Time decompositions of the adjusted headcount ratio

Gastón Yalonetzky

Oxford Poverty and Human Development Initiative

OPHI-HDCA Summer School, Delft, 24 August - 3 September 2011.

We are grateful to the World Bank, two anonymous donors and OPHI for financial support
Table of contents

Introduction

Methodology
 Basic decompositions

Data

Results
 Basic decomposition of MPI
 Decomposition of H
 Decomposition of A

More general results

Data

Results

Concluding remarks
The adjusted headcount ratio, M0, has nice decomposability properties, e.g. by regions, groups, etc.
Introduction

- The adjusted headcount ratio, M0, has nice decomposability properties, e.g. by regions, groups, etc.
- In this class we will explore the nice decomposability properties of $\Delta^\%M0$ and its components: $\Delta^\%H$ and $\Delta^\%A$.
The adjusted headcount ratio, M_0, has nice decomposability properties, e.g. by regions, groups, etc.

In this class we will explore the nice decomposability properties of $\Delta\%M_0$ and its components: $\Delta\%H$ and $\Delta\%A$.

This material is based on Apablaza, Ocampo and Yalonetzky (2010), and on Apablaza and Yalonetzky (2011).
Introduction

- We are going to study the most basic time decompositions first, i.e. for cross-sections.
Introduction

- We are going to study the most basic time decompositions first, i.e. for cross-sections.
- Then we will show some results from Apablaza, Ocampo and Yalonetzky (2010).
Introduction

- We are going to study the most basic time decompositions first, i.e. for cross-sections.

- Then we will show some results from Apablaza, Ocampo and Yalonetzky (2010).

- Then we will discuss more decompositions relevant to panel datasets.
Introduction

- We are going to study the most basic time decompositions first, i.e. for cross-sections.
- Then we will show some results from Apablaza, Ocampo and Yalonetzky (2010).
- Then we will discuss more decompositions relevant to panel datasets.
- And show some results from Apablaza and Yalonetzky (2011).
Introduction

- We are going to study the most basic time decompositions first, i.e. for cross-sections.
- Then we will show some results from Apablaza, Ocampo and Yalonetzky (2010).
- Then we will discuss more decompositions relevant to panel datasets.
- And show some results from Apablaza and Yalonetzky (2011).
- We will finish with some remarks on comparability from Apablaza, Ocampo and Yalonetzky (2010).
Basic Notation

The weighted sum of deprivations
Basic Notation

The weighted sum of deprivations

\[c_n = \sum_{d=1}^{D} w_d I(x^t_{nd} \leq z_d) \]
Basic Notation

The weighted sum of deprivations

$$c_n = \sum_{d=1}^{D} w_d I(x_{nd}^t \leq z_d)$$

Multidimensional poverty headcount:

$$H(X^t; Z) \equiv \frac{1}{N^t} \sum_{n=1}^{N^t} I(c_n \geq k)$$
Basic Notation

Average deprivation of the poor:
Basic Notation

Average deprivation of the poor:

\[A(X^t; Z) \equiv \frac{1}{DN^tH} \sum_{n=1}^{N^t} I(c_n \geq k)c_n \]
Basic Notation

Average deprivation of the poor:

\[A(X^t; Z) \equiv \frac{1}{DN^t} \sum_{n=1}^{N^t} I(c_n \geq k)c_n \]

The adjusted headcount ratio, M0:

\[M^0(X^t; Z) \equiv H^t A^t = \frac{1}{DN^t} \sum_{n=1}^{N^t} I(c_n \geq k)c_n \]
Basic Notation

Average deprivation of the poor:

\[A(X^t; Z) \equiv \frac{1}{DN^tH} \sum_{n=1}^{N^t} I(c_n \geq k)c_n \]

The adjusted headcount ratio, M0:

\[M^0(X^t; Z) \equiv H^tA^t = \frac{1}{DN^t} \sum_{n=1}^{N^t} I(c_n \geq k)c_n \]

\[\Delta\%_a M^0(t) \equiv \frac{M^0(X^t; Z) - M^0(X^{t-a}; Z)}{M^0(X^{t-a}; Z)} \]
Basic decomposition of M_0

$$\Delta\%_a M_0(t) = \Delta\%_a H(t) + \Delta\%_a A(t) + \Delta\%_a H(t) \Delta\%_a A(t)$$

- $\Delta\%_a H(t)$ and $\Delta\%_a A(t)$ are not generally independent, but sometimes a change in one may not produce a change in the other.
Basic decomposition of M0

\[\Delta \%_a M^0(t) = \Delta \%_a H(t) + \Delta \%_a A(t) + \Delta \%_a H(t) \Delta \%_a A(t) \]

- \(\Delta \%_a H(t) \) and \(\Delta \%_a A(t) \) are not generally independent, but sometimes a change in one may not produce a change in the other.
- E.g. if \(k = D \): \(\Delta \%_a A(t) = 0 \), and \(\Delta \%_a M(t) = \Delta \%_a H(t) \).
Basic decomposition of M_0

\[\Delta \%_a M^0(t) = \Delta \%_a H(t) + \Delta \%_a A(t) + \Delta \%_a H(t) \Delta \%_a A(t) \]

- $\Delta \%_a H(t)$ and $\Delta \%_a A(t)$ are not generally independent, but sometimes a change in one may not produce a change in the other.
- E.g. if $k = D$: $\Delta \%_a A(t) = 0$, and $\Delta \%_a M(t) = \Delta \%_a H(t)$.
- or if $k < D$ it is possible that $\Delta \%_a H(t) = 0$ and $\Delta \%_a A(t) \neq 0$.
Basic decomposition of M0

\[\Delta \%_a M^0(t) = \Delta \%_a H(t) + \Delta \%_a A(t) + \Delta \%_a H(t) \Delta \%_a A(t) \]

- \(\Delta \%_a H(t) \) and \(\Delta \%_a A(t) \) are not generally independent, but sometimes a change in one may not produce a change in the other.
- E.g. if \(k = D \): \(\Delta \%_a A(t) = 0 \), and \(\Delta \%_a M(t) = \Delta \%_a H(t) \).
- or if \(k < D \) it is possible that \(\Delta \%_a H(t) = 0 \) and \(\Delta \%_a A(t) \neq 0 \).
- As \(k \) goes from 1 to \(D \), \(H \) decreases and \(A \) increases "mechanically". Hence as \(k \) increases toward \(D \), it is more likely to find higher \(\Delta \%_a H(t) \) and lower \(\Delta \%_a A(t) \).
Basic decomposition of H

H is decomposable into the multidimensional headcounts of subgroups:

\[H(X^t, Z) = \sum_{i=1}^{G} \psi^t_i H^i(X^t_i, Z) \]
Basic decomposition of H

H is decomposable into the multidimensional headcounts of subgroups:

$$H(X^t, Z) = \sum_{i=1}^{G} \psi^t_i H^i(X^t_i, Z)$$

Where $\psi^t_i \equiv \frac{N^t_i}{N^t}$
Basic decomposition of H

H is decomposable into the multidimensional headcounts of subgroups:

$$H(X^t, Z) = \sum_{i=1}^{G} \psi^t_i H^i(X^t_i, Z)$$

Where $\psi^t_i \equiv \frac{N^t_i}{N^t}$

In turn:

$$H^i(X^t_i, Z) = \frac{1}{N^t_i} \sum_{n=1}^{N} I(c_n \geq k) I(n \in i)$$
Basic decomposition of H

$$\Delta\%_a H(t) = \sum_{i=1}^{G} \Delta\%_a [\psi^t_i H^i(X^t_i, Z)] r_i(t - a)$$
Basic decomposition of H

\[
\Delta \%_a H(t) = \sum_{i=1}^{G} \Delta \%_a [\psi_t^i H^i(X_t^i, Z)] r_i(t - a)
\]

Where \(r_i(t - a) \equiv \frac{\psi_{i - a}^t H^i(X_{i - a}^t, Z)}{H(X_{t - a}^t, Z)} \)
Basic decomposition of H

$$\Delta \%_a H(t) = \sum_{i=1}^{G} \Delta \%_a [\psi_i^t H^i(X_t^i, Z)] r_i(t-a)$$

Where $r_i(t-a) \equiv \frac{\psi_i^{t-a} H^i(X_t^{t-a}, Z)}{H(X_t^{t-a}, Z)}$

Then:

$$\Delta \%_a H(t) = \sum_{i=1}^{G} r_i(t-a)[\Delta \%_a \psi_i^t + \Delta \%_a H^i(X_t^i, Z) + \Delta \%_a \psi_i^t \Delta \%_a H^i(X_t^i, Z)]$$
Basic decomposition of A

$$\Delta \%_a A(t) = \sum_{d=1}^{D} \Delta \%_a [\theta_d A_d (X^t, Z)] s_d (t - a)$$
Basic decomposition of A

$$\Delta\%_a A(t) = \sum_{d=1}^{D} \Delta\%_a [\theta_d A_d(X^t, Z)] s_d(t - a)$$

Where $\theta_d \equiv \frac{w_d}{D}$ and $s_d(t - a) \equiv \frac{\theta_d A_d(X^{t-a}, Z)}{A(X^{t-a}, Z)}$
Basic decomposition of A

\[
\Delta \%_a A(t) = \sum_{d=1}^{D} \Delta \%_a [\theta_d A_d(X^t, Z)] s_d(t - a)
\]

Where $\theta_d \equiv \frac{w_d}{D}$ and $s_d(t - a) \equiv \frac{\theta_d A_d(X^{t-a}, Z)}{A(X^{t-a}, Z)}$

And $A_d(X^t, Z) \equiv \frac{\sum_{n=1}^{N_t} I(c_n \geq k \land x_{nd}^{t} \leq z_d)}{N(t)H(t)}$
Then:

$$
\Delta \%_a A(t) = \sum_{d=1}^{D} s_d(t-a)[\Delta \%_a \theta_d A_d(X^t, Z)] = \sum_{d=1}^{D} s_d(t-a)[\Delta \%_a A_d(X^t, Z)]
$$
Then:

$$\Delta^{\%}_a A(t) = \sum_{d=1}^{D} s_d (t-a) [\Delta^{\%}_a \theta_d A_d(X^t, Z)] = \sum_{d=1}^{D} s_d (t-a) [\Delta^{\%}_a A_d(X^t, Z)]$$

Because, by construction, $\Delta^{\%}_a \theta_d = 0$
Then:

\[
\Delta \%_a A(t) = \sum_{d=1}^{D} s_d (t-a) [\Delta \%_a \theta_d A_d(X^t, Z)] = \sum_{d=1}^{D} s_d (t-a) [\Delta \%_a A_d(X^t, Z)]
\]

Because, by construction, \(\Delta \%_a \theta_d = 0 \)

In practical comparisons, we divide the changes by the year-gaps to improve comparability.
Data

<table>
<thead>
<tr>
<th>Country</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>2004-2007</td>
</tr>
<tr>
<td>Colombia</td>
<td>1995-2005</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>2000-2005</td>
</tr>
<tr>
<td>Ghana</td>
<td>2003-2008</td>
</tr>
<tr>
<td>India</td>
<td>1999-2005</td>
</tr>
<tr>
<td>Morocco</td>
<td>1992-2004</td>
</tr>
<tr>
<td>Nepal</td>
<td>2001-2006</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1999-2003</td>
</tr>
<tr>
<td>Tanzania</td>
<td>2005-2008</td>
</tr>
<tr>
<td>Vietnam</td>
<td>1997-2002</td>
</tr>
</tbody>
</table>
The variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>G</th>
<th>I</th>
<th>M</th>
<th>Ne</th>
<th>Ni</th>
<th>T</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years school</td>
<td>✓</td>
</tr>
<tr>
<td>Enrollment</td>
<td>✓</td>
</tr>
<tr>
<td>Child mortality</td>
<td>✓</td>
</tr>
<tr>
<td>Nutrition</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Electricity</td>
<td>✓</td>
</tr>
<tr>
<td>Toilet</td>
<td>✓</td>
</tr>
<tr>
<td>Water</td>
<td>✓</td>
</tr>
<tr>
<td>Floor</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cooking</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Asset</td>
<td>✓</td>
</tr>
</tbody>
</table>

B=Bangladesh; C=Colombia; E=Ethiopia; G=Ghana; I=India
M=Morocco; Ne=Nepal; Ni=Nigeria; T=Tanzania; V=Vietnam
Decomposition of M0 for 10 countries and k=3
The impact of the choice of k: the case of Bangladesh
The impact of the choice of k: the case of Colombia
The impact of the choice of k: the case of Ethiopia
The impact of the choice of k: the case of Ghana
The impact of the choice of k: the case of India
The impact of the choice of k: the case of Morocco
The impact of the choice of k: the case of Nepal
The impact of the choice of k: the case of Nigeria
The impact of the choice of k: the case of Tanzania
Time decompositions of the adjusted headcount ratio

Results

Basic decomposition of MPI

The impact of the choice of k: the case of Vietnam
Decomposition of H for k=3
Decomposition of A for k=3
More general results for $\Delta%_a M0$

Consider now the censored headcount, $CH_d(t)$:

$$CH_d(t) \equiv \frac{1}{N_t} \sum_{n=1}^{N_t} I(c_n \geq k \land x_{nd}^t \leq z_d)$$
More general results for $\Delta \%_a M^0$

Consider now the censored headcount, $CH_d(t)$:

$$CH_d(t) \equiv \frac{1}{N_t} \sum_{n=1}^{N^t} I(c_n \geq k \land x_{nd}^t \leq z_d)$$

Then:

$$A_d = \frac{CH_d(t)}{H(t)} \quad \text{and} \quad M^0(t) = \sum_{d=1}^{D} \theta_d CH_d(t)$$
More general results for $\Delta_0 M_0$

We get additional results that rely on $\Delta_0 CH_d(t)$:
More general results for $\Delta\%_a M_0$

We get additional results that rely on $\Delta\%_a CH_d(t)$:

$$\Delta\%_a A_d = \frac{1 + \Delta\%_a CH_d}{1 + \Delta\%_a H(t)} - 1$$
More general results for $\Delta\%_aM0$

We get additional results that rely on $\Delta\%_aCH_d(t)$:

$$
\Delta\%_aA_d = \frac{1 + \Delta\%_aCH_d}{1 + \Delta\%_aH(t)} - 1
$$

$$
\Delta\%_aA = \frac{1 + \sum_{d=1}^{D} s_d(t - a)\Delta\%_aCH_d}{1 + \Delta\%_aH(t)} - 1
$$
More general results for $\Delta\%_a M^0$

We get additional results that rely on $\Delta\%_a CH_d(t)$:

$$\Delta\%_a A_d = \frac{1 + \Delta\%_a CH_d}{1 + \Delta\%_a H(t)} - 1$$

$$\Delta\%_a A = \frac{1 + \sum_{d=1}^{D} s_d (t - a) \Delta\%_a CH_d}{1 + \Delta\%_a H(t)} - 1$$

$$\Delta\%_a M^0(t) = \sum_{d=1}^{D} s_d (t - a) \Delta\%_a CH_d$$
Linking changes to transition probabilities

Now we can link this chain of changes to changes in the transition probabilities of H and CH.
Linking changes to transition probabilities

Now we can link this chain of changes to changes in the transition probabilities of H and CH.

First we have the two "laws of motion":

\[
\Delta \% a H(t) = P[c t n \geq k | c t - a n < k] \left[1 - H(t - a) \right] - P[c t n < k | c t - a n \geq k] \\
\Delta \% a CH(t) = P[c t n \geq k \land x t nd \leq z d | c t - a n < k \lor x t - a nd > z d] \left[1 - CH(t - a) \right] - P[c t n < k \lor x t - a nd > z d | c t - a n \geq k \land x t - a nd \leq z d]
\]
Linking changes to transition probabilities

Now we can link this chain of changes to changes in the transition probabilities of H and CH.

First we have the two "laws of motion":

\[
\Delta \%_a H(t) = P[c_n^t \geq k | c_n^{t-a} < k] \left[\frac{1 - H(t - a)}{H(t - a)} \right] - P[c_n^t < k | c_n^{t-a} \geq k]
\]
Linking changes to transition probabilities

Now we can link this chain of changes to changes in the transition probabilities of H and CH.

First we have the two "laws of motion":

$$\Delta \%_a H(t) = P[c_n^t \geq k \mid c_n^{t-a} < k] \left[\frac{1 - H(t - a)}{H(t - a)} \right] - P[c_n^t < k \mid c_n^{t-a} \geq k]$$

$$\Delta \%_a CH(t) = P[c_n^t \geq k \land x_{nd}^t \leq z_d \mid c_n^{t-a} < k \lor x_{nd}^{t-a} > z_d] \left[\frac{1 - CH(t - a)}{CH(t - a)} \right]$$

$$- P[c_n^t < k \lor x_{nd}^t > z_d \mid c_n^{t-a} \geq k \land x_{nd}^{t-a} \leq z_d]$$
Decomposition of Alkire-Foster statistics based on transition probabilities
Two final results

\[\Pr[c^t_n < k \mid c^{t-a}_n \geq k] \quad \text{and} \quad \Pr[c^t_n \geq k \mid c^{t-a}_n < k] \]
Two final results

\[\Delta^{\%} M^{0} \]

\[\Delta^{\%} \text{CH}(1), \ldots, \Delta^{\%} \text{CH}(D) \]

\[\Pr[x_{nd}' \leq z_{d} \land c_{n}' \geq k \mid x_{nd}'^{i-a} > z_{d} \lor c_{n}'^{i-a} < k] \]

\[\Pr[x_{nd}' > z_{d} \lor c_{n}' < k \mid x_{nd}'^{i-a} \leq z_{d} \land c_{n}'^{i-a} \geq k] \]
The Young Lives dataset

We use the three waves: 2002, 2006/7, 2010.

<table>
<thead>
<tr>
<th>Wave</th>
<th>Original sample</th>
<th>Selected Sample</th>
<th>Mean Age</th>
<th>% Females</th>
<th>% rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiopia 1</td>
<td>1000</td>
<td>868</td>
<td>7.88</td>
<td>49.1%</td>
<td>61.2%</td>
</tr>
<tr>
<td>2</td>
<td>980</td>
<td>868</td>
<td>12.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>973</td>
<td>868</td>
<td>14.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andhra Pradesh 1</td>
<td>1008</td>
<td>944</td>
<td>7.98</td>
<td>50.6%</td>
<td>75.6%</td>
</tr>
<tr>
<td>2</td>
<td>994</td>
<td>944</td>
<td>12.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>975</td>
<td>944</td>
<td>14.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru 1</td>
<td>714</td>
<td>660</td>
<td>7.93</td>
<td>47.0%</td>
<td>26.1%</td>
</tr>
<tr>
<td>2</td>
<td>685</td>
<td>660</td>
<td>12.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>678</td>
<td>660</td>
<td>14.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vietnam 1</td>
<td>1000</td>
<td>957</td>
<td>7.97</td>
<td>50.4%</td>
<td>80.6%</td>
</tr>
<tr>
<td>2</td>
<td>990</td>
<td>957</td>
<td>12.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>974</td>
<td>957</td>
<td>14.73</td>
<td></td>
<td>n.a.</td>
</tr>
</tbody>
</table>
Choice of variables

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description (threshold)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child Related</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child Labour♦</td>
<td>Any "commercial" activity before 13 / Light activity from 13 (2 hours per day)</td>
<td>1/12%</td>
</tr>
<tr>
<td>School Attendance</td>
<td>No attendance to the school according to National Law</td>
<td>1/12%</td>
</tr>
<tr>
<td>Attachment</td>
<td>Any contact with parents mum or dad</td>
<td>1/12%</td>
</tr>
<tr>
<td>Nutrition◊</td>
<td>Less than 2 standards deviations (BMI)</td>
<td>1/12%</td>
</tr>
<tr>
<td>Household Related</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>No electricity</td>
<td>1/12%</td>
</tr>
<tr>
<td>Cooking Fuel</td>
<td>MDG definition (Branches/ Charcoal/ Coal/ Cow dung /Crop residues / Leaves/ None /Other)</td>
<td>1/12%</td>
</tr>
<tr>
<td>Drinking Water</td>
<td>MDG definition (Unprotected/ Well/ Spring/ Pond/ River/ Stream / Canal)</td>
<td>1/12%</td>
</tr>
<tr>
<td>Toilet</td>
<td>MDG definition (Forest/ field/ Open place / Neighbours toilet/ Communal pit latrine/ Relative’s toilet/ Simple latrine on pond/ Toilet in health post/ Other)</td>
<td>1/12%</td>
</tr>
<tr>
<td>Floor</td>
<td>MDG definition (Earth/ Sand)</td>
<td>1/12%</td>
</tr>
<tr>
<td>Assets</td>
<td>Less than one (Radio/ Fridge/ Table/ Bike/ Tv/ Motorbike/ Car/ Phone)</td>
<td>1/12%</td>
</tr>
<tr>
<td>Overcrowding♦</td>
<td>3 or more Individuals per room</td>
<td>1/12%</td>
</tr>
<tr>
<td>Child Mortality◇</td>
<td>Any dead Children in the Household</td>
<td>1/12%</td>
</tr>
</tbody>
</table>
Time decompositions of the adjusted headcount ratio

Results

Transition probabilities
Transition probabilities and $\Delta\%H$
Concluding remarks on time comparisons with M0 across countries

When time periods differ three potential problems of comparability arise: (Apablaza, Ocampo and Yalonetzky, 2010)
Concluding remarks on time comparisons with M0 across countries

When time periods differ three potential problems of comparability arise: (Apablaza, Ocampo and Yalonetzky, 2010)

- Time spans are different: It may give undue advantage for, say, poverty reduction to the country with the longest observed span. Solution: Annualize rates of change.
Concluding remarks on time comparisons with M0 across countries

When time periods differ three potential problems of comparability arise: (Apablaza, Ocampo and Yalonetzky, 2010)

- Time spans are different: It may give undue advantage for, say, poverty reduction to the country with the longest observed span. Solution: Annualize rates of change.

- Time spans are different: If the differences are too wild it may be that for one country we observe short-term business cycle fluctuations whereas for the other we observe a medium-term growth trend. Solution: Restrict comparisons to time spans that do not differ too wildly.
Concluding remarks on time comparisons with M0 across countries

When time periods differ three potential problems of comparability arise: (Apablaza, Ocampo and Yalonetzky, 2010)

- Time spans are different: It may give undue advantage for, say, poverty reduction to the country with the longest observed span. Solution: Annualize rates of change.

- Time spans are different: If the differences are too wild it may be that for one country we observe short-term business cycle fluctuations whereas for the other we observe a medium-term growth trend. Solution: Restrict comparisons to time spans that do not differ too wildly.

- The years are different: Even when spans are equal, taking year brackets too far apart may affect the meaningfulness of the comparison. (E.g. Kenya in the 1950s with Chile in the 1990s). Solution: Justify your comparisons when the years are different.