



## Summer School on Multidimensional Poverty Analysis

11–23 August 2014

Oxford Department of International Development Queen Elizabeth House, University of Oxford







#### Targeting and Impact Evaluation

Sabina Alkire and Ana Vaz

21 August 2014 Oxford University, UK



#### **O**utline

Multidimensional Targeting

Multidimensional Impact Evaluation





## Multidimensional Targeting

To simplify greatly, targeting methods must:

- 1. Identify poor people relatively accurately
- 2. Use census-based indicators that:
  - a. are inexpensive to collect
  - b. are accurate or can be verified
  - c. do not create perverse incentives
- 3. Use a simple, transparent method, which enables cross-checking by other actors (at least in some contexts).







(minimize undercoverage/leakage)





#### Proxy means tests: sufficient accuracy?

Using cross-country simulations, for 30% eligibility threshold, Grosh and Baker (1995) finds that the undercoverage rate and leakage rate in urban Jamaica to be 43% and 26.1%, respectively. The corresponding rates are 39.3% and 24.1% for urban Bolivia, and 53.8% and 35.1% for urban Peru.

Narayan and Yoshida (2005), in case of Sri Lanka, find that the under-coverage rate and the leakage rate for the model with best predicting power to be 28% and 31% for the 40<sup>th</sup> cutoff percentile Can this improve?

#### Resources on AF & Targeting

- Robano, V. & Smith, S. C. (2014) "Multidimensional targeting and evaluation: A general framework with an application to a poverty program in Bangladesh." *OPHI Working Paper* 65.
- Alkire and Seth (2013). "Selecting a Targeting Method to Identify BPL Households in India." *Social Indicators Research* 112(2) 417-446
- Azevado and Robles (2013). "Multidimensional Targeting: Identifying Beneficiaries of Conditional Cash Transfer Programs", *Social Indicators Research*. 112(2).

This is an area of ongoing investigation & development



#### Proposal

The Targeting method should be the best proxy of **direct measures** of poverty with good data

- National MPI can **track reduction** in poverty and celebrate progress
- > National MPI should reflect **policy priorities**.
- Identification of 'who is poor' is a **normative** choice, so targets should be linked to an 'anchor' measure
- Census data will be imperfect
- A simple structure may be needed for **transparency**



## How identify 'target group'? Start with official National MPI

The 'anchor' measure would be a national MPI.

The national MPI reflects values and policy priorities – the purpose of the measure – drawing on good survey data.

The national MPI is updated regularly, and analysed by region, rural/urban, and other population subgroups.

The national MPI shows changes over time – including those that are the outcome of targeted interventions.



# How identify 'target group'? Census-based MPI<sub>T</sub>

Construct an MPI<sub>T</sub> based on census to identify target population.

Design the MPI<sub>T</sub> to identify the MPI poor

The choice of  $\mathrm{MPI}_{\mathrm{T}}$  parameters (indicators, weights, cutoffs) are justified by providing the closest proxy to MPI identification of who is poor.

Requires a survey including census & MPI survey questions.



### Note: Census questions

Census schedules used for targeting differ from surveys:

- **Simpler** (appropriate for less specialized enumerators)
  - E.g. malnutrition,
- **Shorter** (less costly per person but less precise)
  - E.g. household roster
- Visible & Verifiable (to minimize error/misreporting)
  - E.g. income vs housing
- Consider incentives (so don't distort behaviours)
  - E.g. sanitation



### Note: Census questions

By implication, available and appropriate questions differ:

- More use of proxy variables
  - E.g. caste
- More emphasis on identification, less on trends
  - E.g. exclusion criteria
- Transparency needs vary
  - E.g. simple (counting) vs undisclosed



## Requirements to design targeting instrument:

#### Dataset that includes:

- Questions for national MPI
- Questions for targeting census
- Sample that reflects relevant diversity

#### National MPI specifications

- To identify who is poor individually
- To establish different *levels* of poverty



### Tools of Targeting

Using dataset and MPI specifications, design:

- a) Exclusion Criteria income tax, house, car
  - Rule out non-poor
- **b)** Inclusion Criteria indicators, group
  - Identify who is poor
- c) .Some combination of both.

(Counting-based measures can be used for both criterion)

Adjust design to minimize leakage and undercoverage



#### How justify targeting method?

The chosen targeting method should be the best proxy of direct measures of people's poverty ('real poor') that use good data. Least leakage/undercov.

- 1 census data will be approximate
- 2 need to 'justify' method to public
- 3 identification of 'who is poor' is a normative choice



#### How justify targeting method?

The chosen targeting method should be the best proxy of direct measures of people's poverty ('real poor') that use good data. Least leakage/undercov.

- 4 not all census indicators 'direct'.
- 5 MPI can track reduction in 'real' poverty over time (verifiable indicators may not show relevant trends)



#### Which is the Best Proxy?









## How Many Indicators? Cost/Simplicity vs Bunching

With few indicators only there will be 'bunching' issues at local/provincial levels - here up to 25%.







# How many are to be targeted in each region?

State level 'caps' based on income poverty may not match multidimensional poverty 'caps'





#### **Conclusions**

A targeting exercise has distinct challenges census data incentives leakage/uc

With the same data, a difference in targeting methodology makes a large difference empirically (literature)

A targeting method can be justified because it proxies the identification in an Multidimensional Poverty Index

The number of indicators used does affect precision.

Size of target populations (value of regional k for  $MPI_T$ ) should reflect MPI levels based on good survey data.





## Multidimensional Impact Evaluation

#### **Motivation**

- Increasing recognition that poverty is a multidimensional phenomenon.
  - "That poverty is a multidimensional phenomenon is no longer debatable." (Balisacan, 2011)
- More and more poverty reduction programs are adopting multidimensional approaches. Examples:
  - Conditional Cash Transfers (Bouillon & Yanez-Pagans, 2011).
  - Millennium Villages Project



#### **Motivation**

- Growing importance of impact/program evaluation
  - Provides evidence of what works:
    - "essential instrument to test the validity of specific approaches to development and poverty alleviation" (World Bank)
    - "We want to fund things that work" (Boorstin, Deputy Director of Bill and Melinda Gates Foundation, at UN Summit in New York 2010)
  - Is "an accountability tool at the end of a project cycle" (Dr. Kremer, at UN Summit in New York 2010)
- So, it seems natural that the targeting and evaluation of poverty reduction programs with a multidimensional approach should also be multidimensional.



#### Purpose

• Show how the Alkire Foster (AF) methodology can be used in impact evaluation

• Empirical application using the case of *Oportunidades* in rural areas



### Background

- There is already literature that links the AF methodology with the targeting of poverty reduction interventions
  - Bouillon & Yanez-Pagans, 2011;
  - Alkire & Seth, 2013;
  - Azevedo & Robles, 2013;
  - Robano & Smith, 2014.

- As far as I know, only one study has explored the use of AF methodology for impact evaluation
  - Robano & Smith, 2014



#### Why use the AF methodology?

- More direct measure of the overall program's performance
- It allows us to monitor the impact of programs on the:
  - Incidence of deprivations, and
  - The joint distribution of deprivations.
- Communication of results: we can summarize impact at different levels into one number



#### • Suppose:

- A poverty reduction program with D objectives;
- That each objective can be defined in terms of minimum achievement thresholds, **z**, for each target unit (person, household, community, etc.);
- Let  $w_d$  be the weight/importance of objective d;
- That the overall goal of the program can be defined as reducing the weighted sum of the targets' missed objectives below a certain cutoff, k.
- We have information for the beneficiaries of the program as well as for a comparable control group.



- In these circumstances, we can 'translate' the program's overall goal into a M0 measure.
  - -D objectives =>D or plus indicators
  - -z minimum achievement thresholds => z deprivation cut-offs
  - *k* is the program cut-off



- Identification of poor based on dual cut-offs
  - Who is deprived in each indicator?
  - Who has at least k weighted deprivations/missed objectives?
- $M_0$  can be expressed as:

$$M_0 = H_X A$$

- Incidence (H): % of people missing the overall program goal
- Intensity (A): % of weighted deprivations of people who are missing the overall program goal
- Fundamental property: Decomposability



- Use  $M_0/H$  as the outcome of interest in the evaluation of the program's impact:
  - Compute the  $M_0/H$  for the treated and control groups;
  - Test whether the difference between the  $M_0/H$  of the two groups is statistically significant.
  - Test impact on the raw and censored headcounts
  - Test the impact on the weighted number of deprivations
  - If we also have data for multiple points of time, we can compare the change in  $M_0/H$  (Difference-in-difference estimator).



- Instead of computing means, we can estimate differencein-difference regressions and control for demographic characteristics.
- When we have data for multiple points in time, we can do additional analyses:
  - Assess groups' baseline comparability;
  - Impact on probabilities of transition;
  - Decompose change in  $M_0$  over time:
    - Between movements in-out of poverty and intensity of ongoing poor;
    - Across different population groups / geographical areas.



### Empirical application

- Why Oportunidades?
  - Pioneer in Conditional Cash Transfer Programs
  - Multi-sector program
    - Education
    - Health
    - Nutrition
  - Experimental design
    - Randomization of localities into control and treatment groups
    - Data collected before and after the start of the treatment



#### Empirical application

- Impact of *Oportunidades* in single indicators documented:
  - Positive impact on enrolment (Schultz, 2000)
  - No impact on school attendance (Schultz, 2000)
  - Significant reduction in school grade gaps (Behram, Sengupta & Todd, 2000, 2005)
  - Positive impact on the number of grades completed (Behram, Parker & Todd, 2005)
  - Increase in number of visits to public health centres (Gertler, 2000)
  - Negative impact on probability of illness of children under 5 (Gertler, 2000)
  - Negative impact on children's labor (Parker & Todd, 2000)
  - Increase in food expenditure (Hoddinott & Skoufias, 2004)



#### Empirical application

- Select indicators that:
  - Reflect the program's minimum goals;
  - Based on previous evaluation literature;
  - For which we have data for all time periods.
- Select weights



### Empirical application

#### List of indicators

| Indicator                              | Deprived if:                                                                                            | Weights |
|----------------------------------------|---------------------------------------------------------------------------------------------------------|---------|
| Enrolment                              | at least one member aged 6-14 not attending school                                                      | 0.125   |
| School attendance                      | at least one member aged 6-14 attended less than 90% of the school days (past month) OR is not enrolled | 0.125   |
| No child labor                         | at least one member aged 8-14 had a job or worked during last week (even if unpaid)                     | 0.25    |
| Children's health                      | at least one member aged 0-2 was ill in the past 4 weeks for more than 5 days                           | 0.25    |
| Health visits for nutrition monitoring | at least one member aged 0-2 has not made any visit in the past 6 months                                | 0.25    |

• **Problem**: As all indicators are defined with reference to children, the poverty status of the household is highly dependent on its the demographic structure.



# Sample

**Table 1: Sample size and attrition** 

|                                 | Sample of eligible households (1) |             |                 |        |               |                    |                 |       |  |  |
|---------------------------------|-----------------------------------|-------------|-----------------|--------|---------------|--------------------|-----------------|-------|--|--|
| Datasets                        |                                   | Sample size |                 |        |               | Atrition rates (%) |                 |       |  |  |
| Datasets                        | Control areas                     |             | Treatment areas |        | Control areas |                    | Treatment areas |       |  |  |
|                                 | НН                                | Ind.        | НН              | Ind.   | НН            | Ind.               | НН              | Ind.  |  |  |
| ENCASEH 97 + ENCEL 98 March     | 4,582                             | 29,580      | 7,665           | 49,219 |               |                    |                 |       |  |  |
| ENCEL 98, October               | 4,735                             | 28,683      | 7,895           | 47,492 |               |                    |                 |       |  |  |
| Panel with two time periods (2) | 4,307                             | 25,226      | 7,241           | 42,232 | 6.00          | 14.72              | 5.53            | 14.20 |  |  |
| ENCEL 99, March                 | 4,316                             | 26,199      | 7,170           | 43,442 |               |                    |                 |       |  |  |
| Panel with three time periods   | 3,821                             | 22,159      | 6,486           | 37,688 | 16.61         | 25.09              | 15.38           | 23.43 |  |  |
| ENCEL 99, November              | 4,417                             | 27,116      | 7,079           | 43,260 |               |                    |                 |       |  |  |
| Panel with four time periods    | 3,652                             | 21,048      | 6,040           | 35,032 | 20.30         | 28.84              | 21.20           | 28.82 |  |  |

<sup>(1)</sup> Based on the original eligibility criterion, 'pobre'.



#### Raw Headcounts at Baseline













#### Decomposition of M0, k=0.25





#### Weighted Deprivations Count at the Baseline







# Impact – Using only cross section





## Impact – Using time series





## Impact – Using time series

#### Evolution of Headcount, k=0.25



#### Evolution of M0, k=0.25





## Impact – H and M0

**Table: Program's impact considering different cutoffs** 

| Time | Cutoff (k)    |            | Hea     | dcount    |            | Multidimensional Measure |         |           |                         |  |
|------|---------------|------------|---------|-----------|------------|--------------------------|---------|-----------|-------------------------|--|
|      |               | Control    | Treated | Dif.      | Dif-in-Dif | Control                  | Treated | Dif.      | Dif-in-Dif              |  |
| 0    | 0.25          | 0.357      | 0.372   | 0.014     |            | 0.118                    | 0.124   | 0.007     |                         |  |
|      | 0.50          | 0.092      | 0.098   | 0.005     |            | 0.050                    | 0.053   | 0.004     |                         |  |
|      | 0.75          | 0.011      | 0.014   | 0.003     |            | 0.008                    | 0.011   | 0.003     |                         |  |
|      | 1.00          | 0.001      | 0.003   | 0.002     |            | 0.001                    | 0.003   | 0.002     |                         |  |
| 1    | 0.25          | 0.323      | 0.241   | -0.082*** | -0.100***  | 0.106                    | 0.074   | -0.031*** | -0.039***               |  |
|      | 0.50          | 0.079      | 0.047   | -0.031*** | -0.036***  | 0.043                    | 0.025   | -0.018*** | -0.021***               |  |
|      | 0.75          | 0.012      | 0.003   | -0.009*** | -0.012***  | 0.009                    | 0.002   | -0.007*** | -0.009**                |  |
|      | 1.00          | 0.001      | 0.000   | -0.001    | -0.002*    | 0.001                    | 0.000   | -0.001    | -0.002*                 |  |
| 2    | 0.25          | 0.284      | 0.219   | -0.065*** | -0.084***  | 0.093                    | 0.068   | -0.024*** | -0.032***               |  |
|      | 0.50          | 0.071      | 0.039   | -0.032*** | -0.036***  | 0.037                    | 0.021   | -0.016*** | -0.020**                |  |
|      | 0.75          | 0.004      | 0.004   | 0.000     | -0.003     | 0.003                    | 0.003   | 0.000     | -0.003                  |  |
|      | 1.00          | 0.000      | 0.000   | 0.000     | -0.002     | 0.000                    | 0.000   | 0.000     | -0.002                  |  |
| 3    | 0.25          | 0.283      | 0.218   | -0.065*** | -0.083***  | 0.087                    | 0.066   | -0.022*** | -0.029***               |  |
|      | 0.50          | 0.061      | 0.041   | -0.021*** | -0.025**   | 0.032                    | 0.021   | -0.011*** | 0.014**                 |  |
|      | 0.75          | 0.004      | 0.002   | -0.002    | -0.005     | 0.003                    | 0.001   | -0.002    | -0.004                  |  |
| TOT  | T Oxf001 Pove | rty &0.000 | 0.000   | 0.000     | -0.002*    | 0.000                    | 0.000   | 0.000     | UNIVERSITY OF * OX FORD |  |

## Impact – Deprivations count

#### **Evolution of Deprivations Count**



**Table: Deprivations count** 

| Time |       | Control  |       |       | Treated  | D:&   | Dif-in-Dif |             |  |
|------|-------|----------|-------|-------|----------|-------|------------|-------------|--|
| Time | Value | [95% CI] |       | Value | [95% CI] |       | - Diff     | ווע-ווו-טוו |  |
| 0    | 0.122 | 0.110    | 0.133 | 0.128 | 0.119    | 0.138 | 0.007      |             |  |
| 1    | 0.110 | 0.098    | 0.121 | 0.078 | 0.072    | 0.084 | -0.032***  | -0.038***   |  |
| 2    | 0.098 | 0.085    | 0.111 | 0.078 | 0.069    | 0.087 | -0.020**   | -0.027***   |  |
| 3    | 0.090 | 0.081    | 0.098 | 0.068 | 0.062    | 0.073 | -0.022***  | -0.029***   |  |

### Impact – Raw headcounts



### Impact - Censored headcounts



### Impact - Probabilities of transition

#### Table: Probabilities of transition out and into poverty

| Duahahilitias               |               | Periods compared |         |         |         |         |         |         |         |  |  |  |  |
|-----------------------------|---------------|------------------|---------|---------|---------|---------|---------|---------|---------|--|--|--|--|
| Probabilities of transition | Cutoff (lv) = | 0-1              |         | 1-      | -2      | 2-      | -3      |         | 0-3     |  |  |  |  |
|                             | Cutoff (k)    | Control          | Treated | Control | Treated | Control | Treated | Control | Treated |  |  |  |  |
| Out of poverty              | 0.25          | 49.0%            | 63.1%   | 45.5%   | 55.8%   | 46.8%   | 56.3%   | 59.9%   | 69.3%   |  |  |  |  |
|                             | 0.5           | 76.9%            | 83.5%   | 69.8%   | 79.3%   | 74.9%   | 82.8%   | 85.8%   | 88.7%   |  |  |  |  |
| Into poverty                | 0.25          | 22.8%            | 16.5%   | 15.9%   | 14.1%   | 17.0%   | 14.9%   | 21.3%   | 15.8%   |  |  |  |  |
|                             | 0.5           | 6.3%             | 3.7%    | 5.2%    | 2.9%    | 4.5%    | 3.3%    | 5.6%    | 3.2%    |  |  |  |  |



### Decomposition

- Only panel data for baseline and period 1
- k = 0.25

| Decompositions                                      | Control | Treated |
|-----------------------------------------------------|---------|---------|
| Overall variation in MPI                            |         |         |
| Multidimensional Measure (M0) baseline              | .111    | .116    |
| Multidimensional Measure (M0) after 1 period        | .105    | .073    |
| Absolute variation                                  | -0.006  | -0.043  |
| Relative variation                                  | -5.2%   | -36.8%  |
| Decomposition variation in M0 by H and A            |         |         |
| Total % contribution ( $\Delta$ M0 for Group = 100) | 100.0%  | 100.0%  |
| → Inadenæ of poverty effect (H)                     | 81.3%   | 89.8%   |
| Intensity of poverty effect (A):                    | 18.7%   | 10.2%   |



# Decomposition – Indigenous group

- Only panel data for baseline and period 1
- k = 0.25

| Decompositions                                      | Non-<br>indigenous | Indigenous | Control | Non-<br>indigenous | Indigenous | Treated |
|-----------------------------------------------------|--------------------|------------|---------|--------------------|------------|---------|
| Overall variation in MPI                            |                    |            |         |                    |            |         |
| Multidimensional Measure (M0) baseline              | .128               | .087       | .111    | .128               | .100       | .116    |
| Multidimensional Measure (M0) after 1 period        | .114               | .093       | .105    | .081               | .063       | .073    |
| Absolute variation                                  | -0.015             | 0.006      | -0.006  | -0.047             | -0.038     | -0.043  |
| Relative variation                                  | -11.3%             | 6.7%       | -5.2%   | -36.5%             | -37.3%     | -36.8%  |
| % shared (based on baseline figures):               |                    |            |         |                    |            |         |
| Population                                          | 56.9%              | 43.1%      | 100.0%  | 57.9%              | 42.1%      | 100.0%  |
| Multidimensional Headcount ratio (H)                | 63.3%              | 36.6%      | 100.0%  | 63.0%              | 37.0%      | 100.0%  |
| Multidimensional Measure (M0)                       | 66.1%              | 33.9%      | 100.0%  | 63.6%              | 36.4%      | 100.0%  |
| Decomposition variation in M0 by Group              |                    |            |         |                    |            |         |
| % contribution of group to MM1 reduction            | 143.6%             | -43.6%     | 100.0%  | 63.0%              | 37.0%      | 100.0%  |
| Decomposition variation in M0 by H and A            |                    |            |         |                    |            |         |
| Total % contribution ( $\Delta$ M0 for Group = 100) | 100.0%             | 100.0%     | 100.0%  | 100.0%             | 100.0%     | 100.0%  |
| ► Incidence of poverty effect (H)                   | 86.7%              | 99.2%      | 81.3%   | 91.0%              | 87.7%      | 89.8%   |
| Intensity of poverty effect (A):                    | 13.3%              | 0.8%       | 18.7%   | 9.0%               | 12.3%      | 10.2%   |



### Decomposition – Family structure

- Only panel data for baseline and period 1
- k = 0.25

| Decompositions                                      | No       | Only 0-2 | Only 6-14 | Children 0-2 | Treated |  |
|-----------------------------------------------------|----------|----------|-----------|--------------|---------|--|
|                                                     | children |          |           | & 6-14       |         |  |
| Overall variation in MPI                            |          |          |           |              |         |  |
| Multidimensional Measure (M0) baseline              | .000     | .110     | .084      | .192         | .119    |  |
| Multidimensional Measure (M0) after 1 period        | .018     | .050     | .067      | .094         | .071    |  |
| Absolute variation                                  | 0.018    | -0.06    | -0.02     | -0.10        | -0.048  |  |
| Relative variation                                  |          | -54.6%   | -19.6%    | -51.1%       | -40.3%  |  |
| % shared (based on baseline figures):               |          |          |           |              |         |  |
| Population                                          | 8.9%     | 9.2%     | 44.3%     | 37.6%        | 100.0%  |  |
| Multidimensional Headcount ratio (H)                | 0.0%     | 10.2%    | 34.0%     | 55.8%        | 100.0%  |  |
| Multidimensional Measure (M0)                       | 0.0%     | 8.4%     | 31.0%     | 60.6%        | 100.0%  |  |
| Decomposition variation in M0 by Group              |          |          |           |              |         |  |
| % contribution of group to MM1 reduction            | -3.4%    | 11%      | 15%       | 77%          | 100.0%  |  |
| Decomposition variation in M0 by H and A            |          |          |           |              |         |  |
| Total % contribution ( $\Delta$ M0 for Group = 100) | 100.0%   | 100.0%   | 100.0%    | 100.0%       | 100.0%  |  |
| → Inadenæ of poverty effect (H)                     | 100.0%   | 96.7%    | 96.5%     | 86.2%        | 88.5%   |  |
| Intensity of poverty effect (A):                    | 0.0%     | 3.3%     | 3.5%      | 13.8%        | 11.5%   |  |



### Impact – Other analysis

- Estimate the DID including baseline controls
- Decomposition of program's impact by sub-groups:
  - Gender of household head
  - **–** ...
- Ranking regions by program's performance
- Impact of program on chronicity of poverty





# Thank you!