

Summer School on Multidimensional Poverty

8-19 July 2013

Institute for International Economic Policy (IIEP) George Washington University Washington, DC

Population Subgroup Decomposition and Policy Implications

José Manuel Roche

Suman Seth

Focus of This Lecture

Discuss how the overall poverty can be decomposed across different population subgroups and create maps for visual policy analysis

Suppose the population size of achievement matrix x is denoted by n(x). Matrix x is divided into two population subgroups: x' with population size n(x') and x" with population size n(x') such that n(x) = n(x') + n(x'')

Income Education Health

Population Subgroup Decomposability: A poverty measure is additive decomposable if:

$$P(x) = \frac{n(x')}{n}P(x') + \frac{n(x'')}{n}P(x'')$$

Then, one can calculate the contribution of each group to overall poverty:

$$C(x') = \frac{n(x')P(x')}{nP(x)}$$

Reconsider the following example

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
	700	14	Yes	Yes	Person 1
-	300	13	Yes	No	Person 2
X =	400	10	No	No	Person 3
	800	11	Yes	Yes	Person 4
$\mathbf{z} =$	500	12	Yes	Yes	

The deprivation matrix

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
	0	0	0	0	Person 1
~0 —	1	0	0	1	Person 2
$\mathbf{g^0} = $	1	1	1	1	Person 3
	0	1	0	0	Person 4
$\mathbf{z} =$	500	12	Yes	Yes	

The weight vector is (1, 2, 0.5, 0.5), replace deprivation status by weight

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
	0	0	0	0	Person 1
$\mathbf{g}^0 =$	1	0	0	0.5	Person 2
g° –	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

Who is poor when k = 1.5?

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
	0	0	0	0	Person 1
~0 —	1	0	0	0.5	Person 2
$\mathbf{g}^0 = \begin{vmatrix} & & & & & & & & & & & & & & & & & &$	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

Who is poor when k = 1.5?

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
$\mathbf{g}^0(k) =$	0	0	0	0	Person 1
	1	0	0	0.5	Person 2
	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

What is the M_0 of the matrix?

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
	0	0	0	0	Person 1
$\sim 0(1z)$	1	0	0	0.5	Person 2
$\mathbf{g}^{0}(k) = \mathbf{g}^{0}(k)$	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

What is the M_0 of the matrix? It is 15/32

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
	0	0	0	0	Person 1
$\sim 0(1z)$	1	0	0	0.5	Person 2
$\mathbf{g}^{0}(k) = \mathbf{g}^{0}(k)$	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
	0	0	0	0	Person 1
~0(1-) -	1	0	0	0.5	Person 2
$\mathbf{g}^{0}(k) =$	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
	0	0	0	0	Person 1
- 0(1-) —	1	0	0	0.5	Person 2
$\mathbf{g}^{0}(k) =$	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

- M_0 for pink group: 1.5/8 = 3/16
- M_0 for green group: 6/8 = 3/4
- Overall $M_0 = ?$

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
	0	0	0	0	Person 1
- 0(1-) —	1	0	0	0.5	Person 2
$\mathbf{g}^{0}(k) =$	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

- M_0 for pink group: 1.5/8 = 3/16
- M_0 for green group: 6/8 = 3/4
- Overall $M_0 = (1/2) \times (3/16) + (1/2) \times (3/4) = 15/32$

Contribution of Subgroup

	Income	Years of Education	Sanitation (Improved?)	Access to Electricity	
	0	0	0	0	Person 1
-0(1-) -	1	0	0	0.5	Person 2
$\mathbf{g}^{0}(k) =$	1	2	0.5	0.5	Person 3
	0	2	0	0	Person 4

- The contribution of group 1 to M_0 is $(1/2)\times(3/16)/(15/32) = 1/5$
- The contribution of group 2 to M_0 is $(1/2) \times (3/4)/(15/32) = 4/5$
 - The total contribution must sum up to 1

Applications and Case Studies

How do we present and analyze the results?

1. Break down M_0 by subgroups

Decompositions uncover large variation in MPI across group

MPI (subgroup)

Decompositions uncover large variation in MPI.

National Vs. Sub-national Disparity in MPI

National Disparity

	LAC	EAP	SA	SSA	LICs	LMICs
Standard Deviation of MPIs						
Across Countries	0.065	0.048	0.011	0.116	0.118	0.101

National Vs. Sub-national Disparity in MPI

National Disparity

Sub-national Disparity

	LAC	EAP	SA	SSA	LICs	LMICs
Standard Deviation of MPIs						
Across Countries	0.065	0.048	0.011	0.116	0.118	0.101
Across Sub-National Regions	0.081	0.059	0.102	0.172	0.147	0.142

What Indian States' MPI ≥ 0.32 ?

2. Analyzing Contribution

Regional contribution to poverty in Indonesia

Suppose you want to distribute budget across regions considering two criteria: population size and poverty level

Regional contribution to poverty in Indonesia

Region	East Nusa Tenggara	Banten	Papua	Yogyakarta Special Region	Jakarta	Central Java
Number of poor people (Thousand)	2,004	2,660	805	381	1,012	6,317
% Population Share	2%	4%	1%	2%	4%	16%
MPI	0.200	0.135	0.220	0.038	0.038	0.075
% Contribution MPI	5%	6%	2%	1%	2%	13%
			J			

Contribute more to poverty

Contribute <u>less</u> to poverty

Different path to poverty reduction (Roche 2013)

3. Aggregating results

Country Results: Across Geographic Regions and Income Categories

	Number of	2008 Pop		MPI Poor	Severely
World Region	Countries	(in Mils)	MPI	(%)	Poor (%)
Total	109	5,299.9	0.163	31.1%	16.4%
Geographic Region					
Europe and Central Asia	24	399.5	0.011	2.9%	0.4%
Latin America and Caribbean	18	497.5	0.032	7.2%	2.2%
East Asia and Pacific	11	1,878.7	0.065	14.3%	5.2%
Arab States	11	217.7	0.077	15.3%	7.4%
South Asia	7	1,554.2	0.280	53.2%	28.0%
Sub-Saharan Africa	38	752.3	0.360	62.9%	41.2%
Income Category					
High Income	8	41.2	0.010	2.9%	0.0%
Upper Middle Income	28	2,179.0	0.041	9.3%	3.0%
Lower Middle Income	42	2,378.9	0.218	41.5%	21.9%
Low Income	31	700.9	0.367	65.6%	40.7%

Total Population in 109 MPI countries

Distribution of Population and MPI Poor across Geographic Regions

MPI poor people by region

MPI in middle-income countries.

More than twice as many poor people live in middle-income countries (1,189 M) compared to low-income countries (459 M).

Total Population by Income Category in MPI countries (2008)

uman Development Initiative

4. Poverty Maps analysis

National MPI

(109 Countries)

Sub-national disparities in MPI

(Subnational disaggregation available for 66 countries)

MPI: various levels of resolution

Municipal MPI Colombia Headcount ratio, urban-rural areas, 2005

MPI proxy based on Census Data 2005

