z = \begin{bmatrix} 4 & 5 & 3 \end{bmatrix}$$

Deprivation Rearrangement (Substitutes): If Y is obtained from X by an association-decreasing deprivation rearrangement among the poor, then P(Y;z) < P(X;z).

Converse Deprivation Rearrangement (Complements): If Y is obtained from X by an association decreasing rearrangement among the poor, then P(Y;z) > P(X;z).

Weaker versions with \geq and \leq , respectively

<u>Dimensional Transfer</u>: If Y is obtained from X by a dimensional rearrangement among the poor, then P(Y;z) < P(X;z)

Dimensional rearrangement among the poor is a association decreasing rearrangement that switches a deprivation with a nondeprivation between two poor persons

Example: Deprivation rearrangement among the poor but not dimensional

rearrangement

$$Y = \begin{bmatrix} 2 & 4 & 8 \\ 3 & 3 & 2 \\ 10 & 10 & 12 \end{bmatrix} \qquad X = \begin{bmatrix} 3 & 4 & 8 \\ 2 & 3 & 2 \\ 10 & 10 & 8 \end{bmatrix} \qquad z = \begin{bmatrix} 4 & 5 \\ 2 & 3 & 2 \\ 10 & 10 & 8 \end{bmatrix}$$

$$X = \begin{vmatrix} 3 & 4 & 8 \\ 2 & 3 & 2 \\ 10 & 10 & 8 \end{vmatrix}$$

$$z = \begin{bmatrix} 4 & 5 & 3 \end{bmatrix}$$

- Subgroups (mutually exclusive and exhaustive)
 - The population size of Matrix X is n
 - Matrix X is divided into two population subgroups
 - Group 1: X^1 with population size n^1
 - Group 2: X^2 with population size n^2
 - Note that $n = n^1 + n^2$

Inc Edu Hel

$$X = \begin{bmatrix} 4 & 4 & 2 \\ 3 & 5 & 4 \end{bmatrix}$$
 Person 1

8 6 3 Person 3

Subgroup Consistency: If Y is obtained from X, such that (i) $P(Y^1;z) > P(X^1;z)$, (ii) $P(Y^2;z) = P(X^2;z)$, and (iii) the population size of each group remains unchanged, then P(Y;z) > P(X;z)

<u>Population Subgroup Decomposability</u>: A poverty measure is additive decomposable if

$$P(X) = \frac{n^{1}}{n}P(X^{1}) + \frac{n^{2}}{n}P(X^{2})$$

Recall: decomposability implies subgroup consistency, but the converse does not hold

<u>Dimensional Breakdown</u>: It is a *purely multidimensional* concept, where the overall poverty can be expressed as an weighted average of dimensional deprivations of the poor

<u>Dimensional Breakdown</u>: If $P_j(x_{\cdot j};z)$ summarizes the <u>post-identification</u> deprivation profile of the society in dimension j

Then,
$$P(X;z) = w_1 P_1(x_{\cdot 1};z) + \cdots + w_d P_d(x_{\cdot d};z)$$

where w_j is the weight (normalized) assigned to dimension j

For *union criterion*, it is the <u>factor decomposability</u> by Chakravarty, Mukherjee and Ranade (1998)

$$P_j(x_{\cdot j};z) = P_j(x_{\cdot j};z_j)$$

Technical Properties

• Normalization

A poverty measure should be bounded between 0 and 1

• Continuity

- A poverty measure should be continuous on the achievements

Non-triviality

A poverty measure should take at least two distinct values

Thank you. Questions.

