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Main Sources of this Lecture 
•  Alkire S., J. E. Foster, S. Seth, S. Santos, J. M. Roche, P. 

Ballon, Multidimensional Poverty Measurement and 
Analysis, Oxford University Press, forthcoming, (Ch. 8). 

•  Alkire, S. and M. E. Santos (2014), Measuring Acute 
Poverty in the Developing World: Robustness and Scope 
of the Multidimensional Poverty Index. World 
Development Vol. 59, pp. 251–274, 2014. 

•  Batana, Y. M. (2013). Multidimensional Measurement of 
Poverty Among Women in Sub-Saharan Africa. Social 
Indicators Research, 1–26. 



Focus of This Lecture 
•  How accurate are the estimates? 
•  If they are used for policy, what is the chance that they 

are mistaken? 
 

–  How sensitive policy prescriptions are to choices of 
parameters used for designing the measure (Robustness 
Analysis) 

 

–  How accurate policy prescriptions are subject to the sample 
from which the they are computed (Statistical Inferences).  



Policy Prescriptions Often of Interest 
•  A central government wants to allocate budget to the 

poor according to the MPI in each region of the 
country  
–  Need to test if the regional comparisons are robust and 

statistically significant 
 

•  A minister wants to show the steepest decrease in 
poverty in their region/dimension 
–  Need to test if the inter-temporal comparisons are 

robust and statistically significant. 



Importance of Robustness Analyses 
Comparisons may alter when parameters vary 

– An example with the Global MPI 
 

For k = 1/3 
–  MPI for Zambia is 0.328 > MPI of Nigeria is 0.310 

 

For k = 1/2 
–  MPI of Nigeria is 0.232 > MPI for Zambia is 0.214 

   k : The poverty cutoff. A person with a 
  deprivation score equal to or greater than 
   what is identified as poor.  



How are Statistical Tests Important? 
Differences in estimates may be of the same magnitude, 

but statistical inferences may not be the same  
– An example comparing Indian states 

 

  
 
 
 

       Source: Alkire and Seth (2013) 

State 
Adjusted 

Headcount 
Ratio (M0) 

Difference 
Statistically 
Significant? 

Goa 0.057 
0.31 Yes 

Punjab 0.088 
Maharashtra 0.194 

0.32 No 
Tripura 0.226 



 
 

Robustness Analysis 



Parameters of M0 

The M0 measure and its partial indices are based on the 
following parameter values: 
– Poverty cutoff (k) 
– Weighting vector (w) 
– Deprivation cutoffs (z) 

 
An extreme form of robustness is dominance. 
 
 

 



Robustness Analysis 
1.  Dominance Analysis for Changes in the Poverty 

Cutoff 
–  With respect to poverty cutoff (analogous to 

unidimensional dominance) 
–  Multidimensional dominance 
 

2.  Rank Robustness Analysis 
–  With respect to weights 
–  With respect to deprivation cutoffs. 

 
 

 



First Order Unidimensional Dominance 
Example: Let x=(2,4,6,10) and y=(1,4,5,10) be two 

income distributions 
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No part of y lies to the 
right of x 

 
In this case x dominates 

y, which means that x 
has unambiguously less 
poverty than y 
according to the 
headcount ratio. 



Dominance for H and M0 
Question: When can we say that a distribution has higher 

H or M0 for any poverty cutoff (k), for a given weight 
vector and a given deprivation cutoff vector? 

 
Hint: The concept can be borrowed from unidimensional 

stochastic dominance. 
     Alkire and Foster (2011) 



Dominance for H and M0 in AF 

Consider the following deprivation matrix 
Income Years of 

Education 
Sanitation 
(Improved?) 

Access to 
Electricity 

g0 =  

0 0 0 0 
1 0 0 1 
1 1 1 1 
0 1 0 0 

z =  500 12 1 1 



Dominance for H and M0 in AF 

•  For equal weight, the deprivation count vector is c 

Income Years of 
Education 

Sanitation 
(Improved?) 

Access to 
Electricity c 

g0 =  

0 0 0 0 0 
1 0 0 1 2 
1 1 1 1 4 
0 1 0 0 1 

z =  500 12 1 1 



Dominance for H and M0 in AF 

Result (Alkire and Foster 2011) 
–  If a deprivation score vector c for joint distribution X first 

order stochastically dominates another deprivation score 
vector c' of X', then X has no higher H and M0 than X' for 
all k and X has strictly lower H and M0 than X' for some k 

Note, however, that the distribution functions would be 
downward sloping instead of upward rising. 



Complementary CDF (CCDF) 

CDF of a distribution x is denoted by Fx 

  
 CCDF of a distribution x is      = 1 – Fx 

 CCDF is also known as survival function or reliability 
function in other branch of literature 

 
          denotes the proportion of population with values 

larger than b. 
 

xF

( )xF b



Example 
Let the two deprivation score (count) vectors be  

c = (0, 1, 2, 4) and c' = (1, 1, 3, 4) 

c	



1	



0	

 1	

 2	



3/4	



2/4	



1/4	



3	

 4	



Is there any 
poverty (k) for 
which there is 
more poverty in c 
than in c' ? 
 
H dominance 
implies M0 
dominance. 

F

cF 'cF



Similar Concepts: M0 Curves 
Dominance holds in terms of M0 for all k 
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Source: Batana (2013) 

In the case of 
sample surveys, 
statistical tests 
are required to 
establish 
dominance 



M0 Curves May, However, Cross  
Note below that not all countries stochastically dominate 

each other (Batana 2013) 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.1 0.5 0.9 1.3 1.6 2.0 2.4 2.8 3.1 3.5 3.9

M
0 

Po
ve

rt
y 

R
at

e

Poverty Cut-offs

Benin Burkina Ghana Kenya Niger Nigeria



M0 Curves May, However, Cross  
Is a particular comparison between two countries or 

regions robust when k varies between an interval? 
 
If k is between 0.9 and 

1.6, the comparisons  
between Niger &  
Burkina Faso and  
Benin & Nigeria may  
be robust, but those 
between Kenya & 
Ghana are not.  

    What if k ranges between 0.9 and 2.4? 
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Rank Robustness Analyses 
Dominance across all comparison values is an extreme 

form of robustness 
 
Stochastic Dominance (SD) conditions are useful for pair 

by pair analysis and provides the strongest possible 
comparisons 

 
SD conditions, however, may be too stringent and may 

not hold for the majority of countries. 



Rank Robustness Analysis 
Until now, we have compared the robustness of 

comparisons across countries or regions to varying 
poverty cutoffs. 

 
How can we evaluate the ranking of a set of countries or 

regions, when 
–  the poverty cut-off varies 
–  the weights vary 
–  the deprivation cutoffs vary. 



Rank Robustness of Comparisons 
A useful method for comparing robustness of ranking is 

to compute rank correlation coefficients 
•  Spearman’s rank correlation coefficient 
•  Kendall’s rank correlation coefficient 
•  Percentage of pair-wise comparisons that are robust 

First, different rankings of countries or regions are 
generated for different specifications of parameters 
–  Different weighting vectors, different poverty/deprivation cutoffs 

Next, the pair-wise ranks and rank correlation 
coefficients are computed.  



Kendall’s Tau 
•  For each pair, we find whether the comparison is 

concordant or discordant 
–  10 countries means 45 pair-wise comparisons 

•  The comparison between a pair of countries is concordant 
if one dominates the other for both specifications (C) 

•  The comparison between a pair of countries is discordant 
if one dominates the other for one specification, but is 
dominated for the other specification (D). 



Kendall’s Tau 
•  The Kendall’s Tau rank correlation coefficient (t) is 

equal to  

•  It lies between -1 and +1 

•  If there are ties, this measure should be adjusted for 
ties 
–  The tie adjusted Tau is known as tau-b 
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Spearman’s Rho 
•  The Spearman’s Rho also measures rank correlation 

but is slightly different from Tau 
–  First, countries are ranked for two specifications 
–  Then, for each country the difference in the two ranks are 

computed (ri for country i) 

•  The Spearman’s Rho (r) is 
2
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Some Illustrations using the MPI 

Robustness to weights 
 
Re-weight each dimension: 
 

–  33%   50%   25%   25% 
–  33%   25%   50%   25% 
–  33%   25%   25%   50% 



Robustness to Weights 
MPI Weights 1 MPI Weights 2 MPI Weights 3
Equal weights: 

33% each 
(Selected 
Measure)

50% Education 
25% Health 
25% LS

50% Health
25% Education 
25% LS

Pearson 0.992
Spearman 0.979
Kendall (Taub) 0.893
Pearson 0.995 0.984
Spearman 0.987 0.954
Kendall (Taub) 0.918 0.829
Pearson 0.987 0.965 0.975
Spearman 0.985 0.973 0.968
Kendall (Taub) 0.904 0.863 0.854

Number of countries: 109

MPI 
Weights 2

50% Education 
25% Health 
25% LS

MPI 
Weights 3

50% Health 
25% Education 
25% LS

MPI 
Weights 4

50% LS 
25% Education 
25% Health

Alkire and Santos (2010, 2014). 



Robustness to Poverty Cutoff (k) 
Spearman’s Rank Correlation Table for different poverty 

cutoffs out of 10 indicators in India 
 
 
 
 
 
 

Alkire and Seth (2008) 



 
 

Statistical Inferences 



Common Concerns 
1.  Does the overall poverty measure of a country amount 

to P? 
2.  Is the overall poverty larger or smaller in one region 

than another region? 
3.  Has the overall poverty increased or decreased over 

time? 
 

One often needs to infer these conclusions (related to 
population) from a sample (as collecting data from the 
population is too expensive). 



Some Terminologies 
Inferential statistics, such as standard error (SE) and 

confidence intervals (CI), deal with inferences about 
populations based on the behavior of samples.  

Both SEs and CIs will help us determine how likely it is 
that results based on a sample (or samples) are the 
same results that would have been obtained for the 
entire population. 



Standard Error & Confidence Interval 
Standard error of a random variable is the sample estimation 

of its (population) standard deviation. The standard error 
gives us an idea of the precision of the sample estimation. 

 

Standard deviation, intuitively,  is a notion of uncertainty.  
 

Confidence interval contains the true population parameter 
with some probability that is known as the confidence level. 
Standard errors are required to compute the confidence 
interval. 



How to Obtain the Standard Error 
To compute the standard error, we can use: 
 
1.  Analytical methods: “Formulas” which either provide 

the exact or the asymptotic approximation of the 
standard error (Yalonetzky, 2010).  

2.  Resampling methods: Standard errors and confidence 
intervals may be computed through bootstrap        
(Alkire & Santos, 2014). 



How Can a Confidence Interval be Used? 
•  Based on the sample, we can reject any claim that India’s 

M0 is equal or more than 0.256 or equal or less than 0.245 
with 95% probability 

•  However, we cannot reject with the same probability that 
India’s M0 lies anywhere strictly between 0.245 and 0.256 



Hypothesis Tests 

•  Confidence intervals when the population parameter is 
unknown.  

•  Testing a hypothesis about what the population 
parameter is; For example, suppose an incumbent 
government hypothesizes that the Adjusted Headcount 
Ratio in India in 2006 is 0.26.  

•  Testing the null hypothesis H0: M0 = 0.26 VS           
H1: M0 ≠ 0.26 (or :M0 > 0.26 or M0: 𝑀0 <0.26). 



Hypothesis Tests 

•  Two-tail test; the null hypothesis H0 can be rejected 
against the alternative H1: M0 ≠ 0.26 with (1-ω) 
percent confidence if |(M0-0.26)/seM0|>|zω/2|.  

•  An equivalent procedure entails comparing the 
significance level against the so-called p-value.  

•  The conclusions based on the confidence intervals and 
the one-sample tests are identical. 



•  If the confidence intervals of two point estimates do 
not overlap, then indeed the comparison is statistically 
significant 

•  However, if the confidence intervals do overlap, it 
does not necessarily mean that the comparison is not 
statistically significant 

Difference is Not Significant  Difference is Significant  

No CI Overlap  Confidence Interval (CI) Overlap 

Statistical Inference in MPI Comparisons 



Statistical Inference in MPI Comparisons 
•  With 95% confidence, Punjab’s MPI is not larger than 

0.103 and no less than 0.073, although the point 
estimate of MPI is 0.088.  



Statistical Inference in MPI Comparisons 
•  Hypothesis tests on the significance of the comparisons 

(of A, H or M0) between countries or over time. 

•  Punjab is significantly poorer than Goa; However, we 
cannot draw the same kind of conclusion for the 
comparison between Andhra Pradesh and Tripura. 



Conclusions 
•  It is important to conduct robustness analyses and 

statistical tests in addition to reporting the estimates 

•  If estimates and comparisons are not robust to different 
choices of parameter or not statistically significant, 
then strong policy conclusions cannot be drawn. 


