Summer School on Multidimensional Poverty Analysis

11-23 August 2014

Oxford Department of International Development Queen Elizabeth House, University of Oxford

Population Subgroup Decomposition and Dimensional Breakdown

Suman Seth

18 August 2014
Session III

Focus of This Lecture

Discuss how overall poverty can be decomposed across different population subgroups, and show maps for visual policy analysis

- Population subgroup decomposability

Discuss how poverty can be decomposed to understand the prevalence of deprivations in different dimensions among the poor

- Dimensional breakdown

Main Source of this Lecture

- Alkire S., J. E. Foster, S. Seth, S. Santos, J. M. Roche, P. Ballon, Multidimensional Poverty Measurement and Analysis, Oxford University Press, forthcoming, (Chs 5.5.2 and 5.5.3).

Population Subgroups

- Subgroups (mutually exclusive and exhaustive)
- The population size of Matrix X is n
- Matrix X is divided into two population subgroups
- Group 1: X^{1} with population size n^{1}
- Group 2: X^{2} with population size n^{2}
- Note that $n=n^{1}+n^{2}$

$$
X=
$$

Population Subgroups

Population Subgroup Decomposability: A poverty measure is additive decomposable if

$$
P(X)=\frac{n^{1}}{n} P\left(X^{1}\right)+\frac{n^{2}}{n} P\left(X^{2}\right)
$$

Then, one can calculate the contribution of each group to overall poverty:

$$
C\left(X^{1}\right)=\frac{n^{1}}{n} \frac{P\left(X^{1}\right)}{P(X)}
$$

Population Subgroups

Reconsider the following example

	Income	Years of Education	Sanitation (Improved?)		
$X=$	700	14	Yes	Yes	Person 1
	300	13	Yes	No	Person 2
	400	10	No	No	Person 3
	800	11	Yes	Yes	Person 4
$z=$	500	12	Yes	Yes	

Population Subgroups

The deprivation matrix

$g^{0}=|$| Income | Years of
 Education | Sanitation
 (Improved?) | Access to
 Electricity | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Person 1 |
| $\mathbf{1}$ | 0 | 0 | $\mathbf{1}$ | Person 2 |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | Person 3 |
| 0 | $\mathbf{1}$ | 0 | 0 | Person 4 |
| $z=\mid$ | $\mathbf{5 0 0}$ | $\mathbf{1 2}$ | Yes | Yes |

Population Subgroups

The weight vector is ($1,2,0.5,0.5$); replace deprivation status with weight (weighted deprivation matrix)

$\bar{g}^{0}=|$| Income | Years of
 Education | Sanitation
 (Improved?) | Access to
 Electricity | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Person 1 |
| 1 | 0 | 0 | 0.5 | Person 2 |
| 1 | 2 | 0.5 | 0.5 | Person 3 |
| 0 | 2 | 0 | 0 | Person 4 |

Population Subgroups

Who is poor when $k=1.5$?

$\bar{g}^{0}=|$| Income | Years of
 Education | Sanitation
 (Improved?) | Access to
 Electricity | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Person 1 |
| 1 | 0 | 0 | 0.5 | Person 2 |
| 1 | 2 | 0.5 | 0.5 | Person 3 |
| 0 | 2 | 0 | 0 | Person 4 |

Population Subgroups

Who is poor when $k=1.5$?

	Income	Years of Education	Sanitation (Improved?)	Access Electric	Person 1 Person 2
$\bar{g}^{0}(k)=$	0	0	0	0	
	1	0	0	0.5	
	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

Population Subgroups

What is the M_{0} of the matrix?

$\bar{g}^{0}(k)=|$| Income | Years of
 Education | Sanitation
 (Improved?) | Access to
 Electricity | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Person 1 |
| 1 | 0 | 0 | 0.5 | Person 2 |
| 1 | 2 | 0.5 | 0.5 | Person 3 |
| 0 | 2 | 0 | 0 | Person 4 |

Population Subgroups

What is the M_{0} of the matrix? It is $15 / 32$

$\bar{g}^{0}(k)=|$| Income | Years of
 Education | Sanitation
 (Improved?) | Access to
 Electricity | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Person 1 |
| 1 | 0 | 0 | 0.5 | Person 2 |
| 1 | 2 | 0.5 | 0.5 | Person 3 |
| 0 | 2 | 0 | 0 | Person 4 |

Population Subgroups

Let us divide the population into two subgroups

Income
$\bar{g}^{0}(k)=$Years of Education
Sanitation (Improved?)
Access to Electricity
1

Population Subgroups

Let us divide the population into two subgroups

Income
$\bar{g}^{0}(k)=$Years of Education
Sanitation (Improved?)
Access to Electricity
1

- M_{0} for the pink group: $1.5 / 8=3 / 16$
- M_{0} for the green group: $6 / 8=3 / 4$
- Overall $M_{0}=$?

Population Subgroups

Let us divide the population into two subgroups

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
$\bar{g}^{0}(k)=$	0	0	0	0	Person 1
	1	0	0	0.5	Person 2
	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

- M_{0} for the pink group: $1.5 / 8=3 / 16$
- M_{0} for the green group: $6 / 8=3 / 4$
- Overall $M_{0}=(1 / 2) \times(3 / 16)+(1 / 2) \times(3 / 4)=15 / 32$

Contribution of Subgroup

Let us divide the population into two subgroups

Income
$\bar{g}^{0}(k)=$Years of Education
Sanitation (Improved?)
Access to Electricity
$\mathbf{1}$
0

- The contribution of group 1 to M_{0} is $(1 / 2) \times(3 / 16) /(15 / 32)=1 / 5$

The contribution of group 2 to M_{0} is $(1 / 2) \times(3 / 4) /(15 / 32)=4 / 5$
The total contribution must sum up to 1

How Does it Help to Analyze Results?

Human Development Initiative

Nigeria:

MPI=0.240

Nigeria:

MPI=0.240

Sub-national MPIs range between 0.045 \& 0.600

India: $\mathrm{MPI}=0.283$

Sub-national MPIs range between 0.051 \& 0.600 .

Reduction in MPI across States 99-06

Reduction in MPI: Castes and Religions

National \& Sub-national Disparity in MPI

2011 MPI Data

National \& Sub-national Disparity in MPI

Sub-national Disparity

2011 MPI Data

National MPI (Use 2011 results)

Sub-national MPI (Use 2011 results)

Dimensional Breakdown

Q1: What is the difference between the raw headcount ratio and the censored headcount ratio?

Q2: Can the raw headcount ratio of a dimension be lower than its censored headcount ratio?

Q3: Can the censored headcount ratio of a dimension be higher than the multidimensional headcount ratio?
Q4: What is the relationship between the censored headcount ratios and M_{0} ?
Q5: What kind of policy analysis can be conducted using the censored headcount ratio?

Example

An achievement matrix with 4 dimensions

	Income	Years of Education	Sanitation		Person 1 Person 2 Person 3 Person 4
$X=$	700	14	1	1	
	300	13	1	0	
	400	10	0	0	
	800	11	1	1	
$z=$	500	12	1	1	

z is the vector of poverty lines

Example

Replace entries: 1 if deprived, 0 if not deprived

$g^{0}=|$| Income | Years of
 Education | Sanitation
 (Improved?) | Access to
 Electricity | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Person 1 |
| 1 | 0 | 0 | 1 | Person 2 |
| 1 | 1 | 1 | 1 | Person 3 |
| 0 | 1 | 0 | 0 | Person 4 |
| $z=\mid$ | $\mathbf{5 0 0}$ | $\mathbf{1 2}$ | Yes | Yes |

These entries fall below cutoffs

Example

What is the uncensored Headcount Ratio of each of the four dimensions?

$g^{0}=|$| Income | Years of
 Education | Sanitation
 (Improved?) | Access to
 Electricity | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Person 1 |
| 1 | 0 | 0 | 1 | Person 2 |
| 1 | 1 | 1 | 1 | Person 3 |
| 0 | 1 | 0 | 0 | Person 4 |

Income: $2 / 4$ Education: $2 / 4$ Sanitation: $1 / 4 \quad$ Electricity: 2/4

Example

Suppose the weight vector is $(1,2,0.5,0.5)$
Income

$g^{0}=|$| Years of |
| :---: | :---: | :---: | :---: | :---: |
| Education |

Sanitation
(Improved?)

Acesss to
Electricity

$\mathbf{1}$
$\mathbf{1}$
$\mathbf{1}$
0

Example

Suppose the weight vector is $(1,2,0.5,0.5)$

- Replace the deprivation status with the weights

$g^{0}=|$| Income | Years of
 Education | Sanitation
 (Improved?) | Access to
 Electricity | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Person 1 |
| $\mathbf{1}$ | 0 | 0 | $\mathbf{1}$ | Person 2 |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | Person 3 |
| 0 | $\mathbf{1}$ | 0 | 0 | Person 4 |

Example

Suppose the weight vector is $(1,2,0.5,0.5)$

- Replace the deprivation status with the weights

$\bar{g}^{0}=|$| Income | Years of
 Education
 Sanitation | Access to
 (Improved?) | Electricity | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Person 1 |
| 1 | 0 | 0 | 0.5 | Person 2 |
| $\mathbf{1}$ | 2 | 0.5 | 0.5 | Person 3 |
| 0 | 2 | 0 | 0 | Person 4 |

Example

Suppose the weight vector is $(1,2,0.5,0.5)$. Each weight is w_{j}

- Replace the deprivation status with the weights

$\bar{g}^{0}=|$| Income | Years of
 Education | Sanitation
 (Improved?) | Access to
 Electricity | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Person 1 |
| 1 | 0 | 0 | 0.5 | Person 2 |
| $\mathbf{1}$ | 2 | 0.5 | 0.5 | Person 3 |
| 0 | 2 | 0 | 0 | Person 4 |

Example

Suppose the weight vector is $(1,2,0.5,0.5)$

- Construct the deprivation score vector

$\bar{g}^{0}=|$| Income | Years of
 Education | Sanitation
 (Improved?) | Access to
 Electricity | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Person 1 |
| 1 | 0 | 0 | 0.5 | Person 2 |
| 1 | 2 | 0.5 | 0.5 | Person 3 |
| 0 | 2 | 0 | 0 | Person 4 |

Example

Suppose the weight vector is $(1,2,0.5,0.5)$.

- Construct the deprivation score vector

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	c
$\bar{g}^{0}=$	0	0	0	0	0
	1	0	0	0.5	1.5
	1	2	0.5	0.5	4
	0	2	0	0	2

Example

If the poverty cutoff is $k=2$, who is poor?

- Construct the deprivation score vector

$\bar{g}^{0}=|$| Income | Years of
 Education | Sanitation
 (Improved? | Acesss to
 Electricity | \mathbf{c} |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1}$ | 0 | 0 | $\mathbf{0 . 5}$ | $\mathbf{1 . 5}$ |
| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{0 . 5}$ | $\mathbf{0 . 5}$ | $\mathbf{4}$ |
| 0 | $\mathbf{2}$ | 0 | 0 | $\mathbf{2}$ |

Example

Let us now censor the deprivation matrix and vector

$\bar{g}^{0}=|$| Income | Years of
 Education | Sanitation
 (Improved? | Access to
 Electricity | \mathbf{c} |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1}$ | 0 | 0 | $\mathbf{0 . 5}$ | $\mathbf{1 . 5}$ |
| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{0 . 5}$ | $\mathbf{0 . 5}$ | $\mathbf{4}$ |
| 0 | $\mathbf{2}$ | 0 | 0 | $\mathbf{2}$ |

Example

Let us now censor the deprivation matrix and vector

$\bar{g}^{0}(k)=|$| Income | Years of
 Education | Sanitation
 (Improved?) | Access to
 Electricity | \mathbf{c} |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{0}$ | 0 | 0 | $\mathbf{0}$ | $\mathbf{0}$ |
| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{0 . 5}$ | $\mathbf{0 . 5}$ | $\mathbf{4}$ |
| 0 | $\mathbf{2}$ | 0 | 0 | $\mathbf{2}$ |

The M_{0} is $6 / 16$

Dimensional Composition

There are four dimensions - denoted by $d=4$

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
$\bar{g}^{0}(k)=$	0	0	0	0	Person 1
	0	0	0	0	Person 2
	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

Dimensional Composition

What is the censored headcount ratio of each dimension?

Dimensional Composition

What is the censored headcount ratio of each dimension?

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
$\bar{g}^{0}(k)=$	0	0	0	0	Person 1
	0	0	0	0	Person 2
	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

Income: 1/4
Sanitation: 1/4

Education: 2/4
Electricity: 1/4

Uncensored vs. Censored Headcount Ratio

The uncensored headcount (UH) ratio of a dimension denotes the proportion of the population deprived in a dimension.

The censored headcount (CH) ratio of a dimension denotes the proportion of the population that is multidimensionally poor and deprived in that dimension at the same time.

M_{0} and Censored Headcount Ratio

If the censored headcount ratio of indicator j is denoted by h_{j}, then the M_{0} measure can be expressed as

$$
M_{0}(X)=\sum_{j}\left(w_{j} / d\right) \times h_{j}(k)
$$

where w_{j} is the weight attached to dimension j

Contribution of dimension j to overall poverty is

$$
\left(w_{j} / d\right) \times\left[h_{j} / M_{0}(X)\right] \text { for all } j
$$

M_{0} and UH Ratio in Union Approach

What is the relationship between the M_{0} and the raw headcount ratio when a union approach is used for identifying the poor?

With a union approach, the censored headcount ratio for a dimension is its raw headcount ratio.

Thus, the M_{0} with the union approach is the weighted average of the raw headcount ratios.

Dimensional Contribution

What is the contribution of the education dimension

to Mi_{0} ?	Income	Years of Education	$\underset{\text { Sanitation }}{\text { (Improved? }}$	Access to Electricity	
$\bar{g}^{0}(k)=$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	0 0 $\mathbf{0 . 5}$ 0	0 0 0.5 0	Person 1 Person 2 Person 3 Person 4

Dimensional Contribution

What is the contribution of the education dimension to M_{0} ?

$\mathrm{g}^{0}(k)=$	0	0	0	0	Person
	0	0	0	0	Person 2
	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

The contribution is $(2 / 4) \times[(2 / 4) /(6 / 16)]=2 / 3$

$$
\mathrm{w}_{\mathrm{E}} \quad \mathrm{~h}_{\mathrm{E}}(\mathrm{k}) \quad \mathrm{M}_{0}
$$

Similar MPI, but Different Composition

Different MPI, Similar Composition

-Ghana
($\mathrm{MPI}=0.140$)

Schooling

- -Mali
(MPI=0.564)

Another way of Presenting Composition Graphically

Poverty types
(Roche 2010 for MPI Analysis)

The composition of the MPI can inform policy. It can change across countries and states.

School Attendance (CH)

Child Mortality (CH)

Safe Drinking Water (CH)

Child Mortality (CH)

Safe Drinking Water (CH)

