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Introduction

Introduction: Robustness versus Dominance

I In general, robustness analysis assesses the sensitivity of classifications
generated by an index, when the values of the index’s key parameters
change.

I Stochastic dominance conditions provide an extreme form of robustness:
when they are fulfilled, a comparison is robust to a broad range of
parameter values.
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Introduction

Robustness of rankings generated by the AF measures
(including the MPI)

The positions generated by AF measures may be sensitive to
changes in the measure’s key parameters, specifically:

1. The poverty lines of each variable (i.e. the ”first” cut-off): zd .

2. The weights on each variable/dimension: wd .

3. The threshold that the weighted sum of deprivations need to
surpass in order to identify someone as (multidimensionally)
poor (i.e. the ”second” cut-off): k.
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Introduction

Statistical tools for the evaluation of robustness of
rankings for the AF measures

There are, in principle, two approaches to evaluating the
robustness of AF measures to changes in their key parameters:

1. To ”fix” all parameter values and check the sensitivity to
changes in a set of parameters.

I Example: Batana (2008) fixes weights and poverty lines and
checks the sensitivity of the rankings to changes in k.

I Another one: Alkire y Foster (2009) y Lasso de la Vega (2009)
derive dominance conditions over k keeping weights and
poverty lines fixed.

2. To derive conditions under which an ordering is robust for all
lines, weights and multidimensional cut-offs.
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Statistical tools for the evaluation of robustness of
rankings for the AF measures

In this presentation we are going to review:

I Stochastic dominance conditions for H and M0 that ensure
robustness for all multidimensional thresholds, weights and
lines.

I Some basic robustness tests (applied to weights).
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Stochastic dominance conditions for H and M0

The counting vector: key ingredient for the dominance
conditions of H and M0

For person n we define D − cn, where:

cn =
D∑

d=1

wd I (xid ≤ zd)

We then consider a distribution of deprivations, D − c , in the
population, with values ranging from 0 (poor in every variable) to
D (non-poor in every variable). A typical cumulative distribution is:
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Stochastic dominance conditions for H and M0

A typical cumulative distribution of D-c
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Stochastic dominance conditions for H and M0

The dominance condition over k

The key results are the following:

FA(D−c) ≤ FB(D−c)∀(D−c) ∈ [0,D]↔ HA ≤ HB∀(D−c) ∈ [0,D]

HA ≤ HB∀(D − c) ∈ [0,D]→ MA ≤ MB∀(D − c) ∈ [0,D]
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Stochastic dominance conditions for H and M0

The key result in one graph: I
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Stochastic dominance conditions for H and M0

Proof, as explained by Alkire and Foster

Notice that M0 can be expressed in terms of H the following way:

M0(k) =
1

D
[H(D)D +

D−1∑
j=k

j [H(j)− H(j + 1)]]

Simplifying that expression yields the following result:

M0(k) =
1

D
[

D∑
j=k+1

H(j) + kH(k)]

Therefore: HA(k) ≤ HB(k)∀k ∈ [1,D]→ MA(k) ≤ MB(k)∀k ∈ [1,D]
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Stochastic dominance conditions for H and M0

More dominance results: incorporating weights and poverty
lines

We just saw that MA(k) ≤ MB(k)∀k ∈ [1,D] holds if:
HA(k) ≤ HB(k)∀k ∈ [1,D]

Are there conditions under which HA(k) ≤ HB(k)∀k ∈ [1,D] for
any vector of weights and poverty lines?

Yes, but so far we know of their existence only on two restrictive
situations:

I When there are only two variables.

I For any number of variables under extreme identification
approaches (union and intersection).
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Stochastic dominance conditions for H and M0

More dominance results: incorporating weights and poverty
lines

When there are only two variables the conditions are:

FA(x , y) ≥ FB(x , y)∀(x , y) ∈ [xmin, xmax ]× [ymin, ymax ]

FA(x , y) ≤ FB(x , y)∀(x , y) ∈ [xmin, xmax ]× [ymin, ymax ]

When there are several variables and the poor are identified
according to the union approach:

Mα
A(X ;min(wd);Z ) ≤ Mα

B(X ;min(wd);Z )∀α ∈ R+
0

∀wd ∈ R+ |
D∑

d=1

wd = 1,∀Z ↔ FA
d (xd) ≤ FB

d (xd)∀x1, ..., xD



Robustness analysis with the Alkire-Foster measures

Stochastic dominance conditions for H and M0

More dominance results: incorporating weights and poverty
lines

When there are only two variables the conditions are:

FA(x , y) ≥ FB(x , y)∀(x , y) ∈ [xmin, xmax ]× [ymin, ymax ]

FA(x , y) ≤ FB(x , y)∀(x , y) ∈ [xmin, xmax ]× [ymin, ymax ]

When there are several variables and the poor are identified
according to the union approach:

Mα
A(X ;min(wd);Z ) ≤ Mα

B(X ;min(wd);Z )∀α ∈ R+
0

∀wd ∈ R+ |
D∑

d=1

wd = 1,∀Z ↔ FA
d (xd) ≤ FB

d (xd)∀x1, ..., xD



Robustness analysis with the Alkire-Foster measures

Stochastic dominance conditions for H and M0

More dominance results: incorporating weights and poverty
lines

When there are only two variables the conditions are:

FA(x , y) ≥ FB(x , y)∀(x , y) ∈ [xmin, xmax ]× [ymin, ymax ]

FA(x , y) ≤ FB(x , y)∀(x , y) ∈ [xmin, xmax ]× [ymin, ymax ]

When there are several variables and the poor are identified
according to the union approach:

Mα
A(X ;min(wd);Z ) ≤ Mα

B(X ;min(wd);Z )∀α ∈ R+
0

∀wd ∈ R+ |
D∑

d=1

wd = 1,∀Z ↔ FA
d (xd) ≤ FB

d (xd)∀x1, ..., xD



Robustness analysis with the Alkire-Foster measures

Stochastic dominance conditions for H and M0

More dominance results: incorporating weights and poverty
lines

When there are only two variables the conditions are:

FA(x , y) ≥ FB(x , y)∀(x , y) ∈ [xmin, xmax ]× [ymin, ymax ]

FA(x , y) ≤ FB(x , y)∀(x , y) ∈ [xmin, xmax ]× [ymin, ymax ]

When there are several variables and the poor are identified
according to the union approach:

Mα
A(X ;min(wd);Z ) ≤ Mα

B(X ;min(wd);Z )∀α ∈ R+
0

∀wd ∈ R+ |
D∑

d=1

wd = 1, ∀Z ↔ FA
d (xd) ≤ FB

d (xd)∀x1, ..., xD



Robustness analysis with the Alkire-Foster measures

Stochastic dominance conditions for H and M0

More dominance results: incorporating weights and poverty
lines

When there are several variables and the poor are identified
according to the intersection approach:

Mα
A(X ;D;Z ) ≤ Mα

B(X ;D;Z )∀α ∈ R+
0

∀wd ∈ R+ |
D∑

d=1

wd = 1,∀Z ↔
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Stochastic dominance conditions for H and M0

More dominance results: incorporating weights and poverty
lines

When there are several variables and the poor are identified
according to the intersection approach:

Mα
A(X ;D;Z ) ≤ Mα

B(X ;D;Z )∀α ∈ R+
0
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Stochastic dominance conditions for H and M0

Illustration of the conditions for H(X ;w , k ,Z )

A =
y1 y2

x1 0.3 0.1
x2 0.1 0.5

B =
y1 y2

x1 0.2 0.2
x2 0.2 0.4

C =
y1 y2

x1 0.2 0.15
x2 0.15 0.5
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Stochastic dominance conditions for H and M0

Illustration of the conditions for H(X ;w , k ,Z )
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Stochastic dominance conditions for H and M0

Illustration of the conditions for H(X ;w , k ,Z ): the
cumulative and survival distributions
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Other methods of rank robustness

Why do we need other methods?

I Stochastic dominance conditions are useful for evaluating ordinal pairwise
comparisons.

I However, these are very stringent conditions, they are not always fulfilled
and they are not (yet) available for many interesting cases.

I What can we say about the degree of robustness of a whole ranking of
countries, people, etc. when dominance conditions are not fulfilled for all
possible pairs?

I We need other methods to quantify and assess the robustness of the
orderings to changes in the parameters.
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Other methods of rank robustness

Other methods

In this presentation we will review some of the methods used in the
report by Alkire et al. (2010):

I Correlation coefficients for pairs of rankings, e.g. the Gamma
by Goodman and Kruskal, and Spearman’s Rho.

I The multiple rank concordance indices, e.g.
Kendall-Friedman, Kendall, Joe.

I Percentages of reversed comparisons.

I Counting of large changes in the positions.
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Other methods of rank robustness

The context

I There are N countries

I The ordering/ranking of the N countries is represented by the
vector:

R = (R1,R2, . . . ,RN)

We assume: R1 < R2 < . . . < RN .

I The objective is to analyze the robustness of ranking R for
alternative parameter values.

I Maybe the changes are in the weights, w ′; poverty lines, z ′;
different thresholds, k ′; even the number of dimensions might
change to D ′.



Robustness analysis with the Alkire-Foster measures

Other methods of rank robustness

The context

I There are N countries

I The ordering/ranking of the N countries is represented by the
vector:

R = (R1,R2, . . . ,RN)

We assume: R1 < R2 < . . . < RN .

I The objective is to analyze the robustness of ranking R for
alternative parameter values.

I Maybe the changes are in the weights, w ′; poverty lines, z ′;
different thresholds, k ′; even the number of dimensions might
change to D ′.



Robustness analysis with the Alkire-Foster measures

Other methods of rank robustness

The context

I There are N countries

I The ordering/ranking of the N countries is represented by the
vector:

R = (R1,R2, . . . ,RN)

We assume: R1 < R2 < . . . < RN .

I The objective is to analyze the robustness of ranking R for
alternative parameter values.

I Maybe the changes are in the weights, w ′; poverty lines, z ′;
different thresholds, k ′; even the number of dimensions might
change to D ′.



Robustness analysis with the Alkire-Foster measures

Other methods of rank robustness

The context

I There are N countries

I The ordering/ranking of the N countries is represented by the
vector:

R = (R1,R2, . . . ,RN)

We assume: R1 < R2 < . . . < RN .

I The objective is to analyze the robustness of ranking R for
alternative parameter values.

I Maybe the changes are in the weights, w ′; poverty lines, z ′;
different thresholds, k ′; even the number of dimensions might
change to D ′.



Robustness analysis with the Alkire-Foster measures

Other methods of rank robustness

The context

I The new ranking under a different specification is denoted by
the vector:

R ′ =
(
R ′

1,R
′
2, . . . ,R

′
N

)
I If Rn = R ′

n for all n = 1, . . . ,N then the ordering is completely
robust with respect to the alternative specification.

I In general, we want to measure how close two, or more,
rankings, stand from a situation of perfect correlation, or
concordance, and which classified elements may be repsonsible
for any deviation from complete robustness.
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The γ of Goodman and Kruskal
I γ is based on:

I The number of concordant pairs (C )
I The number of discordant pairs (D)

I Concordant and discordant pairs:

I A pair n and n̄ is concordant if:

Rn > Rn̄ and R ′n > R ′n̄

I The pair is discordant if:

Rn > Rn̄ but R ′n < R ′n̄

I With these concepts, γ is defined as:

γ =
C − D

C + D
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Other methods of rank robustness

Exploring Gamma

I Gamma measures the normalized difference between the total
of concordant pairs and discordant pairs.

I Notice that C + D is the total number of comparisons when
there are no ties among the ranks. Since M0 is continuous, we
assume that there are no ties.

I The maximum value of γ is +1 (perfect rank correlation).
Rn = R ′

n for all n.

I The minimum value of γ is −1 (all pairs are discordant). One
ranking is the exact reverse of the other one.

I When the number of concordant pairs is equal to that of
discordant pairs: γ = 0.
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Spearman’s correlation coefficient

I Rho is based on the differences in rankings for every classified
object (e.g. a country) under two specifications.

I We define rn = Rn − R ′
n for all n = 1, . . . ,N.

I rn is the difference in rankings for country n under two
different ranking criteria.

I Thus Rho has the following expression:

ρ = 1−
6
∑N

n=1 r
2
n

N (N2 − 1)

I When Rn = R ′n: rn = 0 for all n and, in turn, ρ = +1.
I When Rn = R ′N−n+1 for all n: ρ = −1.
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Concordance indices for multiple rankings
Unlike correlation coefficients, these indices provide an evaluation of the degree
of concordance of several rankings at the same time.

We review three indices for situations where there are not ties (for adjustments
for ties see Seth and Yalonetzky, 2011):

I The index by Kendall-Friedman:

KF =
12

(N2 − 1)ND2

N∑
n=1

[
J∑

j=1

R j
n −

(N + 1)D

2
]2

I The index by Kendall:

K =
12

N2 − 1
[

2

ND(D − 1)

J∑
j=1

J∑
j′>j

N∑
n=1

R j
nR

j′
n − (N + 1)2

4
]

I The index by Joe:

JO =
1
N

∑N
n=1

∏J
j=1 R

j
n − (N+1

2
)2

1
N

∑N
n=1 n

J − (N+1
2

)2
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Other methods: percentage of reversed pairwise
comparisons

If q is the number of pairwise comparisons that, under some criterion, gets
reversed (several criteria can be considered simultaneously):

0 ≤ q ≤ N(N − 1)

2

Then one can compute: p = 2q
N(N−1)

Notice that:

I When p = 1 and J = 2 rankings get reversed completely (Rn = R ′N−n+1).

I The maximum effect generated by just one country occurs when it moves
from one extreme of the ranks to the other. If that is the only change
then: p = 2

N
.
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