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Introduction

Introduction: Multidimensional versus unidimensional
dominance

I Stochastic dominance conditions provide an extreme form of robustness
for ordinal comparisons: if they are fulfilled a comparison is robust to a
broad range of parameter values and families of indices.

I Multidimensional dominance is relevant for evaluation functions that map
from a multivariate space. E.g. An index of well-being that depends on
several aspects of wellbeing.

I In unidimensional dominance second and even third orders may be
interesting/relevant. In multidimensional dominance second and higher
orders are not that easy to interpret.

I By contrast, in multidimensional dominance other things matter: the
joint distribution of the variables, as well as how they complement, or
substitute, each other in their contributions toward the evaluation
function (e.g. ”increasing wellbeing”).
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Introduction

Introduction: Multidimensional dominance conditions

I In this lecture we are going to review the derivation of
dominance conditions and extend it to multivariate settings.

I We will focus on first-order dominance and bivariate
distributions and derive the respective conditions.

I We will discuss the logic behind some of the conditions and
their connections to complementarity and substitutability
between variables.

I We will discuss why these conditions are also relevant for
poverty assessments.

I We will briefly discuss how to test these conditions.
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Stochastic dominance conditions: for univariate to multivariate settings

Traditional dominance conditions with one variable: an
example

Consider the following wellbeing function: W (x) =
∫ xmax

xmin
U(x)dF (x)

Traditional dominance conditions stem from expressing differences in
social welfare functions as sums of products of derivatives of the
individual welfare functions and functions of the cumulative (or survival)
densities. Example:

∆W = −
∫ xmax

xmin

δU

δx
(x)∆F (x)dx

The condition is then: ∆W ≥ 0 ∀U | δUδx (x) ≥ 0↔ ∆F (x) ≤ 0∀x

The dominance condition is usually expressed in terms of distributions.

E.g. if ∀x : FA(x) ≤ FB(x) then we say that ”distribution A (first-order)

dominates B”.
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Stochastic dominance conditions: for univariate to multivariate settings

First-order conditions for the bivariate case

With two variables we integrate by parts the following function:

W =

∫ ymax

ymin

∫ xmax

xmin

U(x)f (x , y)dxdy

Because we have a joint density (f (x , y)) we can integrate using either
cumulative functions:

∆W = −
∫ xmax

xmin

δU

δx
(x , ymax)∆F x(x)dx

−
∫ ymax

ymin

δU

δy
(xmax , y)∆F y (y)dy +

∫ ymax

ymin

∫ xmax

xmin

δ2U

δxδy
(x , y)∆F (x , y)dxdy
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Stochastic dominance conditions: for univariate to multivariate settings

First-order conditions for the bivariate case

Notice the appearance of δ2U
δxδy

(x , y).

This cross-partial derivative determines
whether x and y are ALEP complements or ALEP substitutes in their
contributions to U. Four conditions stem from the two previous equations:

1. A condition for monotonically increasing functions with ALEP substitute

arguments (e.g. δ2U
δxδy

(x , y) ≤ 0):

∀x , y : ∆W ≥ 0∀U | δU
δi

(x , y) ≥ 0 ∧ δ2U

δxδy
(x , y) ≤ 0↔

∆F x(x),∆F y (y),∆F (x , y) ≤ 0

Notice that ∀x , y : ∆F (x , y) ≤ 0 suffices to ascertain ∆W ≥ 0.
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Stochastic dominance conditions: for univariate to multivariate settings

First-order conditions for the bivariate case

3. A condition for monotonically increasing functions with ALEP
neutral arguments (e.g. δ

2U
δxδy (x , y) = 0):

∀x , y : ∆W ≥ 0∀U | δU
δi

(x , y) ≥ 0 ∧ δ2U

δxδy
(x , y) = 0↔

∆F x(x),∆F y (y) ≤ 0

Notice that, in this case, it is necessary to test ∆F i (i) ≤ 0 for
every variable (unlike in the previous cases).
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Stochastic dominance conditions: for univariate to multivariate settings

First-order conditions for the bivariate case

4. A condition for ALL individual welfare functions that are
monotonically increasing!

∀x , y : ∆W ≥ 0∀U | δU
δi

(x , y) ≥ 0↔

∆F x(x),∆F y (y),∆F (x , y) ≤ 0∧∆F̄ x(x),∆F̄ y (y),∆F̄ (x , y) ≥ 0

Notice that, in this case, it is necessary and sufficient to test
∆F (x , y) ≤ 0 and ∆F̄ (x , y) ≥ 0.
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Stochastic dominance conditions: for univariate to multivariate settings

First-order conditions for the general multivariate case

In the general multivariate case, first-order conditions are based on all
cumulative and/or survival functions combining all variables.

They include all
marginal distributions, F i (i) and all cumulative and survival joints up to
F (x , y , ...,w , z) and F̄ (x , y , ...,w , z).

In the case of cumulative distributions, the signs of the cross partial derivatives
of the functions for which the conditions hold change the following way:
Ui > 0, Uij < 0 (ALEP substitution), Uijk > 0 and so forth.

In the case of survival functions, all the signs of the cross partial derivatives of
the functions for which the conditions hold are positive (e.g. Ui > 0,
Uij > 0,Uijk > 0).

Hence when conditions on both the cumulative and the survival functions are
fulfilled:

∀x , y , ..., z : ∆W ≥ 0∀U | δU
δi
,
δ3U

δiδjδk
, ... ≥ 0
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Multidimensional stochastic dominance and complementarity/substitutability

ALEP relationships and multidimensional dominance
conditions

Why the conditions on cumulative distributions are associated with
ALEP substitutability and the conditions on survival functions are
associated with ALEP complementarity?
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Multidimensional stochastic dominance and complementarity/substitutability

ALEP substitution and ∆F (x , y) ≤ 0
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Multidimensional stochastic dominance and complementarity/substitutability

ALEP complementarity and ∆F̄ (x , y) ≥ 0
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Relevance for poverty measurement

Applying dominance conditions to poverty measurement

Social poverty functions are characterized by:

I Being additive and symmetric across individuals:
P(X ; z) = 1

N

∑N
n=1 Pn(x ; z).

I Higher poverty is worse.

I Monotonicity: Higher x should not increase poverty:
δPn(x ;z)

δx ≤ 0

So if we define W (X ; z) = −P(X ;Z ) then we can apply the above
mentioned conditions to poverty comparisons as well!
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The test of Barrett and Donald (2003)

I This test is a type of Kolmogorov-Smirnov test of
homogeneity of distributions.

I The logic is very intuitive: dominance conditions are based on
comparing integrals of FA(z) with FB(z) for a range of z ,
depending on the order of dominance (e.g. for first order, just
compare cumulative or survival distributions).
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The test of Barrett and Donald (2003)

There are four possible outcomes (illustrated with first-order):

1. A dominates B: FA(z) ≤ FB(z)∀z ∧ ∃z |FA < FB(z)

2. B dominates A: FB(z) ≤ FA(z)∀z ∧ ∃z |FB < FA(z)

3. No dominance because A=B: FA(z) = FB(z)∀z
4. No dominance because A and B cross:
∃z1|FA(z1) < FB(z1) ∧ ∃z2|FB(z2) < FA(z2)
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The test of Barrett and Donald (2003)

The generic hypothesis subject to test is the following (illustrated
with first-order):

H0 : FA(z) ≤ FB(z)∀z ∈ [zmin, zmax ]

H1 : ∃z ∈ [z ,min , zmax ]|FA(z) > FB(z)

Results of these tests require interpretation in order to ascertain
any of the four possibilities.
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The test of Barrett and Donald (2003)

The test proceeds as follows (illustrated with first-order):

I For a range of z, estimate: FA(z)− FB(z)

I Estimate the supremum and multiply by a function of the
sample sizes: Ŝ = ( NM

N+M )1/2supz [FA(z)− FB(z)]

I Ŝ is the statistic we need. We now need to know how likely it
is for this value to appear under the null hypothesis.

I There are different procedures to derive the distribution under
the null hypothesis. Barrett and Donald (2003) develop two
types. We are going to show one of them: a bootstrap
method.
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The bootstrap method in the test of Barrett and Donald
(2003)

1. We pool the two samples of A and B (a total of N+M
observations) and draw several subsamples with replacement
(R):

2. For each subsample (say 1000) we estimate:
Sr = ( NM

N+M )1/2supz [FA(z ; r)− FB(z ; r)]

3. The p-value is then approximated by:
pA,B ' 1

R

∑R
r=1 1(Sr > Ŝ)

4. If, say, pA,B < 0.01 we reject the null hypothesis: under the
hypothesis a value like Ŝ is very unlikely.
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I Stochastic dominance conditions are useful to ascertain whether an
ordinal comparison is robust to changes in the parameters or members of
a family of evaluation functions.

I When dominance conditions are not fulfilled then the comparison depends
on the choice of parameters (e.g. poverty lines, risk/inequality aversion,
etc.).

I One could restrict the dominance analysis to smaller sets of parameters
(or members of families of indices), but this needs to be done carefully,
lest significant parts of the domain of interest may be left out.

I When one is concerned for cardinal comparisons, e.g. between countries
or across time, then dominance conditions are not that useful. Sensitivity
analysis is required.

I We have assumed the variables are continuous. But these results can be
easily extended to ordinal variables (e.g. see Yalonetzky, 2011). Further
extensions to combinations of continuous and ordinal variables are
possible.
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